
 

Generating Testable Hypotheses from Tacit Knowledge  
for High Productivity Computing 

Sima Asgari1, Lorin Hochstein1, Victor Basili1,2, Jeff Carver3, Jeff  Hollingsworth1, 
Forrest Shull2, Marvin Zelkowitz1,2 

1Computer Science Department - University of Maryland, College Park, 20742 MD, USA 
2Fraunhofer Center for Experimental Software Engineering, College Park, 20742 MD, USA 

3Mississippi State University, Mississippi State, MS 39762, USA 
{sima,lorin,basili,hollings,mvz}@cs.umd.edu, fshull@fc-md.umd.edu, carver@cse.msstate.edu 

 
Abstract 
In this research, we are developing our understanding of how the 
high performance computing community develops effective 
parallel implementations of programs by collecting the folklore 
within the community. We use this folklore as the basis for a 
series of experiments, which we expect, will validate or negate 
these assumptions. 
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1. Introduction 

The DARPA High Productivity Computing Systems (HPCS) 
project has goals of “providing a new generation of economically 
viable high productivity computing systems for national security 
and for the industrial user community,” and initiating “a 
fundamental reassessment of how we define and measure 
performance, programmability, portability, robustness and 
ultimately, productivity in the HPC domain”1. 

In order to reassess the definitions and measures in a scientific 
domain it is necessary to study the basis and source of those 
definitions and measures. These sources are usually found in the 
related literature and various documentations existent in the 
community. However the large amount of tacit information that is 
merely in people’s minds often remains neglected. 

Historically, there has been little interaction between the HPC 
and the software engineering communities. The Development 
Time Working Group of the HPCS project is focused on 
development time issues. The group has both software 
engineering researchers as well as HPC researchers. The strategy 
of the working group is to apply empirical methods to study 
parallel programming issues. We have applied similar methods in 
the past to researching development time issues in other software 
domains [7]. 

Because of little interaction between the HPC and SE 
communities in the past, those of us on the SE side have very little 
knowledge about the nature of software development in the HPC 
domain. While the HPC community has not focused on 
development time issues in the sense of generating publications 
on these subjects, it has assuredly accumulated a wealth of 
experience about such matters, leading some HPC practitioners to 
refer to the field as a “black art”. Indeed, those in the community 
tend to harbor strong (and sometimes contradictory) beliefs about 
development time issues. It would be inappropriate to disregard 
this body of knowledge simply because it has not been packaged 

                                                      
1 http://www.highproductivity.org 

in a suitable format. Unfortunately, since it currently exists only 
as tacit knowledge, it is not obvious how to best leverage this 
expertise. While there has been previous research in trying to 
capture the needs of HPC programmers as they relate to software 
development issues [2, 3], there has been little research in trying 
to capture the knowledge of HPC programmers on software 
development issues, with a notable exception [5]. In this paper, 
we describe the initial stages of our work to collect this 
knowledge, which we refer to as “tribal lore” or “folklore”. 

By tribal lore or folklore we mean the common beliefs about 
the interaction between variables such as code development effort, 
development activities such as debugging, programming models, 
languages, execution time, etc.  

We conducted two separate studies to solicit HPCS folklore 
and the types of defects common to high-end programming. This 
paper discusses the process of knowledge solicitation, some initial 
analysis of the collected information and hypotheses created. 

An initial conclusion from the folklore is that debugging 
parallel code is a particularly difficult task. In order to quantify 
the debugging difficulty we need to analyze the defects (bugs) in 
the code to find out the types of defects that programmers 
encounter when writing parallel code, to understand how common 
these defects are and to specify how difficult they are to fix.  
 
2. Knowledge Solicitation Process 

The development time working group of HPCS is responsible 
for investigating issues concerning development time within the 
HPCS framework. We conduct experimental studies by collecting 
various data during the code development phase of high 
productivity computing by novices (university students working 
on class assignments) and professionals working on real projects 
(case studies) or small sample problems (observational studies). 

As the initial set of hypotheses that should be investigated 
using the collected data, we generate hypotheses from the tacit 
knowledge collected from the HPC community members. After 
capturing this knowledge, several testable hypotheses are 
generated around each issue and we investigate them using the 
development data that we’ve collected.  

Figure 1 shows the process of knowledge solicitation and 
analysis. The area inside the dotted rectangle in figure 1 is the 
current part of the study that we discuss in this paper. 
 
2.1 HPCS Folklore 

One of the main goals of the development time working group 
of HPCS project is to leverage HPC community’s knowledge of 
development time issues. In order to do so, we are soliciting 
expert opinion on issues related to HPC programming by 
collecting elements of folklore through surveys, generating 
discussion among experts on these elements of the lore to increase 



 

precision of statements and to measure degree of consensus and 
finally generate testable hypotheses based on the lore that can be 
evaluated in empirical studies. 

 
 

Figure 1: Folklore and defect solicitation process 
 

Before starting the exploratory experiment of collecting 
peoples’ anecdotal beliefs through surveys, we needed an initial 
set of such anecdotes to both encourage thinking and also use as 
examples of what we are interested in.  

To gather the folklore in HPC, a member of the study group, 
who is an HPC professor, conducted an informal scan of several 
sources including lecture notes used in introductory HPC classes 
at the University of Maryland as well as scanning the Internet for 
related keywords (including "HPC folklore” and "HPC folklore").  
The goal of this process was not to be exhaustive, but instead to 
gather a sense of the type of information that a beginning HPC 
programmer might find. This initial list of 10 ideas (the left 
column of the table in Appendix 1) was recorded and used as the 
basis for our first survey.   

We then asked 7 HPC specialists and professors who regularly 
teach HPC classes to comment on the initial list.  They were asked 
to give an “agree”, “disagree” or “don’t know” answer to each 
lore, give their comments or change suggestions and add any folk 
lore that they are aware of but is not on the list.  

Figure 2 shows the answers.  The folklore number 11 in 
Appendix 1was added by one of the participants at this stage. 
Generally the comments revolved around clarifying the domain to 
which the bit of lore applied. For example was the bit of lore 
talking about a user programming model such as OpenMP or 
hardware architecture such as a multi-threaded machine. 

In order to clarify the questionable points we scheduled a 
discussion session among the participants. This discussion 
resulted in some modifications in the way folklore sentences were 

phrased. The right column of the table in Appendix 1 is the result 
of this modification. 
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Figure 2: Responses to the initial list of HPC folklore 
 
At some point during the discussion, the participants agreed 

that “MPI programs don't run well when you use lots of small 
messages because you get latency-limited”. In order to include 
this in the folklore list, the lore number 12 was added to the list.   

At the next step of the study, a survey form was compiled 
from the current list of 12 folklore and distributed to the 
participants at the “High Productivity Computing Systems, 
Productivity Team Meeting” held in January 2005. In order to 
avoid any bias, some of the randomly selected lore were rephrased 
to imply the logically inverse sentence. Two sets of survey forms 
were compiled and distributed randomly.  

In Figure 3 (the survey results), the numbers on the x-axis 
represent the folklore numbers, where the numbers marked with * 
show that the altered version of the lore was used. In version 1 of 
the survey the altered phrases of the folklore 1,3,4,6,7,8 and 11 
and the original version of the folklore 2,5,9,10 and 12 were used, 
and in the second version of the survey they were switched. In 
Figure 3, the third column for each folklore, marked as ‘mean”, 
represents the mean value from the two surveys.  

The total number of respondents was 10 for the first version 
and 18 for the second version of the survey. In most cases more 
than 50% of the participants agreed with the positive lore and 
disagreed with the altered ones. It seems that folklore numbers 5 
and 11 need further investigation since there is less than 30% 
agreement on them. This emphasizes the fact that there could be 
large inconsistency between experts’ viewpoints and also that the 
phrasing of the folklore is a very important factor. Before trying to 
create testable hypotheses based on the folklore, we are updating 
the folklore phrasing to make sure to collect proper data for 
testing those hypotheses. Also in order to avoid misinterpretation, 
the folklore should be phrased as clear and unambiguous as 
possible, starting from the most controversial ones.  

The list of HPC folklore is still in primary stage and needs 
further refinement. We are classifying and analyzing the 
comments given to the survey by participants. We are also 
conducting the survey in our upcoming classroom studies to see 
how comparable students’ and professionals’ knowledge is. 
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Figure 3: Folklore Survey Results 
 

2.2. Testable Hypotheses 
     We use the revised folklore to produce testable hypotheses and 
investigate the hypotheses using the collected data. An example 
for testable hypotheses is lore number 4 in the updated list of 
Appendix 1: 
Folklore 4: Debugging race conditions in shared memory 
programs is harder than debugging race conditions in message 
passing programs. 

At the first discussion session, the following points were 
brought up: 
• When working in the shared memory model, either it works 

right away or you will never figure out why. 
• Bugs in shared memory are hard to deal with because they can 

be non deterministic, more subtle and harder to track down. 
• Shared memory programs are far easier to develop because: 
o They provide a global address space 
o You do not have to think about the details that you do in 

message passing 
o You can incrementally develop shared memory programs 

• In some cases, it may be harder to debug shared memory 
programs.  

The following hypotheses were created from the above: 
Hypothesis 1: The average time to fix a defect due to race 
conditions will be longer in a shared memory program compared 
to a message-passing program. �  
To test this hypothesis we measure the time to fix defects due to 
race conditions. 
Hypothesis 2: On average, shared memory programs will require 
less effort than message passing, but the shared memory outliers 
will be greater than the message passing outliers. �  
To test this hypothesis we measure the total development time. 
Hypothesis 3:  There will be more students who submit incorrect 
shared memory programs compared to the message-passing 
programs. �  
To test this hypothesis we measure the number of students who 
submit incorrect solutions. 

Table 1: Initial Defects List 

Message Passing 
M1 ·Deadlock sender and receiver waiting for each other  

M2 ·Async Send/Recv and updating variables before send 
completes  
M3 ·Async Send/Recv and reading variables before they arrive  

M4 ·Not all processes call a collective communication operation  

M5 ·Process tries to send a message to itself  

M6 ·Type inconsistencies in Send/Recv  

Shared Memory 
S1 ·Synchronization bugs  

S2 ·Variables that should be thread private are shared  

S3 ·Variables that should be shared are private  

S4 ·Different locks used for the same variable (i.e. one shared 
object and a reader lock and a writer lock)  

S5 ·Program tires to acquire a lock it already holds  

Decomposition 
D1 ·Same work done on more than one node (when not 
intended)  

D2 ·Some work not done  

 
3. Defects (bugs) in HPC code 

The types of defects that occur in code, their frequency of 
occurrence, and the effort required to fix them have an impact on 
productivity. In order to be able to test the defect related folklore, 
such as folklore 4, which discussed above, we need to analyze 
defects. We have started a study to analyze the defects by 
classifying defect types, how common they are and how difficult 
they are to fix. The process is similar to the one used for the 
folklore. 



 

We asked a HPC specialist to compile an initial list of defects 
from the literature and his own experience. Table 1 shows this 
initial list. At the next step of the study, a survey form from the 
initial list of defects was compiled and distributed to the 
participants at the “High Productivity Computing Systems, 
Productivity Team Meeting” held in January 2005. 
In this defect survey we asked the participants to identify the 
frequency of each defect on a 1 to 5 scale where 1 is the lowest 
and 5 is the highest frequency. They were also asked to identify 
the severity of the defect as low, medium or high and at the end 
they were asked to add any defects that they have experienced but 
is not on the list.  

The initial list of table 1 was used for the survey and table 2 is 
the list of defects added by the respondents. These new defects 
will be added to the list for the next round of surveys.   

The initial analysis of the survey results shows that for 11 out 
of 13 defects, more than 60% of respondents believe that the 
frequency is low or medium, except for 2 defects S1 and S2. The 
initial conclusion for this observation could be: “Shared memory 
defects are more frequent than other types of defect“, which is 
a hypothesis generated from the folklore analysis. 

We were also able to sort the defects based on their severity. 
The ascending order of severity based on survey results would be: 
M5, D1, S5, M4, M6, S3, D2, M1, S4, S2, M3, S1, M2, where M5 
is the least and M2 the most severe defect. Investigating the 
validity of above conclusions as well as drawing further 
conclusions relies on the results from our ongoing and upcoming 
survey studies. 

 
3.1 Empirical Defect Study 

We are gathering empirical defect data from our HPC 
development time studies. In a pilot study students that were 
developing a program for 1D quantum dynamics simulation in C 
(approximately 150 SLOC) were asked to track time to fix defects 
while parallelizing code in MPI. As seen in figure 4, in this study 
“the defects related to I/O activities are the most time 
consuming to fix”. This is another generated hypothesis that is 
being investigated in our current studies. 

 
4. Conclusion and Future Work 

In this paper, we have described our efforts in collecting 
elements of the collective knowledge of the HPC community, or 
“folklore”, that relate to issues of development time. We have 

 
Table 2: Added defects 

MPI sends never received, code runs, but resources never 
reclaimed 

Message failure 

Message reordering2 

Bookkeeping errors in domain decomposition (indexing 
errors) 

Loop with data dependencies get parallelized 

Loop without data dependencies does not get parallelized 

Pointer problems 

Thread stack overflow 

Using any distributed memory machine 

                                                      
2 “Forgetting messages could be reordered” 

 
Figure 4: Time to fix defects 

 
employed methods traditionally used in the social sciences such as 
focus groups and surveys [6]. This work is complementary to our 
other research in the area, where we are conducting experimental 
studies to collect development time data and analyze this data by 
searching for empirical relations between variables such as 
activity, effort, workflow, performance, and code size. 

To run good experiments, we need to develop relevant 
testable hypotheses. To this end we have tried to understand what 
the community believes to be true about high end computing and 
to make explicit the tacit assumptions about a number of issues. 

We have been soliciting expert opinion on the issues related to 
HPC programming by collecting elements of folklore through 
surveys, generating discussion among experts on these elements 
of the lore to increase precision of statements and to measure 
degree of consensus and finally generate testable hypotheses 
based on the lore that can be evaluated in empirical studies. In 
some cases we were also able to generate new hypotheses based 
on the logical relationship between the collected lore. 

It is important to note that in order to keep the survey 
questions simple and not confusing; we had to use the short-and-
pithy statement of the lore, although they usually do not reflect 
people’s full understanding of the lore. Therefore the survey 
respondents may think we are oversimplifying the statements. 
This is an issue that needs further consideration. 

The results so far indicate that there is a large variation in 
beliefs among experts. For 10 items out of a total of 12 folklore 
items, the results show agreement among 46% to 65% of the 
respondents, the maximum agreement being 64%. Two items of 
lore were less than 30% agreed upon. These items clearly need 
more clarification. 

There are several explanations for this variation. First, it is 
possible that there is not a wealth of common beliefs in the 
community about high end computing. Second, it is possible that 
most beliefs are bound by a context. Thus each individual brings 
to the table a variation of that common belief based upon their 
own specialized experiences. This could either mean that if we 
could define the context variables surrounding each lore, we 
might find small common sets of lore, or it could mean that the 
contexts are so diverse that each individual represents his or her 
own lore. It is also possible that we have not sufficiently 
characterized folklore in our statements, causing confusion in the 
answers. This could be in the original statements themselves (e.g., 
not providing sufficient context) or in the negation of the 

I/O related 
defects 



 

statements (not truly capturing the inverse of the original 
statement). In any case, it is clear that in some cases, we have not 
captured a verifiable folklore and thus need to work on better 
formulating our hypotheses. 

What would be a reasonable percentage of agreement? Can 
the hypotheses be clearly stated to minimize the variation and 
offer empirical support for the folklore? These are the issues we 
are currently working on. 

We believe continuing to develop the folklore is of value. 
Evaluation of the testable hypotheses generated based upon the 
folklore could lead to a higher degree of consensus and to the 
creation of a set of empirically supported measures of productivity 
in HPC domain. 

We have also begun to try to understand the nature of defects 
in high end computing and use some of our methods in generating 
folklore about development in general to defects in particular. 
Results at this writing are preliminary but we do have some 
agreement that shared memory defects are more frequent than any 
other type of defect. This is the kind of hypothesis we can test in 
case studies. 
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Appendix 1: List of HPC folklore 

Initial List Updated List 
[1] Use of Parallel machines is not just for more CPU power, but also 
for more total memory or total cache (at a given level). 

[1] Many people use parallel machines primarily for the large 
amount of memory available (cache or main). 

[2] It's hard to create a parallel language that provides good 
performance across multiple platforms. 

[2] It's hard to create a parallel language that provides good 
performance across multiple platforms 

[3] It's easier to get something working in using a shared memory 
model than message passing. 

[3] It's easier to get something working using a shared memory 
model than message passing. 

[4] It's harder to debug shared memory programs due to race 
conditions involving shared regions. 

[4] Debugging race conditions in shared memory programs is harder 
than debugging race conditions in message passing programs 

[5] Explicit distributed memory programming results in programs 
that run faster since programmers are forced to think about data 
distribution (and thus locality) issues. 

[5] Explicit distributed memory programming results in programs 
that run faster than shared memory programs since programmers are 
forced to think about data distribution (and thus locality) issues 

[6] In master/worker parallelism, the master soon becomes the 
bottleneck and thus systems with a single master will not scale. 

[6] In master/worker parallelism, a system with a single master has 
limited scalability because the master becomes a bottleneck. 

[7] Overlapping computation and communication can result in at 
most a 2x speedup in a program. 

[7] In MPI programs, overlapping computation and communication 
(non-blocking) can result in at most a 2x speedup in a program. 

[8] HPF's data distribution process is also useful for SMP systems 
since it makes programmers think about locality issues. 

[8] For large-scale shared memory systems, you can achieve better 
performance using global arrays with explicit distribution operations 
than using Open MP. 

[9] Parallelization is easy, Performance is hard. For example, 
identifying parallel tasks in a computation tends to be a lot easier than 
getting the data decomposition and load balancing right for efficiency 
and scalability. 

[9] Identifying parallelism is hard, but achieving performance is 
easy. 

[10] It's easy to write slow code on fast machines. [10] It's easy to write slow code on fast machines. Generally, the first 
parallel implementation of a code is slower than its serial counterpart. 

[11] Experts often start with incorrect programs that capture the core 
computations and data movements. They get these working at high 
performance first, and then they make the code functionally correct 
later. 

[11] Sometimes, a good approach for developing parallel programs is 
to program for performance before programming for correctness. 

[12] N/A [12] Given a choice, it's better to write a program with fewer large 
messages than many small messages 

 


