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Abstract: This paper enhances the currently available formal risk management models and related frameworks by 
providing an independent mechanism for checking out their results. It provides a way to compare the 
historical data on the risks identified by similar projects to the risk found by each framework Based on 
direct queries to stakeholders, existing approaches provide a mechanism for estimating the probability 
of achieving software project objectives before the project starts (Prior probability). However, they do not 
estimate the probability that objectives have actually been achieved, when risk events have occurred during 
project development. This involves calculating the posterior probability that a project missed its objectives, 
or, on the contrary, the probability that the project has succeeded. This paper provides existing frameworks 
with a way to calculate both prior and posterior probability. The overall risk evaluation, calculated by those 
two probabilities, could be compared to the evaluations that each framework has found within its own 
process. Therefore, the comparison is performed between what those frameworks assumed and what the 
historical data suggested both before and during the project. This is a control mechanism because, if those 
comparisons do not agree, further investigations could be carried out. A case study is presented that 
provides an efficient way to deal with those issues by using Artificial Neural Networks (ANN) as a 
statistical tool (e.g., regression and probability estimator). That is, we show that ANN can automatically 
derive from historical data both prior and posterior probability estimates. This paper shows the verification 
by simulation of the proposed approach. 

1 INTRODUCTION 

Since the late 1980’s, when Risk Management (RM) 
was first applied to the software domain (Boehm, 
1989), (Charette, 1989) (Boehm, 1991), there have 
been limited real advances in formal RM 
methodologies (Roy, 2004).  

One weakness of the existing RM practices 
(Sarcià, Cantone, 2006) is the inability to check the 
identified risks against past performance on similar 
projects. This paper tries to improve on the current 
RM practices by integrating into the frameworks an 
independent mechanism for comparing the current 
risks to historical data. In particular, we propose an 

Artificial Neural Network-based (ANN) approach 
for estimating both prior and posterior probability 
using the historical data of the software 
organization.  Briefly, the main questions that this 
paper answers are: “What is the probability that the 
project succeeds? How can we evaluate whether 
risks actually have impacted on the achievement of 
the project objectives?” The remainder of this paper 
deals with the following topics: Section 2 provides 
an overview of the key elements of an RM process 
focusing on the reliable prediction of project success 
and failure. Section 3 defines the problem and 
discusses about RM strategies and methodologies. 
Section 4 presents and discusses results from a 



 

simulation-based case study for efficiency 
validation. Section 5 shows some insights for 
improving the proposed approach. Some final 
remarks and forewords for future work conclude the 
paper. 

2 RISK MANAGEMENT 

Risk is a measure of probability and severity of 
unwanted effects (Boehm, 1991) on software 
development projects. Basically, all current risk 
estimation frameworks in software development 
process (Boehm, 1991), (Charette, 1989), (Higuera, 
1996), (Kontio, 1996), (Karolak, 1997), (Madachy, 
1997), (SEI, 2002), (Roy, 2004), and (Albert, 2006) 
evaluate the risk value (or risk exposure), V as: 
 

V(UE) = I(UE) * P(UE) (1)

 
where UE stands for an unwanted event (risk factor); 
P(UE) is the probability that UE occurs; I(UE) 
stands for the impact (or cost) due to the occurrence 
of UE. As an example, we can consider the 
following situation: 
UE = {‘Resignation of a senior analyst’}, I(UE) = {6 
month’s delay} and P(UE) = 0.25 then: 
 

V(UE) = 6 * 0.25 = 1.5 (months) (1.a)

2.1 Risk Management Process 

RM is a continuous process, which aims at applying 
suitable tools, procedures, and methodologies to 
avoid that risk occurs or keep it within stated limits 
(SEI, 2002). Some studies describe several basic 
steps of RM in slightly different ways, but 
substantially they report a process, which – similarly 
to the one that Figure 1 depicts – is based on the 
stages below. 

Identify: Includes the identification of the 
internal and external sources of risk through a 
suitable taxonomy (Higuera, 1996) (SEI, 2002), as 
depicted in Table 1. Risk Identification involves 
stakeholders and depends on the project context.  

Analyze: Aims at understanding when, where, 
and why risk might occur, through direct queries to 
stakeholders about the probability and impact of risk 
elements. The prior probability is evaluated. This is 
the probability that an event (e.g., project delay) 
could happen before the project starts. This is 
calculated through prior information. 

Plan: In order to establish a strategy to avoid or 
mitigate the risk, decisions have to be made. In this 
stage, contingency plans are stated as well as the 
related triggering thresholds. Risk-controlling 
actions are defined and selected. 

 
Figure1: Risk Management Process. 

 
 
Handle: The planned actions are carried out if 

the risk occurs. 
Monitoring: This is a continuous activity that 

watches the status of the project, and checks 
performance indicators (e.g., quality indicators, for 
instance the number of defects per size unit). In this 
stage, data concerning the risk trend is gathered.  
 

Table 1: Risk sources taxonomy (based on SEI, 2002) 
 

 
 
 
 
 
. 
 
Control: It appraises the corrections to be taken 

on risk mitigation plan in case of deviations. If the 
indicators show an increase over the fixed threshold, 
a contingency plan is triggered. In our opinion, this 
stage should deal with the posterior probability 
because events have already occurred; that is, one 
tries to figure out whether an unwanted event 
actually had an impact on project objectives. For 
further information about prior and posterior 
probability (Bayes’ Theorem), please see Section 1.8 
in (Bishop, 1995). 

Document and Communicate: This stage can 
be truly considered as the core of RM; in fact, all 
other stages refer to Documentation and 
Communication for enabling information exchange. 

2.2 Project Success and Failure  

Project success and failure constitute the 
environment where risk considerations take place. 
According to the Standish Group (Standish Group, 
1994), budget, schedule, and technical quality are 



 

the primary concepts to evaluate as to whether or not 
a project meets its objectives.   

It was argued (Jones, 2002) that the measure of 
success varies depending on how we define it. It has 
been suggested that success should be based on the 
developer’s point of view (Procaccino, Verner, 
Lorenzet, 2006), and on the stakeholder’s 
perspective (Linberg, 1999). Recently, empirical 
studies (Berntsson-Svensson, Aurum, 2006) have 
found that the nature of projects might not be 
systematically correlated with success and failure 
factors. (Boehm, 1991) includes in his top ten risk 
items unrealistic schedules and budgets, but, it was 
pointed out that having a schedule is not necessarily 
correlated with project success (Verner, Cerpa, 
2005): there are successful projects developed in a 
shorter time than scheduled. Additionally, it has 
been suggested that project success factors are 
intertwined with product success factors (Wallin et 
al., 2002). 

This paper adopts a definition of project success 
and failure very close to the Standish-Group’s 
definition (Standish Group, 1994), which states that 
a project achieves its objectives when it is on time, 
on budget, with all features and functions as 
originally specified. Concerning this point, let us 
recall that the triad cost-schedule-performance of 
project management is often termed the “Iron 
Triangle” (Williams, Pandelios, Behrens, 1999). 
This triadic view will be used in the rest of the 
paper. 

Our understanding of risk uses a threshold 
concept (Linberg, 1999). In order to check whether 
or not a project is meeting the stated objectives, we 
consider thresholds on budget, schedule, and 
required performances. In this way, project success 
and failure vary according to how we set these 
thresholds. This interpretation allows us to define a 
project to be successful projects just on the basis of a 
specific aspect (e.g. a project can be considered 
successful for budget factor but fail for the required 
defect rate). Actually, we are going to show, below, 
that this concept can be represented by a function of 
many variables, which, somehow, impact on the 
metric that we picked out to represent the success. 

3 PROBLEM DEFINITION 

To define the problem that this paper deals with, let 
us consider again equations (1), (1.a) and Figure 1. 
In particular, through the Analysis phase (Figure 1), 
we can calculate the risk exposure for each risk 
element, which we found in the previous phase 

(Identify). As we have already mentioned (Section 
2.1), this kind of evaluation is based on asking direct 
queries to stakeholders, which should provide a 
subjective score for each identified risk. This 
procedure might not be reliable because 
stakeholders’ subjective scores could change over 
time based upon their feeling (Tversky, Kahneman, 
1974). In other words, we need a control 
mechanism. A possible improvement could be using 
historical data, if available.  The aim would be 
building a control mechanism to increase our 
confidence on those subjective scores.  

When evaluating the overall risk for achieving a 
project objective (Iron Triangle), we pick all the risk 
exposures and estimates for each project objective 
(that is, each element of the Iron Triangle), 
calculating the average risk exposure (Roy, 2004). 
Generally, this average is weighted according to 
information that RM managers can get by historical 
data of the organization (Roy, 2004), (Fussel and 
Field, 2005). Based on these weighted averages, one 
should state strategies and plans to avoid or shrink 
the risk occurrence. Actually, over the Control phase 
(Figure 1), we are faced with the problem to figure 
out whether and to what extent risks have impacted 
on project objectives (e.g., scheduling slippage 
evaluation). For instance, if risks impacted very 
much upon the project, we should get low 
probability to be successful. Note that, this 
evaluation depends on what we pick out as a basis 
for comparison. For instance, let us assume that the 
historical data from the considered organization 
shows that, usually in similar projects, the 
organization got values for the Schedule 
Performance Index (SPI) between 0.8 and 0.9− (SPI 
is an index that provides information about the 
objective to stay on time). Based on the definition of 
this index (ratio between what we have done and 
what we planned to do), only values greater than 1.0 
should be considered as success. Let us assume that, 
current project got SPICurr = 0.95. If we picked out 
the theoretical value (SPItheor = 1.0) as a threshold 
for comparison, we would get a failure (because 
SPICurr < SPItheor). On the contrary, if we picked out, 
for instance, the mean value on past projects (e.g., 
SPImean = 0.85), we would get a success. Therefore, 
if we calibrate the evaluation criterion on the 
observed data then the decisions that we make are 
based on information that is as large and updated as 
we can. This happens because the object for 
comparison is based upon real performances of the 
organization. Actually, the problem is more 
complex. As a matter of fact, this calibration should 
take in account all possible factors (e.g., domain, 



 

complexity, developers’ experience etc…) that 
impacts on the considered performance (e.g., SPI). 
In other words, we should consider a regression 
function (e.g., SPI as a dependent variable and 
impacting factors as independent variables). Often, 
for the sake of simplicity, those factors are left out; 
hence, organizations prefer adopting just theoretical 
values. This research proposes a way to tackle with 
these issues. 

3.1 The Strategy 

Figure 2 depicts our point of view. Each risk 
element might impact (or might not) on one or more 
project objectives. We can get the impact of the 
assumed risk elements by checking suitable metrics 
(Basili, Caldiera, Cantone, 1992), (Basili, Caldiera, 
Rombach, 1994), (Basili, Caldiera, Rombach, 
1994b), (Cantone, Donzelli, 2000), and (Piattini, 
Genero, Jiménz, 2001) on the Iron Triangle during 
the project, as depicted on the right side of Figure 2 
(lollipop notation). Concerning the posterior 
probability analysis, based on the proposed approach 
(ANN), we propose to calculate the probability that 
the current project has succeeded; if this probability 
is less than 0.5 then risks occurred and they cannot 
be left out. Moreover, the more this probability 
approaches 1.0, the more the impact of risk factors 
decreases. Therefore, if we get no effects on the Iron 
Triangle, we can decide that the leverage of those 
considered risks could be left out. Finally, if the 
historical data evaluated by ANN and the weighted 
scores obtained by existing frameworks agree, then 
we can get more confident on our results. If, on the 
contrary, they do not (e.g., if the theoretical 
performance indicators and the posterior probability 
do not point out success or failure at the same time), 
then we have to carry out further investigations on 
risk elements. 

 

 
Figure 2: Risk factors that impact on the Iron triangle 

 
Our strategy proposes to use historical data to 

build a baseline to evaluate risk value and to 
automatically check whether the project is meeting 
the stated objectives or not. This baseline is actually 

generated by an ANN, whose output represents the 
posterior probability that can be used in the risk 
evaluation, as mentioned above. 

3.2 The Methodology 

In this section we describe the procedure that 
one should follow in order to get risk probabilities 
from historical data of the organization as claimed 
above. 

(1) Identifying Success Metrics: In Figure 3 we 
can see, by a lollipop notation, that for each project 
objective (O) a threshold function (TO) can be stated, 
which provides success and failure measures. Note 
that, TO, in this framework, is a function of many 
factors as mentioned in Section 3 and as explained 
below. We could also define metrics on software 
quality aspects such as Defect Rate, Effort per 
Defect, Number of  Changes per Release (TP1, TP2 
… TPn) . Therefore, with regard to Figure 3, TB could 
be a threshold function on Cost Performance Index 
(CPI) and TS a threshold function on Schedule 
Performance Index (SPI) or Productivity (ratio 
between SLOC and Effort).  

(2) Selecting Impacting Factors on the Success 
Metric: By impacting factor, we mean a variable 
that can affect the measurement of success metric 
(e.g., Domain, KSLOC, Complexity, and 
Developers’ Expertise). It is possible that we should 
take in account a big number of factors to get good 
results. But, the more this number grows, the more 
regression function is difficult to be estimated, if we 
use canonical methods. However, if we use ANN 
and Backpropagation for calculating regression 
functions, the number of factors does not influence 
the procedure.  

 

 
Figure 3: Using Computational Intelligence technique to 
evaluate project successes and failures 

 
Of course, the effects of this grow impact on the 
computation time, which could be very big. Hence, 
we are considering ANN as a mean to estimate non-
linear regression functions because we can obtain 



 

reliable estimates as automatically as possible, even 
if we have to consider a high number of impacting 
factors. Refer to (Bishop, 1995) and (Dreyfus, 2005) 
for more information about the use of ANN and 
Backpropagation as a mean to estimate non-linear 
regression functions. 

In order to understand which factors impact the 
considered project objective, we can use GQM 
approach (Basili, Caldiera, Rombach, 1994). Briefly, 
some possible questions are the following: 

• What can impact on the achievement of the 
project objective? (E.g., effort ÷ team size, 
team experience, used development tools). 

• What is the software context? (E.g., 
Domain, Category) 

• What is the development context? (E.g. 
knowledge of the software system, 
organization maturity, development 
flexibility, etc.) 

(3) Evaluating non-linear regression 
function: Now, we can build an ANN, for 
regression, as depicted in Figure 4, where input 
variables (independent variables) are the impacting 
factors said above, and the output (dependent 
variable) is the regression function estimate (on the 
success metric). 

Using this regression function, we can divide 
our past projects between the successful and failed 
ones. In particular, if a project got a threshold value 
better than the regression function it is considered as 
a success, if this value was worse than regression 
function, it is considered as a failure. Note that, all 
the projects can belong to just one of those classes.  
 

 
Figure 4: A Multi-layered Fed-forward Neural Network 
(Perceptron) for estimating regression functions. 
 
Figure 5 depicts a trivial case in two dimensions. We 
show such an example because it can be represented 
on a plane. In a real case (e.g., Figure 4), we could 
have many factors and just one success metric. It is 
important to note that, what we are actually 
calculating is an iperplane that splits the considered 
iperspace into two disjoined subsets. Class A is the 
success class and class B is the failed one. 

 (4) Rejecting non-relevant factors: It is 
possible prove (Dreyfus, 2005) that an ANN that has 
a minimal configuration in terms of input variables 
and internal parameters (hidden units) provides the 
best regression function estimate. This characteristic 
is called parsimony. Therefore, over this stage, we 
should reject factors that do not impact on the 
success metric as well as shrink the ANN internal 
configuration (hidden units) as much as possible. In 
order to carry out this task, we can apply many 
different techniques, such as Principal Component 
Analysis (Jollife, 1986), Wrapper for Feature Subset 
Selection (John, Kohavi, Pfleger, 1994), Cross-
validation or Leave-one-out (Dreyfus, 2005). 
 

 
Figure 5: Two-dimension regression function that splits 
the plane into two disjoined subsets. The dashed line is a 
threshold function. 
 

(5) Building a Two-Class Classification 
Network: So far we have turned our evaluation 
problem into a two-class discrimination problem. 
Now, we build a new network, for discrimination, as 
depicted in Figure 6. Such a system is able to 
classify all possible inputs as belonging to A or B.  
Actually, we can obtain much more from this kind 
of network. In fact, this is able to provide the 
posterior probability said above (Bishop, 1995). This 
is a very important result because, generally, Bayes’ 
theorem has just theoretical importance, but it 
cannot be practically applied. The problem is that we 
cannot know all terms of Equation (2) right side.  

In order to explain this problem let us consider 
Equation (2). Let Pr(A | x) be the posterior 
probability that  Bayes’ theorem provides, that is, 
the probability that the considered project belongs to 
A after its measurements have been executed.  

 

B)Pr(B)|(xpA)Pr(A)|(xp
A)Pr(A)|(xp

x)|Pr(A
XX

X
+

=  (2) 

 
Pr(A) and Pr(B) represent prior probability of 

class A and B respectively, pX(x | A) and pX(x | B) 
represent the  probability density that x occurs 
conditioned to class A or B, that is, the probability 
that x occurs with respect to A or B.  



 

The real problem is that we could, somehow, get 
estimates for P(A) and P(B), but we are not able to 
estimate pX(x | A) and pX(x | B), that is, Bayes’ 
Theorem is not useful for real classifications. Based 
on the mathematical proof reported in (Bishop, 
1995), if we use an ANN like the one that Figure 6 
depicts, we can directly obtain Pr (A | x) even if we 
cannot know the conditioned probabilities said 
above. 
 

 
 
Figure 6: An Artificial Neural Network for two-class 
discrimination problems. 
 

3.3 Prior Probability Estimate 

So far we have shown that if we use a particular 
ANN for two-class discrimination, we can directly 
calculate the posterior probability. Now we show 
how to estimate the prior probability, that is, the 
probability that a project can achieve a stated 
objective before the project starts. 

Let us observe that an individual input for the 
network in Figure 6 is a vector Vi, like Expression 
(3) shows, where, vi,1, vi,2, …. , vi,n  are the Vi‘s 
components and stand for the actual values that the 
network receives as an input. 
 

Vi = (vi,1, vi,2, …. , vi,n  ) (3) 
 

Vi is a generic vector that represents the ith 
project, and the second number (1 through n) 
represents the index of the input variables. With 
regards to Figure_6, for instance, the values in 
Expression (4) might be gathered. 

In order to obtain all the possible Vi instances 
that the network can receive in input (henceforth we 
are denoting those vectors by the term Input Set, 
writing V), we consider the Cartesian in Expression 
(5), where {vi}, is the set of all possible values that 
the ith component of V can get. As experimentalists, 
we often call {vi} with Factor and the values that it 

can get (vi,1, vi,2, …. , vi,n) with Levels or 
Treatments. 
 

vi,1 = {Val(SPI)} = {0.9}, 
vi,2 = {Val(Effort/TeamSize)} =  {1000/20} 

= {50} 
… 

 
 
(4) 

 
V = {v1} x {v2} x … x  {vi} x … x {vn } (5) 
 
Note that, in a software engineering environment 

the cardinality of this Input Set is a finite number, 
i.e. the size of {vi} is a finite number. For instance, 
even if SPI might get real (infinitive) values in [0, 
+∞[, actually, significant values for an organization 
could lie, for instance, inside [0.4, 1.5]. Moreover, 
significant approximations for those elements of the 
set [0.4, 1.5] are bounded to the first or second 
fractional, that is, finer grain values are not 
significant for the organization. For instance, we 
could make decision to have, in [0.4, 1.5[, just 11 
possible values (0.4, 0.5 … 1.4), i.e. 1 factor and 11 
treatments. A question arises naturally:  

Expression (6) shows how to calculate the 
cardinality of V. 

 
N = Card{v1} * Card{v2} * ... * Card{vn } (6) 
 
Note that, based on the definition of Input Set, V 

includes all the significant values for the 
organization. As experimentalists we generally call 
this set with Population. Now, in order to calculate 
the prior probability, we can feed the ANN with the 
whole Input Set V and obtain the cardinalities of 
both classes, A and B, Figure 7.  

 
 
 
 
 
 
 

 
 

 
Figure 7: Prior probability estimation by a two-class 
classification network. 
 

This happens because such a network is able to 
classify all possible significant inputs as belonging 
to A or B. In particular, the input vector belongs to 
A if and only if the ANN output lies inside [0.5, 
1.0]. If this output lies inside [0, 0.5[, then the 
considered input belong to B (Figure 7). 



 

Let us denote by A the subset of V composed of 
all the success vectors and by B the subset composed 
of all failure vectors, with {A} ∩ {B} = Φ and {A} 
∪ {B} = {V} (Figure 7).  

Said CA and CB the cardinalities of A and B, 
respectively, we can calculate the prior probabilities 
to be successful (to achieve a project objective) by 
Expressions (7). Overall, P(A) represents the 
probability that the successful class can occur. 
Hence, P(B) = 1 - P(A) is the probability to fail. 
Based on historical data, therefore, P(A) value 
represents the success probability that the 
organization succeeds in developing a project before 
the project starts. 

 
P(A) = Card(A)/Card(V) = CA/N 
 
P(B)  = CARD(B)/CARD(V) = CB/N = 1- P(A)  

 
(7) 

  
Note that, what we have been presented in this 

Section could be viewed as a methodology for 
estimating prior probability like Bootstrap and 
Jacknife (Efron, Tibshirani, 1993) estimate 
confidence intervals for population parameters. 

4 CASE STUDY 

Let us give, now, some demonstrations concerning 
the efficiency of the proposed approach by showing 
a typical application. As usual in Artificial Neural 
Network computation (Dreyfus, 2005), we consider 
an artificial set of observations, which we obtained 
by a complete randomization. This kind of data is 
supposed to be definitely not correlated; therefore, if 
we are able to obtain the expected results from this 
data set, we can show that this procedure is able to 
reach the claimed goal (efficiency). Basically, 
artificial data is more useful when one wants to 
measure the efficiency of procedures, whereas real 
data, which is supposed to be strongly correlated, is 
more helpful when one wishes to evaluate the 
effectiveness. At this stage, we verify efficiency. 

We have taken in account the simulation design 
explained below. Based on the proposed strategy 
(see Section 3.2), our project objective was to 
“Carry out the project on time”. We used the SPI as 
a metric for success. Higher SPI values (more or 
equal to 1) point out higher performances, and lower 
values (less than 1) point out lower performances. 
We picked 8 attributes to characterize a project: 
Schedule Performance Index (SPI), as already 
mentioned, Effort/TeamSize rate (ETS), Developer 
Experience (DVE), Analyst Experience (ANE), 

Advanced Development Tool Use (TOL), Software 
Kind (SWK), Software Category (SWC), Required 
Software Reliability (RSR). Table 2 shows all the 
values that each attribute could get. In particular, the 
cardinality of the Input Set was 600,000 elements. 
Firstly, we considered an ANN for regression.  
 

Table 2: Project attributed taken in consideration. 
 

 
 

We used a feedforward neural network 
(Rumelhart, Hilton, Williams, 1986), (Dreyfus, 
2005), made by three levels (one hidden layer), with 
7 input units (one for each attribute in Table 2, 
except SPI), 5 hidden units, and 1 output unit (SPI). 
The hidden unit activation functions were sigmoid 
(hyperbolic tangent) and the output had a linear 
function.  
 
Table 3: Project data (columns) and instructions (bottom) 
as provided to MatLab™ for simulation. 

 
 

 
 
As a training set of this regression network, we 
considered matrix p (Table 3) except the first row, 
which was used as a target set. In particular, each 
column of p represents a past project and each row 



 

represents all of the observations on the considered 
input variable. A completely randomized validation 
set (matrix tv, Table 3), was also considered. We 
trained the network by the optimization algorithm 
called Levenberg-Marquardt with early stopping on 
matrix tv (validation set) and mean square error 
(network performance) of 0.05. In order to increase 
the performance of this regression network, firstly, 
we carried out data normalization, that is, we 
transformed the training set in a set with mean 0 and 
deviation standard 1. Subsequently we performed 
Principal Component Analysis (impact rate of an 
input variable less than 0.05) (Jollife, 1986), as said 
above (Dreyfus, 2005). Note that, this kind of 
analysis reduced our input set from 7 to 6 input 
variables. Then, we exploited this regression 
network to split the training set into two subsets: the 
first one composed of all values of p that showed 
SPI values more than regression function (success) 
and the second one composed of all other values 
(failure). In particular, we obtained the following 
classification result, represented by vector t: 

 
t = [0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1];  
 

Where 0 means that the corresponding column in p 
belongs to the failed subset, and 1 means that the 
corresponding column in p belongs to the success 
subset. Therefore, for instance, the first three 
columns of p belong to the failed subset and the 
fourth one belongs to the success subset. Then, we 
built a classification network where the training set 
was the overall matrix p and the target set was t 
(Lanubile, Visaggio, 1997). The topology of this 
classification network was also of 5 hidden units of 
hyperbolic-tangent activation functions and an 
output unit of sigmoid logarithmic function. We also 
trained this second network, by the Levenberg-
Marquardt algorithm with early stopping on the 
overall matrix tv and mean square error of 0.05. The 
target vector for the validation set was tt = [0 1 0 0 0 
0 0 1 1 0]. Also for this second network, we carried 
out data normalization and Principal Component 
Analysis (rate = 0.05), which reduced our training 
set from 8 to 7 input variables. We made use of 
MatLab™ Neural Network Toolbox for training all 
of the considered networks and performing principal 
component analysis. In order to evaluate the 
performance of this second network, we used 
VMRE (the mean square error calculated on the 
validation set) and TMRE (the one calculated on the 
training set). We obtained the following 
performances: 
 

VMRE = 0.2204 
TMRE = 0.0304  (8) 

 
Notice that, although the validation set was obtained 
by a complete randomization (there should be no 
correlation between training set and validation set), 
we obtained acceptable results using, as well. 

Finally, we calculated the prior probability as 
said above. In particular, the cardinality of Input Set 
(V) was N = 600,000, hence, the overall Input Set 
was a matrix 8×600,000. We fed the network with 
those 600,000 vectors and obtained the classification 
map depicted in Figure 8, where x-axis represents 
the network output, and y-axis shows the number of 
occurrences for each considered output slot.  
 

Figure 8: Histogram obtained by an Artificial Neural for 
Classification. 
 
In Table 4, we reported a descriptive analysis of the 
obtained results. The calculation of the prior 
probability, that is, the success/failure probability 
before the project starts, is executed by Expression 
(9).  

 
P(A) = 366,078/600,000 = 0.61   
P(B) = 233,922/600,000 = 0.39   (9) 

 
As said in Section 3.3, we split the histogram in 
Figure 8 by considering OUTNET = 0.5, as a bound, 
where OUTNET stands for artificial neural network 
output. Note that, for each possible value that we 
provide to the classification network (typically the 
Input Set IS), we get a value that represents the 
posterior probability that the considered input 
belongs to class A. Prior and posterior probabilities 
thus calculated can be used, respectively, as a 
probability estimate in achieving project objective 
before the project starts (Analysis phase) and 
whenever a further project iteration has been carried 
out (Control phase).  
 



 

 
 

Table 4: Descriptive Analysis of results. 
 
 
 
In figure 9, we reported further representation of the 
classification.  
 

 
Figure 9: A geometrical interpretation of Bayes’ decision 
rule. 
 
The blue continuous line is the obtained probability 
density function. Concerning Figure 9, in a 
theoretical case, those two dashed tails (Figure 9) 
together with their continuances (blue) would 
represent the probability density functions that a 
generic element in the population belongs to A or B, 
respectively. Green area, below their intersection, is 
the theoretical misclassification area, that is, the one 
that Bayes’ theorem would address. Actually, we got 
the blue continuous line. Therefore, the actual 
misclassification area is the one that is bounded by 
Bl and Bh (grey and green area). Figure 9 also shows 
that, if we pick up OUTNET = 0.5 as a class 
boundary, we can correctly manage this 
misclassification area and obtain the expected 
results. 

5 METHODOLOGY 
IMPROVEMENT 

It is important noting that, performances of such a 
classification network could be improved by 
carrying out cross-validation (Dreyfus, 2005). 
Sometimes, real applications do not allow us to split 
training set into two subsets, the one for training and 
the other for validating. For this reason, in order to 
evaluate the generalization capability of such a 
network, we could apply leave-one-out technique. 
For more details about those optimization 
procedures, it is worth consulting (Dreyfus, 2005) 
and (Bishop, 2006), which provide sound 
mathematical motivations about the optimization of 
ANN(s) together with a number of practical 
implementation techniques. 

6 CONCLUSION AND FUTURE 
WORK 

This paper proposed a new model for risk 
evaluation, and an approach to build a statistical 
neural network-based framework for supporting risk 
management process. We showed that such a tool is 
able to provide suitable probability estimates 
exploiting both prior information (the one that is 
available before the project starts) and posterior 
information (the one that is available after events 
have occurred). Future work will be concerned with 
using data gathered by real applications for 
effectiveness validation of the proposed approach. 
Our prospective work should also investigate its 
effectiveness when it is used together with other 
frameworks in terms of reliability and effort 
improvement in carrying out risk management 
process. 
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