
Using Context Distance Measurement to Analyze Results across Studies

Daniela Cruzes1,2,
Manoel Mendonça1

1NUPERC/UNIFACS,
Salvador, BA- Brazil

2FEEC/UNICAMP
Campinas, SP- Brazil

{daniela, mgmn}
@unifacs.br

Victor Basili
Dept. of Computer
Science, University

of Maryland,
College Park, MD,

20742, USA
basili@cs.umd.edu

Forrest Shull
Fraunhofer Center -

Maryland,
4321 Hartwick Road,
College Park, MD,

20740, USA
fshull@fc-md.umd.edu

Mario Jino
FEEC/UNICAMP
 Caixa Postal 6101

13083-970
Campinas (SP),

Brazil
jino@dca.fee.unicam

p.br

Abstract

Providing robust decision support for software

engineering (SE) requires the collection of data across
multiple contexts so that one can begin to elicit the
context variables that can influence the results of
applying a technology. However, the task of comparing
contexts is complex due to the large number of
variables involved. This works extends a previous one
in which we proposed a practical and rigorous process
for identifying evidence and context information from
SE papers. The current work proposes a specific
template to collect context information from SE papers
and an interactive approach to compare context
information about these studies. It uses visualization
and clustering algorithms to help the exploration of
similarities and differences among empirical studies.
This paper presents this approach and a feasibility
study in which the approach is applied to cluster a set
of papers that were independently grouped by experts.

1. Introduction

Empirical studies have long been used to provide

confidence in assertions about what is true and not true
in the software engineering domain. By providing
rigorous observation of the effects of a development
technique under specific conditions, empirical studies
allow for analyses of the conditions under which
practices yield similar effects on a project’s cost,
quality, or schedule.

The ability to build up rigorous abstractions of
information about practices not only provides
confidence in individual assertions about specific
techniques, but also is an important capability in
providing an engineering basis for software
development. This capability is an essential part of

approaches like the Experience Factory [4] or the more
recently suggested Evidence-Based Software
Engineering [14].

Providing robust decision support for software
development – i.e. making a statement about what
development practices can help achieve goals related to
cost, quality, or schedule for a given environment –
requires the collection of data across multiple contexts
so that one can begin to elicit these variables.
However, the task of comparing contexts is a complex
one. The set of potential context variables is quite
large, including issues such as team size; team
experience; lifecycle model; product size and
complexity; automated support; organizational culture;
application domain; among several others.

Due to the large number of possible variations from
one development environment to another, we have
argued [1] that this process of knowledge building
about practices must therefore be based on families of
related studies, designed so that a range of context
variations can be explored. Although this approach is
logically appropriate, it does pose some practical
problems. First, it is not always clear a priori what the
important context variables are, meaning that important
sources of variation may go unmeasured. Second,
because there are so many potential context variables,
we often cannot design experiments or even identify
environments which offer coverage of all the variables.

In other words, to design an effective family of
studies, multiple experimenters, without having a clear
concept of all the contributing factors, must agree a
priori on a set of variables to collect and identify
environments that cover a fairly complete set of
variables, so that all studies are comparable.

An alternative approach is to abstract information
across several previously run studies. One method for
this is to perform a literature search, reviewing the

relevant literature in a rigorous way and constructing a
textual summary of the evidence related to a given
issue. If the sources do not agree then it is the
reviewer’s responsibility to construct a fair summary of
the evidence on both sides of the issue [14]. A key
issue in supporting these systematic reviews is
therefore to have a robust approach to identify and
compare the studies’ contexts.

In this paper, we extend the work from an earlier
paper [18], in which we proposed a practical and
rigorous process for identifying possible hypotheses
and context information from papers. In that work, we
observed that to make this approach work, and build a
suitably large and varied dataset, we had to be able to
analyze information about many relevant variables and
the effect of practices from several studies that were
not a priori designed to fit together. In effect, this
required the ability to simulate a family structure over
independent studies that were not explicitly designed to
build directly on one another. For this we defined a
specific template to collect context information from
the papers. Since then, we have improved this
approach. We have better formalized the context
information data collection process [6] and we have
developed an interactive approach to compare context
information across studies. This paper focuses on this
last issue. It presents an approach that uses
visualization and clustering algorithms to help the
exploration of similarities and differences among
context descriptions of empirical studies.

2. The Analysis Process

Our methodology has the goal of building a set of
conclusions about contexts of experimental papers
when analyzed together to get insights about software
development practices contained in multiple studies,
which need not have been designed specifically to
produce related data.

As input, the methodology requires a focus of study,
i.e. a (set of) software engineering phenomenon(a)
about which information is needed. The process
consists of three main steps (Figure 1), starting with a
selection of papers of interest, the extraction of
information from these papers and finally the analysis
and interpretation of the contexts.

This process is iterative, in that the results of a
given step may convince the researcher to go back to a
previous step and redo the associated activities. For
example, if the researcher is not satisfied with the
information extracted from a set of papers, he or she
may use these results to suggest new areas to search in
order to select more papers for analysis.

Figure 1 - High level analysis process

The output of the process is a set of conclusions and
new knowledge that arises from the process. As a
secondary output the process creates a structured and
searchable repository of evidence and context
information. The advantage of the creation of the
Structured Base is that it can be reused. Other
researchers can evolve and reuse it according to new
research goals as they arise.

The first step of the methodology, selecting relevant
papers, is performed much the same as it would be in
any method, no matter how formal, and is thus not
discussed here at length. Defining the problem of
course depends largely on the interests of the
researcher. The problem definition is also related to the
amount of knowledge already accumulated in an area.
For example, as more evidence is accumulated we can
move from studying how failure-prone software
products are to which types of failures are most
common; to which types of products display common
failure profiles; to which context variables make those
failure types more likely to occur. This allows us to
evolve our knowledge into more useful models over
time. Selecting papers that can be searched for
evidence in the focus area is also conducted largely in
the same way regardless of the individual process
being followed. To be suitable, a paper must provide
some empirical information or experience-based
hypotheses relating to the focus of study.

The remaining steps will be performed in a quite
specific way in this methodology. Part of Step 2,
specifically the extraction of evidence, was described
in detail elsewhere [18]. In this paper we focus on the
extraction of the context information. Then we present
a context comparison approach for the reported studies
that can be used as part of Step 3, Analysis and
Interpretation.

Selection
of Papers

Analysis and
Interpretation

Extraction of
Information

The researcher
reviews each

paper, looking for
Context

Descriptions

Analysis of
the contexts
using data

mining.

Selection
of Papers
to analyze

3. Extracting Context Information from
Papers

In the Information Extraction step, the researcher
must review each paper, looking for experimental
evidence on the subject of interest and potential
context descriptions described in the text. While
reviewing the papers selected in the previous step, the
researcher should highlight the important information
(so that there can be some traceability to the original
source if questions arise later). After highlighting the
information, it is important that key details are
transferred to data entry forms to create the structured
base for analysis. Up to now, we are using forms
implemented in Excel; although in future work we
intend to create a tool to support the activities of the
process.

As said before, this paper will focus specifically on
context descriptions. Context descriptions are the
details concerning the environment from which the
measures were drawn. The context descriptions are
important for comprehensibility of measures and
influencing factors for the focus of study.

Our approach proposes a template (Figure 2) to
collect context information. At least one template is
filled for each paper, possibly more, if the paper
describes data that was collected from several studies.
As different studies report different metrics of interest
to them, not every paper will have all of the desired
context information. However, the template should be
filled out as completely as possible. Although there are
not mandatory attributes, missing values will be
accounted for during the analysis, as they limit the
strength of the conclusions that can be drawn. Besides
that the analyst can review the template to insert new
fields, for example: threats to validity.

This list of attributes on the template was adapted
partially from Sjøberg et al. [19]. The attributes of the
context description template are:
1) Paper Title: The title of the paper from which the

reader is extracting the information.
2) Type of the Study: This field classifies the study

as an Experiment, a Case Study or a Survey [22].
3) Topic: This field uses the IEEE keywords in the

Computer.org website to denote the topic of study.
4) Goals: These fields state the goals for the study

described in the paper, using the GQM goal
template [3].

5) Variables: These fields record all variables related
to the study. A variable is a concept or construct
that can vary or have more than one value. The
researcher might then be interested in knowing how
certain variables are related to each other. There are
two basic kinds of variables: dependent and

independent [22]. The following characteristics
must be gathered for each dependent and
independent variable in the study: Name, Type
(independent, dependent or unclear), Possible
Values, Data Collection Procedure (explains the
method used to measure the variable, including for
example what instrumentation and tool support
were used).

6) Subjects: This field describes the subjects of the
study by category (undergraduate students,
graduate students, professionals, scientists, other or
unknown) and number.

7) Instrumentation: These fields describe data
gathering or data generation tools used in the
experiment.

8) Task: These fields categorize the tasks done by the
subjects, as reported in the paper; duration of the
task(s); and work mode (team or individual).

9) Work Products: These fields describes the
working products used in the tasks, including:
Name, Type (Requirements; Architecture/design;
Code; Change Reports; Error Reports; Other),
Origin (Constructed, Commercial, Student Project,
Open Source; Other, Unclear), Application Domain
(E.g. Text Processing, Flight Simulation, etc), Size
(using the metric specified by the author.),
Representation Paradigm (E.g. Object Oriented,
Imperative, Structured, etc.) and Language (E.g.
plain English, Fortran, Pascal, C++, Java).

10) Replication: This field indicates whether this study
is a replication of another one.

11) Other: This fields records any other information
that is important for understanding the model,
metric, techniques, or the empirical study itself
(e.g., missing definitions, environmental
characteristics, or information about process
conformance).
Besides the context, we collect the following

information for each paper:
1) The paper reports on a study done on pilot or

production projects? The study involved one or
several projects? This information helps to evaluate
the applicability of the results;

2) How well the results were measured? This
information helps on the assessment of the rigor on
which the study was run.

3) How the experience was reported (journal papers,
conferences, TRs)? It measures the acceptability of
the results in a specific community;

4) The person who reported the evidence was directly
involved with the study? It assesses the familiarity
of the author with the results.

Figure 2 – Information Gathering Template

4. Analysis and Interpretation

The analysis and interpretation phase aims to analyze
the study contexts in order to explore similarities and
differences among them. For this, we propose the steps
shown on Figure 3.

Figure 3 – Context Analysis Process

4.1. Ensuring Semantic Consistency

The first step aims to harmonize the context
descriptions to ensure the consistence of the terms and
concepts used among the forms. For that one needs to
certify that conceptual mismatches problems are
solved. There are three types of mismatches we foresee
[20].
• Scope Mismatches: Occurs when there is a

difference in the way a domain is interpreted
(conceptualized), which results in different

concepts or different relations between those
concepts. In this type of mismatch, two results
seem to represent the same concept, but do not
have exactly the same meaning (although there may
be some overlap). For example: Two studies may
refer to the “cost” of a practice, although one may
include only the cost of the effort to apply the
practice, while the other may include the start-up
costs as well (e.g. sending personnel for training).

• Model coverage and granularity: This type of
mismatch describes problems that can arise in
trying to combine results when it is unclear to what
part of the domain those results are applicable. For
example, a study may make claims about a large
class of software development projects while only
having evidence concerning one or two specific
instances of such projects.

• Explication Mismatches: An explication mismatch
is a difference in the way the conceptualization is
specified. This can manifest itself in mismatches in
definitions, mismatches in terms and combinations
of both. There are three types:

o Synonymous terms: Synonyms, in this context, are
different terms that refer to the same concept. A
trivial example is the use of the term “strength” in
one study and the term “cohesion” in another, to
refer to the same concept (that is, the amount of
interaction within components of a system).

o Homonym terms: This type of mismatch occurs
when the meaning of a term is different in different
contexts. For example, the term “interface defects”
can have different interpretations, depending on the
context: It can refer to a defect in the Human-
Computer Interface or a defect in the interfaces
between two software components.

o Encoding: Values in the studies may be encoded in
different formats. For example, a numbers of lines
of code may be represented as “KLOC” or as
“LOC” or “SLOC,” etc.

4.2. Analyzing Contexts

Once the researcher solved the mismatches
problems, the analysis can be conducted. The
researcher should analyze the distance, proximity,
affinity and confidence among the contexts on which
the results from the papers were generated. There are
many approaches that can be used to perform this
activity; we propose an approach in which we use a
hierarchical clustering algorithm to organize the study
contexts.

Ensure
Semantic

Consistence

Analyze
Contexts

Draw
Conclusions

Before applying any automated approach one has to
organize and weight the attributes of concern for the
analysis of experimental contexts. As shown on Figure
4, we organize the attribute as follows:

1) Systematic: characteristics of the study that may
have influence on the results and may be
controlled by experimenters. They can be related
to:
a. Theory – concerns the theory used to design

the experiment. We suggest the following
attributes: type of study, topic and goals.

b. Experimental Condition – differences that can
come from instrumentation of environment
conditions

c. Human – differences on the results can come
from the different skills of the experimenters
while running the experiment, or of the person
who is reporting the results.

2) Opportunistic: characteristics of the study that
may have influence on the results but were not
controlled by experimenters or not reported on
the papers.

Based on these categories the researcher can weight
the attributes collected using the information gathering
template [10]. That can be done by: 1) directly raising
the attribute importance for the clustering algorithm; 2)
submitting to the algorithm only the attributes of
interest; 3) creating new columns for each possible
value of multi-valued attributes of interest.

These weighted attribute are used to define a
composed distance measure to compare the studies
experimental contexts. For that, our approach uses an

interactive clustering approach in which hierarchical
clustering is combined with visualization, to identify
how different study contexts compare to each other.
Section 5 will explain in detail how this is done.

4.3. Drawing Conclusions

The last step of the analysis process consists on
drawing conclusions based on the patterns observed,
create new hypotheses, or refute or confirm initial
hypothesis or folklore. This is done by expert analysis
of the evidence extracted from the papers and the
analysis of the context in which this evidence was
gathered [18]. In this manner, the clustering of studies
by experimental context discussed in the previous
section, and detailed in the next one, gives the analyst a
systematic way to reason why study results agree with
or contradict one another. This creates a robust basis
for decision making support about a studied software
engineering method, tool or technique.

5. Clustering Studies

Clustering is a division of data into groups of
similar objects. A clustering algorithm attempts to find
natural groups of components (or data) based on some
similarity. To determine cluster membership, most
algorithms evaluate the distance between a point and
the cluster centroids. Cluster centroids represent the
mathematical center of items in a cluster. The output
from a clustering algorithm is basically a statistical

Distance
Measures

Opportunistic

Systematic

Theoretic

Experimental
Condition

Human

Environmental

Instrumental

WhoReportedResults

Context Description's Degree of Details

Type of the Study
Topic
Goals

Variables
Subjects
Instrumentation
Task
Work Products

HowPracticewasApplied
HowResultsWereMeasured
HowExperienceWasReported

Figure 4 – Conceptual Distance Tree for Context Attributes

description of the cluster centroids with the number of
components in each cluster.

Each cluster consists of objects that are similar
among themselves and dissimilar to objects of other
groups. The overall goal of the clustering is to allow
many data objects to be represented by relatively few
clusters, which means that the level of granularity is an
important factor in the usefulness of the model.
Representing data by fewer clusters necessarily loses
certain fine details, but achieves simplification.

One of the requirements of good clustering is the
ability to determine the number of natural clusters in
the data set. In fact many clustering algorithms ask
users to specify the number of clusters that they want
to generate [10]. This is not an option in our scenario,
in which the researchers want to interactively explore
what is the best grouping for a set of studies, so as to
produce clusters of studies run in meaningfully similar
contexts. Unnecessary merges or splits need to be
avoided, as they produce unnatural clusters. The
solution to this problem is to use the hierarchical
agglomerative clustering (HAC) algorithms [11] that
allow users to control parameters to determine the
proper number of clusters. HAC algorithms generate a
hierarchical structure of clusters instead of sets of
clusters. It has the disadvantage of requiring the
calculation of the distance between all pairs of objects
of the analyzed data set, O (N2) of storage space.
However, this is not a problem in our domain in which
we have at most a few tens of studies to compare.

Figure 5 - Hierarchical clustering and a dendrogram [11]

Hierarchical clustering results are usually
represented as dendrogram. A dendrogram is a binary
tree, in which each data item corresponds to a terminal
node of the binary tree and the distance from the root
to a sub-tree indicates the similarity of the sub-tree –
highly similar nodes or sub-trees have joining points
that are farther from the root. Figure 5 shows the
clustering of five data points (A, B, C, D, and E) on a
2D plane. The dendrogram (a binary tree) on the right
side shows the clustering result by using Single-
linkage and Euclidean distance [10]. The height of
each sub-tree represents the distance between the two

children. For example, the distance between A and D is
the smallest among all possible pairs, they are merged
together as a sub-tree and the height of the sub-tree is
very short because they are similar in terms of the
distance measure. On the other hand, B and E are not
so close and the height of the corresponding sub-tree is
taller because of this.

The existence of a good interaction and clustering
visualization interface is an important requirement of
our approach. In order to better learn and understand
how the studies compare to each other, the analyst
should be able interpret how the studies are being
grouped by their context information. In our work, we
have used a tool that produces interactive visualization
and exploration of hierarchical clustering, the
Hierarchical Clustering Explorer (HCE) [11].

The HCE uses dynamic queries and coordination
among multiple views to produce visualization of the
hierarchical clusters. Users begin by performing a
hierarchical clustering and build a dendrogram with a
color mosaic display underneath (see Figure 6).

The color mosaic displays a graphical
representation of the data set color-coding each value
in the table according to a color mapping scheme. The
records are transposed into the color map; they are
shown as vertical lines color-coded in accordance to
each of its attribute values. When researchers want to
identify hot spots and understand the distribution of
data, they can examine the color mosaic.

The dendrogram is displayed with a color mosaic at
its leaves so that the analyst can better interpret the
data. For this reason, the arrangement of rows and
columns of the color mosaic display changes according
to the clustering result. By default, in HCE, a high
attribute value has a bright red color and a low value
has bright green color. Middle values have a black
color.

With a widget control, users can interactively adjust
a minimum similarity parameter to find the most
natural number of clusters. They can also see how the
hierarchical clusters are presented in other familiar and
easy-to-understand views such as 1-dimensional
histograms and 2-dimensional scatter plots. The
coordination between the overview color mosaic and
those views is bi-directional, that is, users can select a
group of items in a view and see where they fall in
other views.

The HAC algorithm implemented on HCE [11] is
summarized as follows. Let's assume that we want to
cluster n data items, and we have n*(n-1)/2 similarity
(or distance) values between every possible pair of n
data items:

Figure 6 – Usage of the minimum similarity bar (MSB) [11)

1) Initially, each data item occupies a cluster by
itself. So there are n clusters at the beginning.

2) Find one pair of clusters whose similarity value
is the highest, and make the pair a new cluster.

3) Update the similarity values between the new
cluster and the remaining clusters.

4) Steps 2 and 3 are applied n-1 times before there
remains only one cluster of size n.

There are many possible choices in updating the
similarity values in step 3. Among them, most common
ones are complete-linkage, average-linkage, and
single-linkage. Complete-linkage sets the similarity
values between the new cluster and the remaining
clusters to be the minimum of similarities between
each member of the new cluster and the rest. Average-
linkage uses average similarity value as a new
similarity values. Single-linkage takes the maximum.

One of the key components in HCE is the minimum
similarity bar. By dragging down the bar whose y-
coordinate determines the minimum similarity
threshold, users can filter out the less similar elements.
Using this Minimum Similarity Bar, or MSB, users can
easily find the clusters of elements that are tight
enough to satisfy a given threshold. The algorithm
used to calculate the MSB is explained in detail in
reference [11].

Figure 6 shows the process of cluster discovery
using the minimum similarity bar, from now on called
MSB. The y coordinate of the bar determines the
minimum similarity value. Users can drag down the
bar to filter out items that are distant from a cluster.
The minimum similarity values changed from 0.36 to
0.764 in this example to separate 1 large cluster into 13
small clusters.

To prevent users from losing global context during
dynamic filtering, the entire dendrogram structure is
shown on the background, and users can highlight the
position of a cluster in the original data set by just
clicking on the cluster.

Using the approach discussed in Section 4 and on
the clustering procedures presented in this Section, the
analyst has the tools to analyze the context from many
papers and draw conclusions about the results found.

6. Applying Clustering on Testing Papers

We ran a feasibility study, in order to evaluate how
the information is gathered and analyzed using our
approach. Our strategy was to cluster some papers
following our approach and to compare it to expert
manual clustering done independently, the goal being
to check if our approach led to the same grouping done
independently by experts.

We choose the work by Juristo, Moreno and Vegas
that performs a review of 25 years of Testing
Technique Experiments [12] as our basis of
comparison. This paper, which we refer to as the TTE
paper, analyzes the maturity level of the knowledge
about testing techniques by examining existing
empirical studies about these techniques. The work
analyzed 24 studies, and produced a testing technique
knowledge classification.

In our study, we selected 11 of the 24 papers from
the TTE paper. The criterion for choosing them was to
choose the papers related to functional, control-flow,
data-flow and mutation testing techniques, following
the classification scheme of Juristo et al. This criterion
was used for the reason that our previous knowledge
on the domain of these techniques could help on the
analysis of the papers. Table 1 lists the chosen papers
and their original grouping in the TTE paper.

Table 1 Selected papers and their original grouping

Group Studies
Weyuker [21] Group 1
Bieman & Schultz [5]
Frankl & Weiss [7]
Hutchins [9]

Group 2

Frankl & Iakounenko [8]
Myers [15]
Basili & Selby [2]
Kamsties & Lott [13]

Group 3

Wood et al. [23]
Offut & Lee [16] Group 4
Offut et al [17]

After selecting the papers we executed the
following steps:

1) Using the proposed template, we extracted the
context information from each one of the
selected papers.

2) We interactively applied the clustering
approach on the gathered data.

3) We compared our results to the original
grouping.

As defined in our approach, we used the following
attributes to derive a data file describing the contexts of
the studies reported in the 11 papers analyzed:

• Type of the Study;
• Description of the Topic;
• Object of Study;
• Subjects Category (students, professionals, etc);
• Subjects Work Mode (individual, team, etc);
• Task Category (create, analyze, plan, etc)
• Work Products (code, requirements, design, etc);
• Instrument Origin;
• The name of each dependent and independent

variable after semantic consistency check;
• The testing technique studied on the paper

(Functional, Code Reading, Structural, etc).
In the list above, we must notice two particularities.

The first is that each study involves several dependent
and independent variables. The second is that the
number and type of variables vary from study to study.
In order to weight this in our clustering approach, we
created a record for each variable of each study on our
data file. This way, a study that involved five variables,
for example, yielded five records in the data file.

Another important issue is the weighting of the
testing technique attribute. This attribute defines the
study treatments, so one has to consider it as the most
important attribute to group the studies. The
assumption was confirmed by interviews that we
conducted with the TTE paper authors last year. To
factor this into the data file, we created a column for
each technique involved in the studies.

In both cases discussed above, we are effectively
strengthening the weighting given to the context
attributes categorized as “instrumental” on the
conceptual distance tree shown in Figure 4. It is
important to remark that one could also have asked the
algorithm to weight other attributes more strongly on
the clustering process based on the Theoretical,
Experimental or Human context attributes.

The input file was opened in the HCE tool and we
ran the algorithm of Hierarchical Clustering using the
Pearson Correlation Coefficient as the distance
measure. The minimum similarity distance starts with
50%. This, in our case, yielded two main clusters. One
included Group 1 and the other included Groups 2, 3
and 4 of the TTE paper (see Table 1). In order to get
more groups, we moved the MSB, raising the internal
similarity measure within the clusters. We obtained
four groups for a MSB between 56% and 60%. Figure
7 shows how the HCE tool uses the dendrogram colors
to highlight them.

Looking at Figure 7, one can see that there is only
one paper that was classified in a different way than
the TTE paper: the paper by Myers was categorized by
us as in Group 4 while the TTE paper placed it in
Group 3, as shown in Table 1. We discussed this
anomaly with the authors of the TTE paper, who said
that this paper was later excluded from their analysis
because of a lack of some details of the context
information, especially on the details of the studied
techniques. This is a good result as the other 10 papers
were classified correctly.

Some interesting results were obtained at different
MSB values. For an MSB greater than 60.5%, for
example, we obtained 5 clusters. Group 1, with papers
by Bieman & Schultz and Weyuker, was split into two
(see Table 1). Looking at the data, we realized that
both papers have a technique in common, but
Weyuker’s study included three other techniques that
were not covered by Bieman & Schultz.

Next, we investigated other distance measures and
obtained similar results. We believe that the grouping
of studies will vary little with the distance metrics used
(Manhattan, Euclidean, and Pearson).

Another important point to mention is that the color
mosaic is very useful to visualize the similarities and
differences among contexts. For example, Figure 7
shows that this set of studies is very uniform in many
of the context attributes.

The feasibility study illustrated the usefulness of
using our approach to quickly understand how a
sizeable amount of studies compare to each other. We
want to emphasize the importance of using a good
interactive visualization tool for this task. As an
example, consider a sample of the data file (reduced
both in number of lines and columns) shown in Table
2. Looking at it, one can realize how difficult it is to
cluster the studies manually and see a relation among
the studies even when only a few attributes are used.

Figure 7 - HCE Tool - Clustering Context Based on Various Attributes

Table 2 Techniques studied on each paper

7. Conclusions

In order to provide useful and accurate decision
support about software development practices and their
effects on projects, one usually needs to analyze results
from several empirical studies that cover different
development environments. Due to the wide range of
influencing factors, and the fact that one cannot yet
confidently specify them all ahead of time, it is
desirable to have an approach from which observations
about experimental results and influencing factors can
be built bottom up. Building such a dataset would be
infeasible if we cannot make use of existing data, even
data that was never designed to contribute to a larger
empirical base.

We have been working on a practical process to

gather and combine empirical evidence from papers.
Having looked at a collection of datasets and
abstracted up conclusions on several specific topics,
we have shown elsewhere that our methodology can
produce useful and feasible results, especially when it
is compared to the results output from the more
manual, expert-based approach [18]. However, a
problem we frequently find is how to compare studies
that report conflicting results among themselves.

This paper proposes an approach to group studies
according to their context information, so that
conflicting and corroborating evidence can be better
understood according to the context in which they were
obtained. The paper presents evidence that the use of a
systematic approach to gather context information
combined with clustering techniques can group studies

S tu d y F u nc tio n a l S truc tura l
C o d e

R e a d in g N o n e
A ll-c -
use s

A ll-p-
u se s

A ll-
u se s

A ll-d u-
p a th s

A ll-
Ed g e s

S e nte nce
C o ve ra g e M uta tion

B a s ili X X X
W e yu ke r X X X X
B ie m a n X
F ra n k lW eiss X X X
H u tch in s X X X
F ra n k l_ Ia k X X X
M ye rs X X X
K a m s tie s_ L ott X X X
W o od X X X
O ffu t a n d L ee X
O ffu t e t a l X

in the same way as an expert would. This opens up
several interesting possibilities such as using
interactive clustering to evaluate the generality of
evidences across studies, and to use cluster centroids to
identify the typical context for a set of conflicting
evidences.

It is important to point out that the approach
presented here can be used together with any other
methods of combining results from studies. It can be
helpful to analyze data collected for systematic reviews
for instance.

As future work, we intend to use our approach in
bigger contexts, analyzing studies on the context of
large systematic reviews. Other than this, we will
investigate the cost-effectiveness of the use of the
algorithm in early stages of systematic reviews.

8. References

[1] Basili V.R., Shull, F. and Lanubile, F. Building
knowledge through families of experiments, IEEE Trans. on
Software Engineering, 25 (4), 456–473, 1999.

[2] Basili, V. and Selby, R. Comparing the Effectiveness of
Software Testing Strategies, IEEE Trans. on Software
Engineering, 13 (12), pp 1278-1296, December, 1987.

[3] Basili, V.R., Caldiera G., and Rombach H.D. Goal
Question Metric Approach, Encyclopedia of Software
Engineering, pp. 528-532, John Wiley & Sons, Inc., 1994.

[4] Basili, V.R., Caldiera G., and Rombach H.D. The
experience factory, Encyclopedia of Software Engineering, 2,
pp. 469–476, 1994.

[5] Bieman, J. M., and Schultz, J. L. An empirical
evaluation (and specification) of the all-du-paths testing
criterion. IEE/BCS Software Engineering Journal, 7(1):43-
51, Jan. 1992.

[6] Cruzes D., Mendonca, M., Basili, V., Shull, F. and Jino,
M.; Extracting Information from Experimental Software
Engineering Papers, Technical Report 2007-2, Nuperc,
Salvador-University – Unifacs, 2007.

[7] Frankl, P. G., and Weiss, S. N. An experimental
comparison of the effectiveness of branch testing and data
flow testing. IEEE Transactions on Software Engineering,
vol.19, no.8, pp. 774-787, Aug., 1993.

[8] Frankl, P., and Iakounenko, O. Further empirical studies
of test effectiveness. SIGSOFT-FSE:1998. Lake Buena
Vista, Florida, USA, 153–162, 1998.

[9] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T.
Experiments on the effectiveness of data-flow and control-
flow-based test adequacy criteria. Proceedings of the 16th
ICSE. Sorrento, Italy, 191–200, 1994.

[10] Jain, A. K., Murty, M. N., and Flynn, P. J. Data
clustering: a review. ACM Computing Surveys, 31(3):264–
323, 1999.

[11] Jinwook S. Information Visualization Design for
Multidimensional Data: Integrating the Rank-By-Feature
Framework with Hierarchical Clustering. Ph.D. Dissertation,
Dept. of Computer Science, Univ. of Maryland, Dec. 2005.

[12] Juristo N., Moreno A. M., Vegas S. Reviewing 25 years
of Testing Technique Experiments. Empirical Software
Engineering Journal, v.9, pp 7-44, 2004.

[13] Kamsties, E., and Lott, C. M. An empirical evaluation
of three defect-detection techniques. Proceedings of the Fifth
ESEC. Sitges, Spain, 1995.

[14] Kitchenham, B., Dyba, T., Jørgensen, M.; Evidence-
based software engineering, Proceedings of the 26th ICSE
2004, Edinburgh, Scotland, pp. 273–281, 2004.

[15] Myers, G. J. A controlled experiment in program testing
and code walkthroughs/inspections. Communications of the
ACM. 21(9): 760–768, 1978.

[16] Offut, A. J., and Lee, S. D. An empirical evaluation of
weak mutation. IEEE TSE 20(5): 337–344, 1994.

[17] Offut, A. J., Lee, A., Rothermel, G., Untch, R. H., and
Zapf, C. 1996. An experimental determination of sufficient
mutant operators. ACM Transactions on Software
Engineering and Methodology 5(2): 99–118.

[18] Shull, F., Cruzes, D., Basili, V. and Mendonca, M.;
“Simulating Families of Studies to Build Confidence in
Defect Hypotheses,” Journal of Information and Software
Technology, vol. 47(15): 1019-1032, December, 2005.

[19] Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes,
V.B., Karahasanović, A., Liborg N.K. and Rekdal, A.C. A
survey of controlled experiments in software engineering.
IEEE TSE, 31 (9), pp 733-753, Sept. 2005.

[20] Visser, R.S. Pepijn, Jones, M. Dean, T.J.M. Bench-
Capon, M.J. R. Shave, An analysis of ontological
mismatches: heterogeneity versus interoperability, AAAI
1997 Spring Symposium on Ontological Engineering,
Stanford, USA 1997.

[21] Weyuker, E. J. 1990. The cost of data flow testing: An
empirical study. IEEE Trans. on Software Engineering 16
(2), pp 121-128, 1990.

[22] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.;
Regnell, B.; Wesslén, A. Experimentation in Software
Engineering: An Introduction. The Kluwer, International
Series in Software Engineering, 2000.

[23] Wood, M., Roper, M., Brooks, A., and Miller, J.
Comparing and combining software defect detection
techniques: A replicated empirical study. Proceedings of the
6th ESEC. Zurich, Switzerland, 1997.

9. Acknowledgements

The work presented has been partly funded by
CNPq (the Brazilian National Research Council).

Special thanks go to Professors Natalia Juristo and
Sira Vegas for many valuable insights on the work.

