
Application of a Development Time Productivity Metric to
Parallel Software Development

Andrew Funk1

afunk@ll.mit.edu
Victor Basili2

basili@cs.umd.edu
Lorin Hochstein2

lorin@cs.umd.edu
Jeremy Kepner1

kepner@ll.mit.edu

ABSTRACT
Evaluation of High Performance Computing (HPC) systems
should take into account software development time productivity
in addition to hardware performance, cost, and other factors. We
propose a new metric for HPC software development time
productivity, defined as the ratio of relative runtime performance
to relative programmer effort. This formula has been used to
analyze several HPC benchmark codes and classroom
programming assignments. The results of this analysis show
consistent trends for various programming models. This method
enables a high-level evaluation of development time productivity
for a given code implementation, which is essential to the task of
estimating cost associated with HPC software development.

1. INTRODUCTION
One of the main goals of the DARPA High Productivity
Computing Systems (HPCS) program [1] is to develop a method
of quantifying and measuring the productivity of High
Performance Computing (HPC) systems. At a high level, HPCS
Productivity, Ψ, has been defined as utility over cost:

MCOCSC

TU

++
=Ψ

)(
 [2],

where utility, U(T), is a function of time. Generally speaking, the
longer the time to solution, the lower the utility of that solution
will be. The denominator of the formula is a sum of costs –
software (CS), operator (CO), and machine (CM). A higher utility
and lower overall cost lead to a greater productivity for a given
system.

Efforts to quantify time to solution in the HPC community have
traditionally focused on measuring execution time and developing
benchmarks and metrics to evaluate computational throughput.
However, few metrics exist for evaluating development time,
which is increasingly being recognized as a significant component
of overall time to solution.

Herein we define a new metric which we call development time
productivity. In this case the utility is measured by how much
faster a parallel code can find a solution, relative to a baseline
serial code. The cost is measured by how much effort the
programmer must put in to writing the parallel code, relative to
the serial code. In other words,

Effort Relative

Speedup
tyProductivi
Timet Developmen

= ,

where

Runtime Parallel

Runtime Serial
Speedup = ,

and

Effort Serial

Effort Parallel
Effort Relative = .

Effort may be measured in various ways. The most direct way is
to measure the actual time spent programming both the serial and
parallel code. This is perhaps the most accurate measure, but it
can also be problematic to obtain accurate time logs, and often
this data is simply not available. In this case other software
metrics, such as Source Lines of Code (SLOC), may be used
instead.

Some studies have shown SLOC to correlate well with developer
effort [3], though this is still open to debate. In any case, we are
working in relative, not absolute terms. For example, if parallel
code A requires 2x the SLOC of a baseline serial code, and
parallel code B requires only 1.5x the SLOC of the baseline serial
code, then it is reasonable to assume that code A required a larger
amount of effort than code B to develop.

1 MIT Lincoln Laboratory
 244 Wood Street
 Lexington, MA 02420

2 University of Maryland
 Computer Science Department
 A.V.Williams Building, Room 4111
 College Park, MD 20742

This work is sponsored by Defense Advanced Research
Projects Administration, under Air Force Contract FA8721-
05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not
necessarily endorsed by the United States Government.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SE-HPCS'05, May 15, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-117-1/05/0005...$5.00.

8

We have applied this development time productivity formula to
performance and effort data collected from two HPC benchmark
suites, and from a series of graduate student parallel programming
assignments. Section 2 describes in detail how the data were
collected and analyzed in each case. The results of this analysis
are presented in Section 3, and discussed further in Section 4.

2. ANALYSIS
2.1. NAS PARALLEL BENCHMARKS
The NAS Parallel Benchmark (NPB) [4] suite consists of five
kernel benchmarks and three pseudo-applications from the field of
computational fluid dynamics. The NPB presents an excellent
resource for this study, in that it provides multiple language
implementations of each benchmark. The exact codes used were
the C/Fortran (serial, OpenMP), and Java implementations from
NPB-3.0, and the C/Fortran (MPI) implementations from NPB-
2.4. In addition, a parallel ZPL [5] implementation and two serial
Matlab implementations were also included in the study.

These codes were all run on an IBM p655 multiprocessor
computer using the Class A problem size. The parallel codes
were run using four processors. The runtimes used were those
reported by the benchmark codes. As discussed in the previous
section, the speedup for each parallel code (and the serial Matlab
codes) was calculated by dividing the baseline serial C/Fortran
runtime by the parallel runtime.

The SLOC for each benchmark code was counted automatically
using the SLOCcount tool [6]. For each implementation, the
relative SLOC was calculated by dividing the parallel SLOC by
the baseline serial C/Fortran SLOC.

For each benchmark implementation, a development time
productivity value was calculated by dividing the speedup by the
relative SLOC. The results of this analysis are presented in
Section 3.1.

2.2. HPC CHALLENGE
The HPC Challenge suite [7] consists of several activity-based
benchmarks designed to test various aspects of a computing
platform. The four benchmarks used in this study were FFT
(v0.6a), High Performance Linpack (HPL, v0.6a), RandomAccess
(v0.5b), and Stream (v0.6a).

These codes were run on the Lincoln Laboratory Grid (LLGrid), a
cluster composed of 80 dual-processor nodes connected by
Gigabit Ethernet [8]. The parallel codes were run using 64 of
these dual-processor nodes, for a total of 128 CPUs. The speedup
for each parallel code was determined by dividing the runtime for
a baseline serial C/Fortran code by the runtime for the parallel
code (the serial Matlab code was treated the same as the parallel
codes for purposes of comparison).

The relative SLOC (again counted using SLOCcount) was
calculated by dividing the SLOC for each parallel code by the
SLOC for a baseline serial C/Fortran code.

The development time productivity for each benchmark
implementation was determined by dividing the speedup by the
relative SLOC. The results of this analysis are presented in
Section 3.2.

2.3. CLASSROOM ASSIGNMENTS
A series of classroom experiments were conducted for the HPCS
program, in which students from several different classes were
asked to produce parallel programming solutions to a variety of
textbook problems (see Table 1). In most cases the students first
created a serial program to solve the problem, and this was used
as the baseline for comparison with their parallel solution. The
students used C, Fortran, and Matlab for their serial codes, and
created parallel versions using MPI, OpenMP, and Matlab*P (aka
StarP, a parallel extension to Matlab) [9].

Table 1. Classroom Assignments

Class Problem Programming Task Students
reporting

P0A1,
P1A1

Game of
Life

Create serial and parallel
versions using C and MPI

16,
11

P0A2 Weather Sim Add OpenMP directives to
existing serial Fortran code

17

P2A1 Buffon-
Laplace
Needle

Create serial versions using C
and Matlab, and parallel versions
using MPI, OpenMP, and StarP

11

P2A2 Grid of
Resistors

Create serial versions using C
and Matlab, and parallel versions
using MPI, OpenMP, and StarP

11

P3A1 Buffon-
Laplace
Needle

Create serial versions using C
and Matlab, and parallel versions
using MPI, OpenMP, and StarP

17

P3A2 Parallel
Sorting

Create serial and parallel
versions using C and StarP

13

P3A3 Game of
Life

Create serial and parallel
versions using C, MPI, OpenMP

8

The students ran their programs on a variety of computing
platforms, and reported their own timings. For purposes of
comparison, all speedups were calculated using eight processors
for the parallel case.

Although the students did report development effort in hours, this
data was sometimes spotty and inconsistent. For the sake of
consistency with the procedure used for the NPB, effort was again
measured in terms of SLOC, which were reported by an
automated tool other than SLOCcount. The relative SLOC was
calculated by dividing the SLOC for each student’s parallel code
by the SLOC for that same student’s serial code.

The development time productivity was calculated by dividing the
speedup by the relative SLOC for each students’s code
submission. The results of this analysis are presented in Section
3.3.

9

0.1

1

10

0.1 1 10
Relative SLOC

Sp
ee

du
p

Fortran/C + MPI
Fortran/C + OpenMP
Java
Serial Matlab
ZPL

Figure 1. Speedup vs. Relative SLOC for the NPB

3. RESULTS
3.1. NAS PARALLEL BENCHMARKS

Figure 1 presents a log-log plot of speedup vs. relative SLOC for
the NPB. Each data point corresponds to one of the eight
benchmarks included in the NPB suite, and the results are grouped
by language (performance data was not available for some of the
implementations). The speedup and relative SLOC for each
benchmark implementation are calculated with respect to a
reference serial code implemented in Fortran or C.

Each parallel code was run using four processors, setting an upper
bound for speedup as indicated on the graph. For this study, no
attempt was made to optimize or configure these benchmarks for
the computing platform used. The goal of this study was not to
judge suitability of one language over another for a given
benchmark, but to observe general trends for a given language.

For example, the OpenMP implementations tend to yield parallel
speedup comparable to MPI, while requiring less relative SLOC
(Figure 1). This is reflected in the higher development time
productivity values for OpenMP (Figure 2). As a general rule, we
expect to see traditional parallel languages and libraries such as
MPI and OpenMP fall in the upper-right quadrant of the graph.
This reinforces our intuition that parallel performance is achieved
at the cost of additional effort (over serial implementation).

The lone ZPL implementation falls in the upper-left quadrant of
the graph, having a relatively high speedup and low SLOC count,
as compared to the serial Fortran implementation. Although a
single data point does not constitute a trend, this result was
included as an example of an implementation that falls in this
region of the graph. Accordingly, this ZPL implementation has a
high development time productivity value (see Figure 2).

0.1

1

10

BT CG EP FT IS LU MG SP
Benchmark

Pr
od

uc
tiv

ity

Fortran/C + MPI
Fortran/C + OpenMP
Java
Serial Matlab
ZPL

Figure 2. Development Time Productivity for the NPB

The Matlab results provide an example of an implementation that
falls in the lower-left quadrant of the graph, meaning that its
runtime is slower than serial Fortran, but it also requires fewer
SLOC than Fortran (Figure 1). In fact, because of its low SLOC
relative to serial Fortran, the serial Matlab manages to have a
development time productivity value comparable to parallel Java
(Figure 2).

A few of the Java implementations are in or near the lower-right
quadrant of the graph. This indicates that, although additional
lines of code were added to create the parallel implementation,
little if any parallel speedup was realized. There may be any
number of reasons why these implementations did not fare well –
it should be noted that the Java implementations were generated
via a semi-automated translation from the serial Fortran. In any
case, those implementations that are in or near the lower-right
quadrant will have development time productivity values at or
below the baseline established by the serial implementation.

3.2. HPC CHALLENGE
Figure 3 presents the results for the HPC Challenge benchmarks.
The speedup and relative SLOC for each implementation were
calculated with respect to a serial C/Fortran implementation. The
parallel codes were all run using 64 dual-processor nodes, for a
total of 128 CPUs. The implementations used for the Random
Access benchmark (designated as RA in Figure 3) require a great
deal of inter-processor communication, and so actually run slower
as more processors are involved in a network cluster.

With the exception of Random Access, the MPI implementations
all fall into the upper-right quadrant of the graph, indicating that
they deliver some level of parallel speedup, while requiring more
SLOC than the serial code. As expected the serial Matlab
implementations do not deliver any speedup, but do all require
fewer SLOC than the serial code. The pMatlab implementations

Ideal speedup = 4

10

RA

FFT
HPL Stream

Stream

RA

FFT

HPL

Stream HPL

RA

FFT

0.001

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100

Relative SLOC

Sp
ee

du
p

Serial Matlab
pMatlab
C+MPI

Figure 3. Speedup vs. Relative SLOC, HPC Challenge

(except Random Access) fall into the upper-left quadrant of the
graph, delivering parallel speedup while requiring fewer SLOC.

The combination of parallel speedup and reduced SLOC means
that the pMatlab implementations have higher development time
productivity values (Figure 4). On average the serial Matlab
implementations come in second, due to their low SLOC.

The MPI implementations, while delivering better speedup, have
much higher SLOC, leading to lower development time
productivity values.

3.3. CLASSROOM ASSIGNMENTS
Figure 5 presents speedup vs. relative SLOC results for a series of
classroom assignments. The speedup and relative SLOC were
collected for each student, and the median values for each
assignment are plotted on the graph. As indicated on the graph,
the ideal speedup in this case is eight, based on the use of eight
processors for the classroom assignments.

Some of the assignments had median speedup values outside the
range of 0.1 – 10. It is assumed that such outlier data is
erroneous, and not representative of actual achieved performance
with correct implementations. For the sake of clarity and
comparison with the NPB results, the axes ranges are limited to
0.1 – 10, excluding some data points. Error bars indicate one
standard deviation from the median value.

The MPI data points for the most part fall in the upper-right
quadrant of the graph, resulting in development time productivity
values at or above one (Figure 6). There was one MPI assignment
in which most of the students were not able to achieve speedup,
and this resulted in a median development time productivity less
than one.

The OpenMP data points indicate a higher achieved speedup
compared to MPI, while also requiring fewer lines of code

0.0001

0.001

0.01

0.1

1

10

100

1000

Stream FFT HPL Random
Access

Benchmark

Pr
od

uc
tiv

ity

Serial Matlab
C+MPI
pMatlab

Figure 4. Development Time Productivity, HPC Challenge

(Figure 5). This leads to higher development time productivity
values for OpenMP (Figure 6). Actually, the OpenMP assignment
with a median SLOC less than the serial SLOC resulted in a
development time productivity value greater than 10 (not shown).

The lone StarP data point has a median speedup value below one
(slower than serial C), while requiring fewer lines of code than
MPI (Figure 5). Due to the low speedup value, the StarP
assignment has a development time productivity value less than
one (Figure 6).

4. CONCLUSIONS
We have introduced a common metric for measuring development
time productivity of HPC software development. The
development time productivity formula has been applied to data
from benchmark codes and classroom experiments, with
consistent results.

In general the data supports the theory that MPI implementations
yield good speedup but have a higher relative SLOC than other
implementations. OpenMP generally provides speedup
comparable to MPI, but requires fewer SLOC. This leads to
higher development time productivity values. There are questions
of scalability with regard to OpenMP that are not addressed by
this study.

The pMatlab implementations of HPC Challenge provide an
example of a language that can yield good speedup for some
problems, while requiring fewer relative SLOC, again leading to
higher values of the development time productivity metric.

In addition to discovering general trends for a given language, in
practice this technique could be used to evaluate the productivity
of programming models provided with two or more HPC systems,
as part of the decision process associated with procurement.
Consideration of the development time productivity metric, along

Ideal speedup = 128

11

P3A3
P2A1

P3A1

P1A1

P0A2
P3A3

P2A1

0.1

1

10

0.1 1 10

Relative SLOC

Sp
ee

du
p

MPI
OpenMP
StarP

Figure 5. Speedup vs. Relative SLOC, Classroom
assignments

with hardware performance and other factors, would give a more
complete picture of overall system productivity.

Follow-on studies will examine more benchmark codes and
language implementations. In the HPCS program there is an
ongoing effort to collect a wide variety of HPC benchmarks
implemented in as many languages as possible. Having this range
of data will enable us to make more thorough comparisons
between languages.

Further classroom experiments are planned, and as more data is
collected it will be analyzed in the same manner, to see if other
trends emerge. In addition to SLOC, effort data will be collected
both automatically and by student reporting. Having two effort
data sources will allow us to judge the accuracy of student
reporting, as well as to fine-tune the automated collection process.
This data will also enable us to further explore the relationship
between effort and SLOC.

5. ACKNOWLEDGMENTS
We wish to thank all of the professors whose students participated
in this study, including Jeff Hollingsworth, Alan Sussman, and
Uzi Vishkin of the University of Maryland, Alan Edelman of
MIT, John Gilbert of UCSB, Mary Hall of USC, and Allan
Snavely of UCSD.

0.1

1

10

P0A2 P1A1 P2A1 P3A1 P3A3

Assignment

Pr
od

uc
tiv

ity

Series1

Series2

Series3

Figure 6. Development Productivity, Classroom

assignments

6. REFERENCES
[1] High Productivity Computer Systems

http://www.HighProductivity.org

[2] Kepner, J. “HPC Productivity Model Synthesis.” IJHPCA
Special Issue on HPC Productivity, Vol. 18, No. 4, SAGE
2004

[3] Humphrey, W. S. A Discipline for Software Engineering.
Addison-Wesley, USA, 1995

[4] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/

[5] ZPL. http://www.cs.washington.edu/research/zpl/home/

[6] Wheeler, D. SLOCcount.
http://www.dwheeler.com/sloccount/

[7] HPC Challenge. http://icl.cs.utk.edu/hpcc/

[8] Haney, R. et. al. “pMatlab Takes the HPC Challenge.”
Poster presented at High Performance Embedded Computing
(HPEC) workshop, Lexington, MA. 28-30 Sept. 2004

[9] Choy, R. and Edelman, A. MATLAB*P 2.0: A unified
parallel MATLAB. MIT DSpace, Computer Science
collection, Jan. 2003. http://hdl.handle.net/1721.1/3687

Ideal speedup = 8

12

