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ABSTRACT 
Evaluation of High Performance Computing (HPC) systems 
should take into account software development time productivity 
in addition to hardware performance, cost, and other factors.  We 
propose a new metric for HPC software development time 
productivity, defined as the ratio of relative runtime performance 
to relative programmer effort.  This formula has been used to 
analyze several HPC benchmark codes and classroom 
programming assignments.  The results of this analysis show 
consistent trends for various programming models.  This method 
enables a high-level evaluation of development time productivity 
for a given code implementation, which is essential to the task of 
estimating cost associated with HPC software development. 
 
1. INTRODUCTION 
One of the main goals of the DARPA High Productivity 
Computing Systems (HPCS) program [1] is to develop a method 
of quantifying and measuring the productivity of High 
Performance Computing (HPC) systems.  At a high level, HPCS 
Productivity, Ψ, has been defined as utility over cost: 
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where utility, U(T), is a function of time.  Generally speaking, the 
longer the time to solution, the lower the utility of that solution 
will be.  The denominator of the formula is a sum of costs – 
software (CS), operator (CO), and machine (CM).  A higher utility 
and lower overall cost lead to a greater productivity for a given 
system. 

 
 

Efforts to quantify time to solution in the HPC community have 
traditionally focused on measuring execution time and developing 
benchmarks and metrics to evaluate computational throughput.  
However, few metrics exist for evaluating development time, 
which is increasingly being recognized as a significant component 
of overall time to solution. 
 
Herein we define a new metric which we call development time 
productivity.  In this case the utility is measured by how much 
faster a parallel code can find a solution, relative to a baseline 
serial code.  The cost is measured by how much effort the 
programmer must put in to writing the parallel code, relative to 
the serial code.  In other words, 
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Effort may be measured in various ways.  The most direct way is 
to measure the actual time spent programming both the serial and 
parallel code.  This is perhaps the most accurate measure, but it 
can also be problematic to obtain accurate time logs, and often 
this data is simply not available.  In this case other software 
metrics, such as Source Lines of Code (SLOC), may be used 
instead.   
 
Some studies have shown SLOC to correlate well with developer 
effort [3], though this is still open to debate.  In any case, we are 
working in relative, not absolute terms.  For example, if parallel 
code A requires 2x the SLOC of a baseline serial code, and 
parallel code B requires only 1.5x the SLOC of the baseline serial 
code, then it is reasonable to assume that code A required a larger 
amount of effort than code B to develop. 
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We have applied this development time productivity formula to 
performance and effort data collected from two HPC benchmark 
suites, and from a series of graduate student parallel programming 
assignments.  Section 2 describes in detail how the data were 
collected and analyzed in each case.  The results of this analysis 
are presented in Section 3, and discussed further in Section 4. 
 
2. ANALYSIS 
2.1. NAS PARALLEL BENCHMARKS 
The NAS Parallel Benchmark (NPB) [4] suite consists of five 
kernel benchmarks and three pseudo-applications from the field of 
computational fluid dynamics.  The NPB presents an excellent 
resource for this study, in that it provides multiple language 
implementations of each benchmark.  The exact codes used were 
the C/Fortran (serial, OpenMP), and Java implementations from 
NPB-3.0, and the C/Fortran (MPI) implementations from NPB-
2.4.  In addition, a parallel ZPL [5] implementation and two serial 
Matlab implementations were also included in the study.   
 
These codes were all run on an IBM p655 multiprocessor 
computer using the Class A problem size.  The parallel codes 
were run using four processors.  The runtimes used were those 
reported by the benchmark codes.  As discussed in the previous 
section, the speedup for each parallel code (and the serial Matlab 
codes) was calculated by dividing the baseline serial C/Fortran 
runtime by the parallel runtime. 
 
The SLOC for each benchmark code was counted automatically 
using the SLOCcount tool [6].  For each implementation, the 
relative SLOC was calculated by dividing the parallel SLOC by 
the baseline serial C/Fortran SLOC. 
 
For each benchmark implementation, a development time 
productivity value was calculated by dividing the speedup by the 
relative SLOC.  The results of this analysis are presented in 
Section 3.1. 
 
2.2. HPC CHALLENGE 
The HPC Challenge suite [7] consists of several activity-based 
benchmarks designed to test various aspects of a computing 
platform.  The four benchmarks used in this study were FFT 
(v0.6a), High Performance Linpack (HPL, v0.6a), RandomAccess 
(v0.5b), and Stream (v0.6a). 
 
These codes were run on the Lincoln Laboratory Grid (LLGrid), a 
cluster composed of 80 dual-processor nodes connected by  
Gigabit Ethernet [8].  The parallel codes were run using 64 of 
these dual-processor nodes, for a total of 128 CPUs.  The speedup 
for each parallel code was determined by dividing the runtime for 
a baseline serial C/Fortran code by the runtime for the parallel 
code (the serial Matlab code was treated the same as the parallel 
codes for purposes of comparison). 
 
The relative SLOC (again counted using SLOCcount) was 
calculated by dividing the SLOC for each parallel code by the 
SLOC for a baseline serial C/Fortran code. 
 
The development time productivity for each benchmark 
implementation was determined by dividing the speedup by the 
relative SLOC.  The results of this analysis are presented in 
Section 3.2. 

2.3. CLASSROOM ASSIGNMENTS 
A series of classroom experiments were conducted for the HPCS 
program, in which students from several different classes were 
asked to produce parallel programming solutions to a variety of 
textbook problems (see Table 1).  In most cases the students first 
created a serial program to solve the problem, and this was used 
as the baseline for comparison with their parallel solution.  The 
students used C, Fortran, and Matlab for their serial codes, and 
created parallel versions using MPI, OpenMP, and Matlab*P (aka 
StarP, a parallel extension to Matlab) [9]. 
 

Table 1. Classroom Assignments 

Class Problem Programming Task Students 
reporting 

P0A1,
P1A1

Game of 
Life 

Create serial and parallel 
versions using C and MPI 

16, 
11 

P0A2 Weather Sim Add OpenMP directives to 
existing serial Fortran code 

17 

P2A1 Buffon-
Laplace 
Needle 

Create serial versions using C 
and Matlab, and parallel versions 
using MPI, OpenMP, and StarP 

11 

P2A2 Grid of 
Resistors 

Create serial versions using C 
and Matlab, and parallel versions 
using MPI, OpenMP, and StarP 

11 

P3A1 Buffon-
Laplace 
Needle 
 

Create serial versions using C 
and Matlab, and parallel versions 
using MPI, OpenMP, and StarP 
 

17 

P3A2 Parallel 
Sorting 
 

Create serial and parallel 
versions using C and StarP 
 

13 

P3A3 Game of 
Life 
 

Create serial and parallel 
versions using C, MPI, OpenMP
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The students ran their programs on a variety of computing 
platforms, and reported their own timings.  For purposes of 
comparison, all speedups were calculated using eight processors 
for the parallel case. 
 
Although the students did report development effort in hours, this 
data was sometimes spotty and inconsistent.  For the sake of 
consistency with the procedure used for the NPB, effort was again 
measured in terms of SLOC, which were reported by an 
automated tool other than SLOCcount.  The relative SLOC was 
calculated by dividing the SLOC for each student’s parallel code 
by the SLOC for that same student’s serial code. 
 
The development time productivity was calculated by dividing the 
speedup by the relative SLOC for each students’s code 
submission.  The results of this analysis are presented in Section 
3.3. 
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Figure 1. Speedup vs. Relative SLOC for the NPB 

 
3. RESULTS 
3.1. NAS PARALLEL BENCHMARKS 
  
Figure 1 presents a log-log plot of speedup vs. relative SLOC for 
the NPB.  Each data point corresponds to one of the eight 
benchmarks included in the NPB suite, and the results are grouped 
by language (performance data was not available for some of the 
implementations).  The speedup and relative SLOC for each 
benchmark implementation are calculated with respect to a 
reference serial code implemented in Fortran or C. 
 
Each parallel code was run using four processors, setting an upper 
bound for speedup as indicated on the graph.  For this study, no 
attempt was made to optimize or configure these benchmarks for 
the computing platform used.  The goal of this study was not to 
judge suitability of one language over another for a given 
benchmark, but to observe general trends for a given language. 
 
For example, the OpenMP implementations tend to yield parallel 
speedup comparable to MPI, while requiring less relative SLOC 
(Figure 1).  This is reflected in the higher development time 
productivity values for OpenMP (Figure 2).  As a general rule, we 
expect to see traditional parallel languages and libraries such as 
MPI and OpenMP fall in the upper-right quadrant of the graph.  
This reinforces our intuition that parallel performance is achieved 
at the cost of additional effort (over serial implementation). 
 
The lone ZPL implementation falls in the upper-left quadrant of 
the graph, having a relatively high speedup and low SLOC count, 
as compared to the serial Fortran implementation.  Although a 
single data point does not constitute a trend, this result was 
included as an example of an implementation that falls in this 
region of the graph.  Accordingly, this ZPL implementation has a 
high development time productivity value (see Figure 2). 
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Figure 2. Development Time Productivity for the NPB 

 
The Matlab results provide an example of an implementation that 
falls in the lower-left quadrant of the graph, meaning that its 
runtime is slower than serial Fortran, but it also requires fewer 
SLOC than Fortran (Figure 1).  In fact, because of its low SLOC 
relative to serial Fortran, the serial Matlab manages to have a 
development time productivity value comparable to parallel Java 
(Figure 2). 
 
A few of the Java implementations are in or near the lower-right 
quadrant of the graph.  This indicates that, although additional 
lines of code were added to create the parallel implementation, 
little if any parallel speedup was realized.  There may be any 
number of reasons why these implementations did not fare well – 
it should be noted that the Java implementations were generated 
via a semi-automated translation from the serial Fortran.  In any 
case, those implementations that are in or near the lower-right 
quadrant will have development time productivity values at or 
below the baseline established by the serial implementation.  
 
3.2. HPC CHALLENGE 
Figure 3 presents the results for the HPC Challenge benchmarks.  
The speedup and relative SLOC for each implementation were 
calculated with respect to a serial C/Fortran implementation.  The 
parallel codes were all run using 64 dual-processor nodes, for a 
total of 128 CPUs.  The implementations used for the Random 
Access benchmark (designated as RA in Figure 3) require a great 
deal of inter-processor communication, and so actually run slower 
as more processors are involved in a network cluster. 
 
With the exception of Random Access, the MPI implementations 
all fall into the upper-right quadrant of the graph, indicating that 
they deliver some level of parallel speedup, while requiring more 
SLOC than the serial code.  As expected the serial Matlab 
implementations do not deliver any speedup, but do all require 
fewer SLOC than the serial code.  The pMatlab implementations  

Ideal speedup = 4 
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Figure 3. Speedup vs. Relative SLOC, HPC Challenge 

 
(except Random Access) fall into the upper-left quadrant of the 
graph, delivering parallel speedup while requiring fewer SLOC. 
 
The combination of parallel speedup and reduced SLOC means 
that the pMatlab implementations have higher development time 
productivity values (Figure 4).  On average the serial Matlab 
implementations come in second, due to their low SLOC. 
 
The MPI implementations, while delivering better speedup, have 
much higher SLOC, leading to lower development time 
productivity values. 
 
3.3. CLASSROOM ASSIGNMENTS 
Figure 5 presents speedup vs. relative SLOC results for a series of 
classroom assignments.  The speedup and relative SLOC were 
collected for each student, and the median values for each 
assignment are plotted on the graph.  As indicated on the graph, 
the ideal speedup in this case is eight, based on the use of eight 
processors for the classroom assignments.   
 
Some of the assignments had median speedup values outside the 
range of 0.1 – 10.  It is assumed that such outlier data is 
erroneous, and not representative of actual achieved performance 
with correct implementations.  For the sake of clarity and 
comparison with the NPB results, the axes ranges are limited to 
0.1 – 10, excluding some data points.  Error bars indicate one 
standard deviation from the median value. 
 
The MPI data points for the most part fall in the upper-right 
quadrant of the graph, resulting in development time productivity 
values at or above one (Figure 6).  There was one MPI assignment 
in which most of the students were not able to achieve speedup, 
and this resulted in a median development time productivity less 
than one. 
 
The OpenMP data points indicate a higher achieved speedup 
compared to MPI, while also requiring fewer lines of code  
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Figure 4. Development Time Productivity, HPC Challenge 

 
(Figure 5).  This leads to higher development time productivity 
values for OpenMP (Figure 6).  Actually, the OpenMP assignment 
with a median SLOC less than the serial SLOC resulted in a 
development time productivity value greater than 10 (not shown). 
 
The lone StarP data point has a median speedup value below one 
(slower than serial C), while requiring fewer lines of code than 
MPI (Figure 5).  Due to the low speedup value, the StarP 
assignment has a development time productivity value less than 
one (Figure 6). 
 
4. CONCLUSIONS 
We have introduced a common metric for measuring development 
time productivity of HPC software development.  The 
development time productivity formula has been applied to data 
from benchmark codes and classroom experiments, with 
consistent results. 
 
In general the data supports the theory that MPI implementations 
yield good speedup but have a higher relative SLOC than other 
implementations.  OpenMP generally provides speedup 
comparable to MPI, but requires fewer SLOC.  This leads to 
higher development time productivity values.  There are questions 
of scalability with regard to OpenMP that are not addressed by 
this study. 
 
The pMatlab implementations of HPC Challenge provide an 
example of a language that can yield good speedup for some 
problems, while requiring fewer relative SLOC, again leading to 
higher values of the development time productivity metric.   
 
In addition to discovering general trends for a given language, in 
practice this technique could be used to evaluate the productivity 
of programming models provided with two or more HPC systems, 
as part of the decision process associated with procurement.  
Consideration of the development time productivity metric, along  

Ideal speedup = 128 
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Figure 5. Speedup vs. Relative SLOC, Classroom 
assignments 

 
with hardware performance and other factors, would give a more 
complete picture of overall system productivity. 
 
Follow-on studies will examine more benchmark codes and 
language implementations.  In the HPCS program there is an 
ongoing effort to collect a wide variety of HPC benchmarks 
implemented in as many languages as possible.  Having this range 
of data will enable us to make more thorough comparisons 
between languages. 
 
Further classroom experiments are planned, and as more data is 
collected it will be analyzed in the same manner, to see if other 
trends emerge.  In addition to SLOC, effort data will be collected 
both automatically and by student reporting.  Having two effort 
data sources will allow us to judge the accuracy of student 
reporting, as well as to fine-tune the automated collection process.   
This data will also enable us to further explore the relationship 
between effort and SLOC. 
 
5. ACKNOWLEDGMENTS 
We wish to thank all of the professors whose students participated 
in this study, including Jeff Hollingsworth, Alan Sussman, and 
Uzi Vishkin of the University of Maryland, Alan Edelman of 
MIT, John Gilbert of UCSB, Mary Hall of USC, and Allan 
Snavely of UCSD. 
 

0.1

1

10

P0A2 P1A1 P2A1 P3A1 P3A3

Assignment

Pr
od

uc
tiv

ity

Series1

Series2

Series3

 
Figure 6. Development Productivity, Classroom 

assignments 

 
6. REFERENCES 
[1] High Productivity Computer Systems 

http://www.HighProductivity.org 

[2] Kepner, J. “HPC Productivity Model Synthesis.” IJHPCA 
Special Issue on HPC Productivity, Vol. 18, No. 4, SAGE 
2004 

[3] Humphrey, W. S. A Discipline for Software Engineering. 
Addison-Wesley, USA, 1995 

[4] NAS Parallel Benchmarks. 
http://www.nas.nasa.gov/Software/NPB/ 

[5] ZPL. http://www.cs.washington.edu/research/zpl/home/ 

[6] Wheeler, D. SLOCcount. 
http://www.dwheeler.com/sloccount/ 

[7] HPC Challenge. http://icl.cs.utk.edu/hpcc/ 

[8] Haney, R. et. al.  “pMatlab Takes the HPC Challenge.”  
Poster presented at High Performance Embedded Computing 
(HPEC) workshop, Lexington, MA. 28-30 Sept. 2004 

[9] Choy, R. and Edelman, A. MATLAB*P 2.0: A unified 
parallel MATLAB. MIT DSpace, Computer Science 
collection, Jan. 2003. http://hdl.handle.net/1721.1/3687 

Ideal speedup = 8 

12




