
Combining Self-reported and Automatic Data to
Improve Programming Effort Measurement

Lorin Hochstein1, Victor R. Basili1,2, Marvin V. Zelkowitz1,2, Jeffrey K. Hollingsworth1, Jeff Carver3
1Department of Computer Science, University of Maryland, College Park, MD 20742

2Fraunhofer Center, College Park, MD 20740
3Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 39762

{lorin,basili,mvz,hollings}@cs.umd.edu, carver@cse.msstate.edu

ABSTRACT
Measuring effort accurately and consistently across subjects in a
programming experiment can be a surprisingly difficult task. In
particular, measures based on self-reported data may differ
significantly from measures based on data which is recorded
automatically from a subject’s computing environment. Since
self-reports can be unreliable, and not all activities can be
captured automatically, a complete measure of programming
effort should incorporate both classes of data. In this paper, we
show how self-reported and automatic effort can be combined to
perform validation and to measure total programming effort.

Categories and Subject Descriptors
D.2.8 [Software engineering]: Process Metrics

General Terms
Measurement, Experimentation, Human Factors, Verification.

Keywords
Effort. Manual approaches.

1. INTRODUCTION
One of the primary goals of software engineering research is to
reduce the amount of effort required to develop software.
Consequently, many empirical studies in software engineering
focus on the effect of a given technology on effort. There are
several easy-to-measure proxies for effort (e.g., size, complexity,
defect counts), but the most direct and accurate method is to
record how much time the subjects spend when performing a task.

While measuring development time in a controlled experiment
sounds simple, in practice it can be a notoriously difficult task.
Measuring development time directly becomes particularly
challenging when the task is too large to be completed in a single
work session, the subjects are not being observed directly by the
experimenter, or the experimenter does not have complete control
over the working environment. Problems of loss of researcher

control or insight are compounded in the time just before delivery
of the product. Unfortunately, this “crunch time” could provide
the most interesting information about the way people work when
they are under time pressure.

How time is measured can have a pronounced impact on the
interpretation of results. If the measure does not capture effort
consistently across activities or subjects, then it can introduce bias
and may lead to drawing incorrect conclusions. Even if the
measure is unbiased, an imprecise measure will reduce the power
of a study, and is especially inconvenient if the goal is to develop
quantitative models of the effect of certain variables on effort.

We have been conducting empirical studies to characterize how
different variables affect effort in the domain of high performance
computing. Our initial studies have focused on graduate students
solving small parallel programming problems [5]. These studies
were done in the context of the Defense Advanced Research
Projects Agency (DARPA) High Productivity Computing
Systems (HPCS) program. One of the goals of the Development
Time working group, led by the University of Maryland, of the
HPCS project is to develop methods to evaluate the productivity
of high-end computing systems, in particular the next generation
of systems that are currently being developed [14].

In the context of these studies, we have sought a measure of
programming effort that is both accurate and complete (i.e.,
captures all programmer activities well). In this paper, we present
our methods for collecting effort data and how we validated them
through empirical studies. We show how a combination of self-
reported and automatic measures of effort data can be used for
assessing confidence in results and estimating total effort.

This paper is structured as follows: Section 2 is an overview of
different methods for measuring effort. In Section 3, we describe
how we performed an initial evaluation of our effort measures
through pilot studies. In section 4, we describe how we performed
a more detailed evaluation of these measures using observational
studies. In section 5, we present our final algorithms for
measuring and validating effort, and we conclude in section 6.

2. BACKGROUND
Many software engineering studies have been conducted that
involve measuring effort. We can classify them broadly into four
categories: self-reported, automatic, hybrid, and indirect.

2.1 Self-reported
The simplest instrument for measuring effort, from the
experimenter’s point of view, is to have the subjects keep track of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 1-59593-014-9/05/0009…$5.00.

their own effort using an effort log. The only instrumentation
required is a paper form, although web-based entry forms are also
possible. Along with recording effort, a log can also capture the
type of activities that are being performed. A log can capture all
of the activities related to software development, even activities
that do not involve a direct interaction with a computer, such as
“thinking.” One example of the use of such forms is in
Humphrey’s Personal Software Process [8], which has
programmers fill out time recording logs. This self-reported effort
data is then used for tasks such as schedule estimation.
Self-reported data can be collected in two different formats: free-
form or pre-specified. In a free-form log, the subject has no
constraints on the description of activities or the resolution of the
log. In a pre-specified log, the subject chooses from a pre-defined
set of activities when filling out the log, and the resolution of the
individual entries are constrained. Each approach has advantages
and disadvantages. For example, we have used free-form effort
logs to collect data on programmers working in industry. We have
found very large differences in the granularity of the reported
activities, with one programmer recording log entries in minutes,
and another recording log entries in days.
Self-reported measures can vary over time, due to history or
maturation effects [4]. This is a particular problem when the
subjects have more interest in completing the task than complying
with the protocols of the study. For example, students who are
working on an assignment for a class might become less diligent
with their log as they approach their deadline. Moreover,
researchers using self-reported data must also worry about
accuracy. For example, the student subjects described above
might, consciously or not, over-estimate their effort in order to
impress the instructor. Student accuracy may also vary based on
other variables that are difficult to measure such as motivation to
capture accurate data.
Basili et al. [3] evaluated Software Science metrics against self-
reported pre-specified effort data collected from satellite ground
support software projects. There was very little correlation
between self-reported effort and metrics known to predict effort,
and there was concern that poor self-reported data was distorting
the results. They were able to validate the programmers’ self-
reported effort data by cross-checking against resource forms
filled out by the programmers’ supervisors. The authors checked
for agreement between the programmers’ reports and the
supervisors’ forms to identify which reports were more reliable.
Being able to triangulate the data allowed for an evaluation of the
quality/accuracy of the data. The reported effort of the more
reliable reports exhibited better correlation with the metrics under
investigation.
Perry et al. [11] analyzed previous data from project notebooks
and free-form programmer diaries which were originally kept for
personal use. They found that the free-form diaries were too
inconsistent across subjects and sometimes lacked sufficient
resolution. They had developers maintain time diaries, filled in at
the end of each day, to recount how their time was spent during
that day. The experimenters observed the developers for five days
over a 12-week period to evaluate the accuracy of the logs. They
found that, on average, subjects overestimated their time by about
2.8% per day. The agreement between subject and observer varied
considerably across subjects, ranging from 0.58 to 0.95. Each
subject tended to consistently overestimate or consistently

underestimate his or her effort. They also found that a major
source of error in the logs was the failure to report unexpected
events such as interruptions that occurred during the course of a
day. The developers often failed to account for these unplanned
events when retrospectively filling in their diaries.
We have seen confirmation of the findings of Perry et al. in a
study performed for a high-school science project. The study
measured the accuracy of self-reporting of task-completion times
for short tasks (<10 minutes), and found that under-estimation or
over-estimation occurred consistently within subjects.

2.2 Automatic
If the experimenter has some control over the subject’s computing
environment, then the experimenter can use software to collect
data from the environment. which can be used to measure effort.
Data can be collected from interactions with the shell, editor,
compiler, etc. By collecting events and their corresponding
timestamps, the experimenter can estimate how much time the
subject spent interacting with different programs. The
experimenter can also try to infer the subjects’ activities based on
the nature of the events being captured (e.g., an active debugger
may be classified as “debugging”). Furthermore, measures based
on automatic data collection should be consistent across subjects
and time, provided the experimenter has equal control over the
computing environments of all subjects. Hackystat [8] and
GRUMPS [13] are examples of such data collection systems.

The disadvantages of an automatic effort measure are the need for
specialized instrumentation and for integrating the collected data
to form an estimate of the effort. An automatic method generally
leads the experimenter to focus on the data that is easiest to
collect, rather than the data that will be most informative.
Furthermore, the collected data will be a stream of timestamped
events, which must be transformed into a single measure of effort.
For example, effort could be estimated by adding up time
intervals between events, or by slicing up time into equally-sized
chunks and counting the number of chunks that contain events.
Each of these methods has its own shortcomings.

Figure 1 is a graphical depiction of an interval-based method,
where the circles are recorded events. Using this method, we
estimate effort by adding up time intervals between events.
However, this method must avoid counting time intervals that
represent non-working gaps between work sessions (e.g., should
t2 be counted as effort or not?). Szafron and Schaeffer used an
interval-based method to measure effort, ignoring time intervals
larger than 15 minutes [12].

time

t1 t2 t3

Figure 1 Interval-based method

Figure 2 is a graphical depiction of a chunk-based method, where
time is broken up into chunks of size tc, and we estimate effort by
adding up the chunks that contain events. For this method, we
need to determine the appropriate chunk size to avoid
overestimating or underestimating.

time

tc tc tc tc

Figure 2 Chunk-based method

Hackystat supports a chunk-based method to estimate effort [9].
Hackystat sensors can be plugged in to different software tools
(e.g., editors, shell, version-control systems). These sensors
collect data on the use of these tools without user intervention.
While Hackystat is designed for project monitoring rather than
effort estimation, it does have some support for estimating the
time spent editing source files, which it calls “active time”. Active
time uses the chunking method to estimate the time spent editing
files. Kou and Xu analyzed the effect of chunk size on active time
and concluded that the measure is not very sensitive to chunk size
in the range of 3-10 minutes [10].

2.3 Hybrid
A hybrid measure is a combination of manual and automatic data
collection. These methods rely on automatic instrumentation
software that also prompts the user for some additional input (e.g.,
each time the user invoke the compiler, the system asks the user
how long they have been working). This approach has advantages
over the self-reported and fully automatic methods. The subjects
are prompted for input on a regular basis and so we would expect
more consistent reporting than a fully self-reported method. This
approach can be used to improve the accuracy of an automatic
time-interval based effort measure by distinguishing work times
from break times through the help of user input.
A disadvantage is that subjects are forced to record information at
the rate dictated by the software, rather than at their own pace,
and they may become frustrated if they are prompted for data too
often. Like the fully self-reported data, the subjects may not
report their data consistently.
We have developed our own instrumentation that uses a hybrid
approach to collect effort data. We have developed “wrapper”
programs that instrument compilers. When users invoke these
instrumented programs, they are asked questions about what type
of activity they are doing, and how long they have been working.
We use an interval-based approach to measure effort, applying the
user input to help us identify gaps between work sessions.
Another example of combining automatic and self-reported data
to measure effort is work by Atkins et al [1]. They combine
monthly time sheets with change management data to estimate
effort spent on particular changes.

2.4 Indirect
An indirect measure is one that does not measure subject activity
directly, but measures something else that is believed to correlate
well with effort. These measures are typically code-based: for
example, size (e.g., lines of code, tokens), complexity, number of
defects that occurred during development. Indirect measures can
be attractive because they are typically much easier to obtain than
direct measures (this is why they are used). In some cases, they
may be appropriate. For example, if a researcher is concerned
primarily with debugging time, then counting the number of
defects may be a suitable proxy for measuring the time. However,

the relationship between such measures and effort is not yet well-
understood.
Basili and Reiter evaluated a number of indirect measures in an
experiment where subjects developed software either as
individuals with no particular methodology, in teams with no
particular methodology, or in teams with a specific disciplined
methodology [1]. They focused on both process metrics (which
measured activity during development) and product metrics
(which measured the delivered program). For process metrics,
they looked at job steps and program changes, where job steps are
counts of compiles and executions, and program changes are a
measure of textual changes in the source code during
development. For product metrics, they looked at various size
metrics (line counts, routine counts, decision counts) and
complexity metrics based on cyclomatic complexity. They found
that the various process metrics agreed on differences between
groups (disciplined teams required few job steps and fewer
program changes than both ad-hoc individuals and ad-hoc teams),
while the various product measures showed different trends.

3. PILOTING EFFORT MEASURES
We conducted studies with graduate students at various
universities across the United States. One of the goals of the
research is to evaluate parallel programming technologies for
their effect on development time and execution time. The studies
described in this section were pilots which we used to evaluate
our data collection methodology, as well as to familiarize the
professors with empirical studies involving human subjects. We
were concerned with measuring overall development time, as well
as identifying the different activities of development (e.g.,
parallelizing, debugging).
Each study was done in a graduate level class about parallel
programming. We collected data on students as they worked on
parallel programming assignments that were required coursework.
These assignments were generally due two weeks after they had
been assigned, and required on the order of ten hours of work to
complete.
The student programs had to be compiled and run on a parallel
machine, which the students accessed through remote login. This
gave us some control over the students’ environment, as we could
collect data on the remote machine. However, we could not
collect data if the students worked on a local machine (e.g., serial
program development, editing source code, etc.). While students
were encouraged to develop on the remote machines, we could
not force them to do so.

3.1 Data collection
We chose to use a self-reported measure of effort as well as a
hybrid measure of effort. For the self-reported measure, we asked
the students to keep an effort log, to report how much time they
spent each day in different activities, which we call self-reported
effort. Figure 3 shows the log format and one entry. We also
asked the subject to specify, for each entry, whether they were
working on an instrumented machine. We used a web-based form
to collect the data.

To collect data for automatically measuring effort, we
instrumented the compiler. On each compile, the timestamp was
recorded and a copy of the submitted source code was captured.
Each time the user invoked the instrumented compiler, we asked
them to specify their work time: how long they had been working
since their last compile. This question is optional, and if they do
not respond it means that they have been working continuously
(see Figure 4).

3.2 Instrumented effort measure
We used an interval-based hybrid measure, defined as follows:

)1(),(∑=
i

ii wtfE

where E is total effort, ti is the i’th time interval (between
compiles i-1 and i), wi is the work time specified by the user (0 by
default), and f is the following function:

)2(

00
00

0
0

),(

12

1

1

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∧>∧=
>∧>∧=

≤∧=
>

=

wTtwT
wTtww

Ttwt
ww

wtf

ii

ii

iii

ii

ii

In this equation, w is the average work time specified by the
subject across all compiles. If the subject specifies a work time,
we use that as the time interval. If the subject does not specify a
work time, we use the actual time interval, provided it falls below
a threshold T1. If the user does not specify a time interval and the
actual time interval exceeds T1, we use the mean work time
specified by the subject, as an estimate of the time interval. If the
subject never specified a work time throughout the development
process, we use the value T2. We determine T1 and T2 from
analysis of the collected data of the pilot studies.

3.3 Experimental setting
The pilot studies took place in courses at the following
universities: University of Maryland, MIT, University of
California Santa Barbara, and University of Southern California.
Each class had 1-4 assignments, and the focus of each assignment
was the implementation of a program to be run on a parallel
machine, typically in MPI [6], OpenMP [5], or both.

3.4 Analysis
3.4.1 Estimating T1
We use T1 as a threshold to determine if an interval should be
counted as continuous work. This is necessary because subjects
do not always specify a work time at the start of a work session.
An ideal value for T1 would be longer than the longest interval of
true continuous work, and shorter than the shortest break, so that
it would perfectly classify intervals as being work or breaks. We
assume the longest interval of work is shorter than the shortest
break. In practice, this won’t be true, since many work sessions
involve brief interruptions, but for the purposes of our algorithm
we would still count them as work. Recall that Perry et al. [9]
found that people tend to forget about unscheduled interruptions
when keeping retrospective logs, so we hoped this would not be a
source of disagreement.
The method we use to estimate T1 is to compare the time intervals
(ti) where users specified a work time with the time intervals
where users did not specify a work time. We expect the
distribution of time intervals where users did specify a work time
to be similar to the distribution of time intervals that represent
breaks, and we expect the distribution of time intervals where
users did not specify a work time to be similar to the distribution
of time intervals that represent continuous work. This method
does not depend on the accuracy of reported effort and we do not
expect the results to vary by size of the assignment. Note that
roughly 20% of the subjects never specified a work time
throughout an entire assignment.

no input input

Ti
m

e
in

te
rv

al
 (m

in
)

.0
1

1
10

0
10

00

Figure 5 Distribution of time intervals

In Figure 5, we show box plots of these two groups of time
intervals: when users specify work time (“input”) and when users
do not specify work time (“no input”). This data is across 4
classes, 8-20 participating students in each class, with 1-4
assignments in each class, and represents roughly 18,000

$ mpicc life.c

How long (in minutes) have you been working
before this compile?

(Hit enter if you have been working
continuously since last compile)

>

Figure 4 Question asked by compiler

Figure 3 Effort log

E ffort
(hours)

T h ink ing
(U nderstand ing

the p rob lem)

T h inking
(D esign ing a

so lu tion)

Experim enting
w ith

env ironm ent

Add ing
functionality Paralle liz ing T un ing D ebugg ing T esting O ther (spec ify

activ ity)

0.25 X X

compiles. We had expected most of the time intervals labeled
“input” to be larger than those labeled “no input”, but there is
considerable overlap among the two data sets. The very high
values for “no input” suggest that students do not always fill out
the work time after coming back from a break, illustrating the
need for a good T1 estimate. More surprising is the many low
values for intervals when the user specifies a work time. The
median time interval is under 3 minutes: more than half of these
intervals are from students specifying a work time when it has
been less than 3 minutes since their last compile. We can only
conclude that these students either did not understand when they
were supposed to answer this question, or were intentionally
answering incorrectly (e.g., just hitting “1” each time).

no input input

Ti
m

e
in

te
rv

al
 (m

in
)

.0
1

1
10

0
10

00

Figure 6 Filtered distribution of time intervals

To filter these out, we eliminated the data from all subjects who
ever specified a work time when the actual time between
compiles was 5 minutes or less, since it is reasonable that if a
subject had compiles that were 5 minutes apart, they were
working continuously, and entering a work time would be
incorrect. This reduces our total sample from 18,000 to about
5,000 compiles. This updated plot is in Figure 6. Now there is
considerably less overlap between the two distributions. For the
“input” intervals, the first quartile is 43 minutes, which implies
that 75% of the time intervals that were effectively classified by
the subjects as breaks were over 43 minutes. It seems reasonable
to round this up to T1=45 minutes.

3.4.2 Estimating T2
To choose an appropriate value for T2 we need to know how long
students typically spend working before their first compile when
they begin a work session. This should be equal to their “work
time”, which is how long they say they have been working before
a compile, since they are only supposed to specify a work time
when they have returned from a break.
Figure 7 shows a box plot of the work times specified by graduate
students in the Applied Parallel Computing course at the
University of California, Santa Barbara, over four parallel
programming assignments. The plot suggests that the work time
distributions are quite different across subjects (note that the

y-axis is logarithmic). Even within subjects, there can be a great
deal of variation (e.g., subject 18 exhibits variation from 1 minute
to 100 minutes).

1 2 3 4 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21

1
2

5
10

20
50

10
0

20
0

W
or

k
tim

e
(m

in
ut

es
)

Figure 7 Work time distributions across subjects

Figure 8 shows the distribution of work times for the entire class.
The median work time is 4 minutes and the mean is 4.8 minutes.
Therefore, we felt that a reasonable value for the time interval
estimate in the absence of work time to be T2 =5 minutes.

1
2

5
10

20
50

10
0

20
0

W
or

k
tim

e
(m

in
ut

es
)

Figure 8 Work time distribution for entire class

Figure 9 shows the results when we apply equation 2 to the data
collected from the three courses (T1=45 minutes, T2=5 minutes).
To compute reported effort, we only count entries where the
subjects specify that they are working on the instrumented
machine. Note that each data point is one student solving one
assignment. Since some classes had up to 4 assignments, a single
subject may appear up to 4 times on this plot. Table 1 shows the
summary information for the deviations (instrumented effort –
self-reported effort) across subjects, where n is the number of
subjects, mean is the average of the deviations across all subjects,
stdev is the standard deviation of the deviations, and % is the
mean of the deviations divided by the mean effort (To compute
mean effort, we take the mean of the self-reported and
instrumented effort for each subject, and average this across all
subjects). The negative mean deviation indicates that the
instrumented effort tends to underestimate the effort reported by
the students.

Table 1 Summary info for deviations

n mean stdev %

56 -3.7 hours 11.7 hours 26%

3.4.3 Examining the reported data
Subjects claim that they spend about 80% of their development
time working on the instrumented machine, averaged across all
subjects who submitted effort logs. More than half claim that they
spent 100% of their time on the instrumented machine.
We observe both overreporting and underreporting in this data.
Two of the largest instances of overreporting are from the same
subject on two different assignments. This subject reported 44
hours on one assignment and 63 hours on another. When we
examined the collected data in detail, it appeared that the subject
was either significantly overestimating their effort, or the subject
was not invoking the instrumented compiler while working,
despite claims in the effort log to be working on the instrumented
machine. This subject tended to use relatively large entry sizes:
specifying several 10-hour entries and one 14-hour entry. By
comparison, the median entry across all subjects and assignments
was 3.8 hours.
There are three subjects with instrumented effort of over 10 hours
whose effort logs consisted of a single one-hour entry, clear
instances of underreporting. It is notable that these subjects all
came from the same class, so perhaps there was some unknown
factor which caused students in this class to be less diligent with
their logs.

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Instrumented (hours)

R
ep

or
te

d
(h

ou
rs

)

Figure 9 Reported vs. instrumented effort

3.5 Lessons learned
We learned several lessons from these pilot studies:

• The work time (time spent working before first compile,
after having returned from a break) varies considerably
across subjects.

• Subjects will not always specify when they have
returned from a break, even if prompted to at each
compile.

• Subjects will sometimes specify work time even when
the gap in question is quite small. Either they do not
understand the question or are specifying breaks at too
fine a level of granularity for our purposes.

• Students claim that they spend most of their time
(>80%) working on the instrumented machine, so
instrumented effort can potentially be within 20% of
total effort.

• Underreporting and overreporting are significant issues.
They appear to be the source of the largest deviations.

4. VALIDATING EFFORT MEAURES
4.1 Motivation
In the pilot studies, we tried to increase the accuracy of our
instrumented effort by asking the subjects for additional
information. However, we found that the data provided by the
subjects was often inconsistent with data collected automatically.
We did not have sufficient confidence in either instrumented
effort or self-reported effort for a proper evaluation.
We decided to run a series of observational studies to compare the
various effort measures to a more accurate effort measure,
obtained through direct observation. We also wanted to collect
more detailed information about what types of activities our effort
measures do not capture well.
An observational study involves a single subject who solves one
of the programming problems from the classroom studies. We
apply all of the same data collection measures which were used in
the classroom studies (effort logs, instrumented compilers). The
additional factor in these studies is a passive observer, who sits
with the programmer and keeps a separate log of the
programmer’s activities. The goal of the observer is to provide an
accurate measure of effort against which the other measures can
be compared.

4.2 Modification to data collection
For these studies, we also collected two new types of automatic
data. We used Johnson’s Hackystat [7] system for collecting the
time spent in the editor and commands sent to the shell. We also
captured information on when the user submitted a job. We were
able to do so because the subjects were using a Beowulf cluster
on which we could instrument the batch scheduler used for job
submission. Unlike the compiler instrumentation, we did not ask
the subject questions when a job was submitted.
Our initial compiler instrumentation software asked the subject
questions on each compile. Some subjects in previous studies
found these questions irritating, especially when they had to
recompile due to a syntax error. To reduce the frequency of
questions, we modified the compiler instrumentation to only ask
the subject questions if there were no syntax errors in the source
code).
We made several modifications to our effort logs. We switched
from a web-based interface to paper effort logs as we suspected
that the web interface may have been related to underreporting in
the previous studies. Between our first and second observational
study we modified the effort log so that the subject had to specify

start and stop times for each activity (see Figure 11). This
increases the precision of the log, and allows us to compare the
logs more directly with automatically collected data.

4.3 Instrumented effort measure
The modification of the compiler instrumentation introduces a
problem into our instrumented effort measure.

time

t1 t2

c1 c2 c3

Figure 10 Dealing with compile-time errors
Consider the scenario depicted in Figure 10. Let c1,c2,c3 be
captured compile events, and assume that the subject took a break
between c1 and c2. Consider the case where c2 is a failed compile
(syntax error) and c3 is a successful compile. The instrumentation
will not ask a question at c2, but it will ask at c3. If the subject
specifies a work time, the algorithm will incorrectly use that work
time in place of t2, when it should be used in place of t1. To avoid
this problem, we do not use failed compiles in computing
instrumented effort, though we still record when they occur.
Ignoring compiles that are not successful should not impact
instrumented effort unless the time to fix syntax errors exceeds T1
(45 minutes).
We also saw in the previous studies that subjects sometimes
specify work times that exceed the time interval between
compiles. This led to a further refinement of algorithm that checks
for this occurrence:

)3(

00
00

)()0(
0

),(

12

1

1

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∧>∧=
>∧>∧=
<∨≤∧=

≥∧>

=

wTtwT
wTtww

wtTtwt
wtww

wtf

ii

ii

iiiii

iiii

ii

In addition to our previous instrumented effort measure, we
applied a new instrumented effort measure that incorporates all
captured events (i.e., compiles, run, edits, shell commands). We
no longer incorporate the work time in this measure because we
expect too much overlap between work time and other captured
events. We use a simple interval-based algorithm where we only
include the interval if it exceeds a certain threshold, otherwise it
does not contribute to the estimate. We used a threshold of 45
minutes, as before.

4.4 Experimental setting
For the first observational study we chose a small, relatively
simple problem, used in two of the classes from our second round
of studies. The problem was the “Buffon-Laplace needle
problem”, a Monte Carlo simulation to estimate the value of π by
dropping needles on a grid and counting how many needles
intersect with the gridlines. The task was to solve the problem in

serial in C, and in parallel using the MPI library on a Beowulf
cluster. The subject was a member of our research group who had
taken the graduate-level high performance computing course at
the University of Maryland. The study took place in a single
session and ran for a little over two hours.
For our second observational study, we chose a more difficult
problem from the set of assignments: Conway’s game of life. We
kept the same objectives as before (serial implementation in C,
parallel implementation using MPI on a Beowulf cluster). The
subject was a professional programmer working for a research lab
involved with parallel applications. Though the focus of his day-
to-day work was not MPI-related, he had experience with MPI.
The programming task took about nine hours to complete, which
was done in six sessions over the course of two weeks.

4.5 Analysis of first observational study
Figure 12 graphically depicts the data we collected from the first
observational study using the automatic instrumentation, as well
as effort measures using our method and Hackystat’s “active
time” measure. The x-axis represents the actual clock time of the
observation. On the y-axis, compiles refers to successful
compiles, runs refers to submissions to the batch scheduler for
parallel runs, edits refers to edit events captured by Hackystat,
cmds refers to commands typed in the shell, inst. effort is our
effort measure described in the previous section (using only data
captured from compiles), and active time refers to Hackystat’s
“active time” estimate, which is a measure of how much time is
spent editing a file. The vertical lines indicate the beginning and
end times of the session as recorded by the observer.
We can see that the instrumented effort has some (small) gaps at
the beginning and end of the session. The gap near the beginning
of the session is because the subject slightly underestimated when
specifying the work time. The gap at the end of the session shows
that instrumented effort fails to take into account effort after the
last compile. We were able to capture the time before the first
compile because of work time specified by the subject. From the
figure, it appears that our instrumented effort may have been more
accurate if we used all captured events, rather than rely solely on
compile events.
Active time captures most of the effort, with two gaps. The first
gap (10:20-10:40) is due to the initial “thinking” time, where the
subject is thinking about the problem and is working out a
solution on paper. The second gap (12:05-12:10) is due to the
subject doing testing, measuring the effect of compiler
optimization on execution time.

Figure 11 Updated effort log

Date Start time Stop time
Breaks
(minutes)

Total time
(minutes) Activity Comments

10/4 3:15 PM 3:42 PM 27 Serial coding

time

10:00 10:30 11:00 11:30 12:00 12:30

co
m

pi
le

s
ru

ns
ed

its
cm

ds
in

st
. e

ffo
rt

ac
tiv

e
tim

e

Figure 12 First observational study

Table 2 gives a summary of the different effort measures, where
Direct obs. Refers to direct observation, Rep. effort refers to
reported effort, Inst. effort refers to instrumented effort, and
Active time refers to Hackystat active time. We see that
instrumented effort underestimated by a very small amount (<5
minutes), with active time underestimating somewhat more (15
minutes) The reported effort overestimated by about 17 minutes.
We believe that the subject kept the effort log as accurately as can
be reasonably expected. The effort log errors were most likely
due to the resolution of the log: the subject was asked to specify
time in hours for each activity (see Figure 3). Most entries were
either 0.25 h or 0.5 h, which is probably the finest level of
granularity at which a person can estimate their time spent in a
particular activity. If ideal conditions yielded errors of about 13%,
we don’t expect to do better than about 20% in a classroom study.

Table 2 First observational study results
 Direct

obs.
Rep.
effort

Inst.
effort

Active
 time

Time 2.17 h 2.45 h 2.10 h 1.92 h

Error 0 h +0.28 h -0.07 h -0.25 h

Error % 0 % +13% -3% -12%

The results of this first observational study, though encouraging,
were most likely not representative. Most problems are more
difficult and require work to be done across multiple sessions,
which is what we speculated to be the most likely source of errors
in our effort measure. This study does give us some lower bounds
on how accurate we should expect our effort measures to be.

4.6 Agreement measure: fidelity
As we mentioned in section 4.2, between the first and second
observational study, we modified the effort log so we could
directly compare the self-reported effort with the instrumented

effort. We adopted the fidelity measure described in Perry et al.
[9] to give us a sense of how much we should trust the self-
reported effort. They define fidelity as the overlap between the
two measures, divided by the measure which is considered more
accurate.

4.7 Analysis of second observational study
Table 3 gives a summary of the accuracy of the different methods.
Inst. effort refers to the instrumented effort measure from equation
3 (using only compile data), and All refers to instrumented effort
which takes into account all of the different types of data.
Note that the increase in the accuracy of the effort log, decrease in
accuracy of instrumented effort, and increase in accuracy of the
Hackystat measure compared to the first observational study.
While it is unwise to draw conclusions from two data points, these
results support our hypotheses that a more precise effort log
improves accuracy, and that instrumented effort decreases in
accuracy when the work is done over multiple sessions.

Table 3 Second observational study results
Direct
obs.

Rep.
Effort

Inst.
 effort

Active
time

All

Time 9.05 h 8.98 h 8.28 h 8.60 h 9.08h

Error 0.00 h -0.07 h -0.77 h -0.45 h +.03 h

Error % 0% -1% -8% -5% +0.3%

If we compute the fidelity to check the agreement of the self-
reported effort and the instrumented effort (All), assuming the
instrumented effort to be more accurate, we get an agreement of
0.97, a very high value which is consistent with Table 3.
Figure 13 shows activity for the second session of the study, and
illustrates some of the problems with our effort measure (it does
not depict the instrumented effort measure which takes all types
of events into account). On the first compile, the subject did not
specify the time spent working, so the instrumentation used the
average work time specified (18 minutes). The observed time
spent working before first compile was only 3 minutes. The
subject spent this entire session debugging the serial version of
the program, so no parallel runs were recorded. On this plot, we
can also see the gap between the time of the last compile for the
day and the time when the subject actually stopped working: our
compiler-based effort measure has no mechanism for estimating
this time. These two errors illustrate the weakness of an interval-
based method for estimating effort.
The subject spent much of this session looking at source code and
output of previous runs. While he was interacting with the editor
(e.g., scrolling, switching from one file to another), no editing was
taking place, resulting in gaps in the Hackystat “active time”
measure. Note that for the second large gap in active time (10:35-
10:55), there are no captured events at all: no compiles, edits,
shell commands, or runs. This illustrate the weakness of a
chunking-based method for estimating effort.

time

09:45 10:00 10:15 10:30 10:45 11:00 11:15

co
m

pi
le

s
ru

ns
ed

its
cm

ds
in

st
. e

ffo
rt

ac
tiv

e
tim

e
lo

g

Figure 13 Activity for second session

The instrumented effort measure which takes into account all
types of events clearly performs the best, achieving within 1% of
the observed effort. For this measure, we used T1=45 minutes,
T2=0. We initially tried larger values of T2, which always resulted
in overestimates. In our study, the subject always began a session
by logging in to the remote machine, so the first recorded event
coincided very closely with the beginning of a work session, and
the last recorded event (the logout command) coincided with the
end of the work session. Note that if only compiles are used, the
same algorithm yields an effort of 6.2 hours, which is an error of
about -30%. This suggests that compiles do not occur frequently
enough to be relied upon exclusively for estimating effort without
additional information.

4.8 Lessons learned
We learned several lessons from these observational studies:

• Instrumented effort underestimates due to time spent
working before the first compile, time spent working
after the last compile and time intervals where work
was being done outside of the instrumented
environment.

• Active time, which is a chunk-based automated
measure, underestimates because of time intervals
where work is done that doesn’t trigger edit events.

• If we incorporate events recorded by Hackystat sensors
into our instrumented effort, we capture more of the
effort.

• An effort log that asks for start/stop times simplifies the
task of evaluating self-reported effort against
instrumented effort, and can potentially increase the
accuracy of the effort measure.

• For an effort log that does not use start/stop times, the
limit to the granularity of effort reporting is about 15
minutes.

• For an effort log that does not use start/stop times, we
do not expect to get better than about 20% agreement
on reported and instrumented effort.

• Instrumented effort accuracy may decrease when
subjects program over multiple sessions because effort
errors occur at the beginning and end of sessions.

• When a subject is debugging, sometimes no events are
captured because the subject is simply looking at source
code and program output. This may be particularly
problematic for chunk-based effort measures.

5. EFFORT ALGORITHMS
5.1 Instrumented effort
We found that if there is sufficient automatically collected data
(e.g., edit events, shell commands), then a simple, interval-based
measure works well:

)4()(∑=
i

itfE

)5(
0

)(
1

1

⎩
⎨
⎧

>
≤

=
Tt
Ttt

tf

where E is the effort, ti is the time interval between captured
events, and T1 is a constant. Based on our analysis, we concluded
that T1=45 minutes was reasonable. In our observational studies,
the largest interval where the subject was working but no activity
was recorded was 20 minutes.
If it is possible to collect a subset of the above data (e.g., compile
timestamps), then the simple method above will under-estimate
the effort. We can increase the accuracy by asking the subjects
questions at compile-time and using a hybrid measure to estimate
the effort:

)6(),(∑=
i

ii wtfE

)7(

00
00

)()0(
0

),(

12

1

1

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∧>∧=
>∧>∧=
<∨≤∧=

≥∧>

=

wTtwT
wTtww

wtTtwt
wtww

wtf

ii

ii

iiiii

iiii

ii

where E is the effort, ti is the time interval between events, wi is
the work time (amount of time the subject indicated that they
working before the event, 0 if no response), w is the average
work time for the subject, and T1 and T2 are constants. From our
analysis, we found T1=45 minutes, T2=5 minutes to be reasonable
values.

5.2 Total effort and confidence
To obtain a measure of total effort, we combine instrumented and
self-reported effort measures using the following equation:

)8()1(repinsttotal EkEE −+=

where Etotal is total effort, Einst is instrumented effort, Erep is self-
reported effort, and k is the fraction of the self-reported effort that
corresponds to work done on an instrumented machine.

We use fidelity as a confidence measure to help us judge whether
we should use the self-reported effort or discard it, based on how
well it agrees with the instrumented effort:

)9(
),(

inst

repinst

E
kEEOv

f =

where f is fidelity, and Ov is the overlap between two effort
measures.
A disadvantage of fidelity is that it only measures underreporting.
Measuring overreporting by comparing with instrumented effort
is difficult because a subject may still be working even if no
activities are recorded, as we saw in the observational studies. An
alternate method is to look for coarse-grained self-reported
entries, which are more likely to be suspect. We have found that
large effort entries are a warning sign that overreporting may be
occurring. In studies that follow the ones described here, we ask
subjects to specify for each entry whether it was filled in close to
the actual work, or retrospectively. This information may provide
experimenters with additional warnings that the data is suspect.

6. CONCLUSION
In this paper, we have described how we evolved self-reported
and automatic methods of data collection through a series of
empirical studies, and how we combined them to assess our
confidence in the data and measure total effort for small
programming problems. We found that effort estimates based on
automatically collected data can be quite accurate if sufficient
data can be collected, particularly if the data comes from multiple
sources. This data can be augmented by self-reported data to
capture activities that would be missed by automatic
instrumentation. However, the quality of self-reported data will
vary considerably across subjects, and it should be validated
against automatically collected data.
It is not clear whether a similar approach could be adopted in
industrial environments, where much of the effort is spent in
phases other than coding and there are barriers to using
instrumention. Furthermore, larger projects may not require effort
measures at the same level of precision as small experiments.

7. ACKNOWLEDGEMENT
 This research was supported in part by Department of Energy
contract DE-FG02-04ER25633 to the University of Maryland.
We wish to acknowledge the contributions of the various faculty
members and their students who have participated in the various
experiments we have run over the past 2 years. This includes Alan
Edelman at MIT, John Gilbert at the University of California
Santa Barbara, Mary Hall and Jacqueline Chame at the University
of Southern California, Alan Snavely at the University of
California San Diego, Uzi Vishkin and Alan Sussman at the
University of Maryland. We would like to acknowledge Sima
Asgari, Taiga Nakamura, Jaymie Strecker and Forrest Shull for
their feedback. We would also like to acknowledge Adrianne
Fuentes from Charles Flowers High School in Prince George’s
County, Maryland.

8. REFERENCES
[1] Atkins, D., Ball, T., Graves, T., and Mockus, A. Using

version control data to evaluate the impact of software tools.

In Proceedings of the 21st International Conference on
Software Engineering (ICSE ’99), (Los Angeles, CA, May
16-22 1999)

[2] Basili, V.R., and Reiter, R.J. Evaluating automatable
measures of software development. In Proceedings of the
Workshop on Quantitative Software Models for Reliability,
Complexity and Cost (Oct. 1979)

[3] Basili, V.R., Selby, W.R., and Phillips, T.-Y. Metric analysis
and data validation Across Fortran projects. IEEE
Transactions on Software Engineering, SE-9, 6 (Nov. 1983),
652-663.

[4] Campbell, D.T., and Stanley, J.C. Experimental and Quasi-
Experimental Designs for Research. Houghton-Mifflin,
1963.

[5] Carver, J., Asgari, S., Basili, V., Hochstein, L.,
Hollingsworth J. K., Shull, F., and Zelkowitz, M. Studying
code development for high performance computing: the
HPCS program. In Proceedings of the International
Workshop on Software Engineering for High Performance
Computing Systems Applications (SE-HPCS ’04)
(Edinburgh, Scotland, May 24 2004).

[6] Dagum, L., and Menon, R. OpenMP: An industry-standard
for shared-memory programming. In IEEE Computational
Science & Engineering, 5, 1 (Jan. 1998), 46-55.

[7] Dongara, J.J., Otto, S.W., Snir, M., and Walker, D. A
Message passing standard for MPP and workstations. In
Communications of the ACM, 39, 7 (Jul. 1996), 84-90.

[8] Humphrey, W.S. A Discipline for Software Engineering.
Addison-Wesley, 1995.

[9] Johnson, P.M., Kou, H., Agustin, J.M., Chan, C., Moore, C.
A., Miglani, J., Zhen, S., and Doane, W.E. Beyond the
Personal Software Process: Metrics collection and analysis
for the differently disciplined. In Proceedings of the
International Conference on Software Engineering (ICSE
’03) (Portland, OR, May 3-10, 2003).

[10] Kou, H., and Xu, X. Most Active File Measurement
Validation In Hackystat. Technical Report CSDL-02-09,
University of Hawaii, Honolulu, HI, 2002.

[11] Perry, D.E., Staudenmayer, N.A., and Votta, L.G.
Understanding and improving time usage in software
development. In Volume 5 of Trends in Software: Software
Process, John Wiley & Sons, 1995.

[12] Szafron, D., and Schaeffer, J. An experiment to measure the
usability of parallel programming systems. In Concurrency:
Practice and Experience, 8, 2 (Mar. 1996), 147-166.

[13] Thomas, R., Kennedy, G.E., Draper, S., Mancy, R., Crease,
M., Evans, H., and Gray, P. Generic usage monitoring of
programming students. In Proceedings of the 20th Annual
Conference of the Australasian Society for Computers in
Learning in Tertiary Education (ASCILITE ‘03) (Adelaide,
Australia, Dec 7-10, 2003).

[14] Zelkwoitz, M., Basili, V., Asgari, S., Hochstein, L.,
Hollingsworth, J., and Nakamura, T. Measuring productivity
on high performance computers. In Proceedings of the
International Symposium on Software Metrics (Metrics ’05)
(Como, Italy, Sep. 19-22 2005).

