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Cost estimation is a critical issue for software organizations. Good estimates can help us make more 
informed decisions (controlling and planning software risks), if they are reliable (correct) and valid 
(stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward 
neural networks – called Curvilinear component analysis) to log-linear regression functions calibrated 
with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component 
analysis can improve the estimation model accuracy by turning the initial input variables into an 
equivalent and more compact representation. We show that, the models obtained by applying Curvilinear 
component analysis are more parsimonious, correct, and reliable.  

Prediction models, Curvilinear Component Analysis, Software Cost Estimation, Software Economics, Feature Reduction, Neural 
Networks. 

1 INTRODUCTION 

Cost estimation is a critical issue for software organizations. The need is to get the best estimate when planning a 
new project. Improving the prediction capability of software organizations is a way of improving their competitive 
advantage. Prediction is a major task when trying to better manage resources, mitigate the project risk, and deliver 
products on time, on budget and with the required features and functions. This is our motivation for proposing 
estimation improvement techniques for software organizations that need to increase their competitive advantage.  

Estimates can help us make decisions that are more informed if, and only if, we can rely on the results to be 
accurate. We call a result accurate if it is reliable (correct) and valid (stable). Better estimates can be obtained by 
improving the estimation model. An estimation model is composed of some input variables (explanatory or 
independent variables), one output variable (the estimate or the dependent variable), and a function that 
calculates the outputs from the inputs. There are many ways of improving the estimates. For instance, we can 
choose: (1) a better function (e.g., the one that describes more appropriately the relationship between inputs and 
output), and/or (2) more explanatory input variables. In the former case, we can choose the type of function, e.g., 
linear or logarithmic that fits best. In the latter, the real problem is that, once we have selected the complete input 
variable set, we need to remove the redundancy that negatively affects the performance of the estimation model 
(e.g., irrelevant variables). In fact, a more parsimonious model (with fewer parameters) is preferable to one with 
more parameters because the former is able to provide better estimates with the same number of observations 
[13]. This task can be performed in many ways, e.g., shrinking the input set into an equivalent pattern or removing 
irrelevant variables (e.g., stepwise methods [9]). In this work, we use Curvilinear Component Analysis (CCA) as a 
input shrinkage technique, which produces (shrunken) data sets where we apply ordinary least squares (OLS) 
[14]. We also define an application strategy to figure out whether CCA is worth to use or not. This core of this 
strategy is based on auto-associative artificial neural networks [3, pp. 314-319] that, to the best of our knowledge, 
have never been applied in the context of software estimation [11] even though its applicability is well known in the 
image-processing field. In particular, we apply CCA to a COCOMO 81 data set [12] and OLS functions. Even 
though we apply the CCA to the COCOMO 81 data set, the proposed methodology can be applied to any 
estimation model that uses past observations for prediction such as machine learning, neural networks, and 
ordinary least squares functions, and to any quantity of interest (e.g., effort, fault proneness). 

This paper is based on the research hypothesis that CCA can improve software cost estimation accuracy. We 
argue that a methodology improves accuracy if improves the correctness and the variability does not worsen (i.e., 
variability is the same or better). It may happen that, if the correctness (bias) improves, the variability (spread) gets 
worse. So, we cannot argue that the accuracy is improved. For this reason, we investigate both the variability and 
the correctness of the estimation model. In order to investigate the research hypothesis we:  

(1) utilized two summary statistics as measures of bias and spread, calculated on the Relative Error (RE), 
where RE = (Actual Effort – Estimated Effort)/(Actual Effort), letting RE

i
 be an accuracy measure on the i-th 
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project and T be the number of the projects being estimated (Test set), and using Mean(RE
i
) and STD(RE

i
), for i 

= 1 to T, to measure the estimation model correctness (bias) and variability (spread), respectively,  
(2) elaborated an application strategy, and  
(3) tested it by using a number of randomly selected models. 
In this research, we show that the used technology (CCA) provides a significant accuracy improvement, that is, 

it is more correct with a similar variability than the estimate produced without applying any improvement 
methodology. However, it is possible that, applying CCA to different data sets and models, would lead to no 
improvement. This may happen when the data has no alignment into the space (this concept of “alignment” is 
explained in Section 3). So, we should apply different techniques for improving the accuracy as there is no best 
technique for all situations. Improvement techniques are substantially divided into two not mutually exclusive sets, 
stepwise input variable removal [9, 14], where the input variables are recursively taken out, and input variable 
reduction [7], where the input variables are transformed into a shrunken representation. CCA refers to the latter 
and it is able to overcome some drawbacks of principal component analysis (PCA); this point is explained in 
Section 3. Note that, one may decide to apply first CCA and subsequently stepwise technique, only CCA, only 
stepwise, or no technique. The decision about whether and which technique to apply should be made based on 
the ratioin between cost and effectiveness [14, 3]. Unfortunately, the only approach for achieving the best result in 
terms of input variable reduction and accuracy is the exhaustive one. It consists of taking into account all of the 
possible configurations that can be obtained by combining the input variables. For instance, if we have N variables 
we can obtain 2

N
 different configurations. The problem is that, this procedure cannot be generally applied because 

2
N
 is usually a number too big to be handled. For this reason, we study affordable techniques such as CCA to 

improve the estimation accuracy without applying the exhaustive procedure.  
The rest of this paper explains the results of applying CCA compared to the results without improvement. We 

start with some introductory remarks on COCOMO and curvilinear component analysis. We continue with a 
discussion of our experimental design and results. We then apply statistical tests to the results to show that using 
CCA improves the accuracy of the log-linear estimation models in terms of correctness avoiding worsening the 
variability. 

2 COCOMO 

The estimation model that we considered in this study is COCOMO-I (COstructive COst MOdel) [1, 2]. We use this 
model since it is an open model with published data [12]. Currently, COCOMO-I has evolved to COCOMO-II [2,4], 
but for the latter there is no published data. Our aim is to show the reliability and stability of using CCA so that 
others may repeat our experiment based on that available data. Therefore, we are not proposing the use of the 
older COCOMO-I model as an estimation model, we only use it to show that CCA is able to improve the accuracy 
of log-linear OLS functions. COCOMO-I is based on equation (1): 

 

( )∏=
i i

b
EM*)KSLOC(*amonths  .  (1) 

 

Where, the effort (months) is measured by calendar months of 152 hours, including development and 
management hours, a and b are two parameters related to the domain (e.g., a is a value between 2.80 and 3.20 
and b between 1.05 to 1.2), and KSLOC is estimated or calculated from a function point analysis. EMi is a set of 
15 multipliers [1, 2, 12], which aim at weighting Eqn. (1) to provide more suitable results. For instance, there are 
seven multipliers (ACAP, PCAP, AEXP, MODP, TOOL, VEXP, and LEXP), which affect the effort more strongly as 
they increase, e.g., ACAP = “Analysts’ CAPability” is a value ranging from 1.46 (= very low) to very high (= 0.71). 
There are seven multipliers (DATA, TURN, VIRT, STOR, TIME, RELY, and CPLX), which affect the effort less 
strongly as they increase, e.g., CPLX = “process ComPLeXity” is a value ranging from 0.70 (= very low) to extra 
high (= 1.65). There is another multiplier (SCED = SChEDule constraint), which affects the effort more strongly 
either as it increases or decreases, e.g., giving analysts either too much or too little time can increase the effort). It 
takes values ranging from 1.23 (= very low) to 1.10 (= very high), but the central value (nominal) is 1.00. 

COCOMO-I can also be calibrated to local data to find a better fitting model. Since the COCOMO model is 
based on the assumption that the effort increases geometrically, Eqn. (1), we need to transform the model into 
another one where we can apply OLS (linearization). For this reason, we use a logarithmic transformation in taking 
the logarithm of Eqn. (1). Then, the resulting model is the following: 

 

)EM(Ln,...,)EM(Ln)KSLOC(Ln)months(Ln 15161210 β++β+β+β=  .  (2) 

 
That is, 
 

1616110 H,...,HZ β++β+β=  .  (3) 

 

Where, Z = Ln(months), H1 = Ln(KSLOC), and Hi+1 = Ln(EMi) with i = 1 to 15. Then, β0 is the intercept, β1..16 are the 
model coefficients, H1..16 are the independent variables, and Z is the dependent variable (effort). In practice, before 
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applying OLS to Eqn. (3), one has to calculate the natural logarithm (Ln) of each value in the data set (note that, in 

order to calculate β0  a vector composed of only 1s has to be inserted into the data set). 
Any prediction model is evaluated by taking into account the error between the estimated and actual values. An 

absolute error (Actual – Estimated) makes no sense in software cost estimation, because the error should be 
relative to the size of the project (e.g., a larger project may have a greater error). For this reason, Boehm [1] 
defined the COCOMO performance in terms of Relative Error (RE), as formula (4) shows, where REi is the relative 
error of project i in the test set. 

 

i

ii
i

Actual

EstimatedActual
RE

−
=  . 

 (4) 

 

Figure 1 reports on the accuracy procedure calculation that we considered in this paper. In particular, given a 
data set (DS) of size SDS and a training set of size STrS with STrS < SDS, and a test set of size STsS = (SDS – STrS), 
the accuracy is calculated by Eqn. (5). 
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 (5) 

 

Since the best accuracy is zero, MnRE is the bias of the estimation model, and the standard deviation of REi is 
a measure of spread of the estimation model.  

In this work, we mainly focus on the bias (correctness) of the estimation model and its stability (validity). It is 
very important to note that, sometimes COCOMO is evaluated in considering the Magnitude of Relative Error 
(MRE) [5, 12], where MREi = abs(REi), instead of REi. Then Eqn. (5) becomes the following: 
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Another way of evaluating COCOMO is to use PRED (N). 
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 (7) 

 
A PRED (25) = 80% means that 80% of the estimates are within 25% of the actual error [5, 12], i.e, 80% of the 

estimates in the test set has an MRE value not greater than 0.25. It is possible to prove that, formulas (6) and (7) 
are not accuracy indicators of the estimation model [8].  

 

 

Fig. 1. COCOMO evaluation. 

This means that, it is incorrect to measure COCOMO (or similar parametric models) in terms of equations (6) 
and (7). In particular, Kitchenham et al. show that MMRE and PRED(N) measure the spread of the kurtosis of the 
random variable Z = Estimated/Actual. This is the reason why, in this paper, we evaluate COCOMO through Eqn. 
(5). Note that, MMRE may be a useful measure when evaluating the goodness-of-fit of a model. 

3 CURVILINEAR COMPONENT ANALYSIS 

CCA is a procedure for feature reduction based on auto-associative multi-layer feed-forward neural networks [3, 
pp. 314-319]. Applying CCA does not require being an expert in neural network (NN) computation. A CCA 
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implementation can be found in any mathematics application that is able to deal with NNs and/or matrixes. 
Implementing CCA requires just a few lines of code. Even if one does not have the opportunity to use a 
mathematics suite, the CCA algorithm can be easily implemented with the same programming language used for 
calculating OLS. For space limitation, we focus on CCA reporting just some principal notes on NN(s) [3, 6]. 

3.1 Multi-layer Feed-forward Neural Networks 

A neuron is a parameterized and bounded function (Figure 2-a), which can be linear or nonlinear.  

A neuron (also called Unit) calculates an output (y) such that ∑ =
⋅=

N

1i ii )Xw(fy , where wi are the weights (or 

parameters), Xi are the inputs, and f is called activation function. If f is a nonlinear function (e.g., a sigmoidal 
function such as logistic function, hyperbolic tangent function), then the neuron is called Nonlinear; if f is a linear 
function (f is the identity function), then the neuron is called Linear. A feed-forward NN is generally a nonlinear 
function, which is composed of some neurons (Figure 2-b) and layers. In the feed-forward networks, the data can 
just flow from the inputs to the outputs. In recurrent networks, the data flow can be circular. 

 

 

Fig. 2. A neuron (a) and a multi-layer feed-forward neural network (b). 

In Figure 2, g may be different from f. For instance, in regression problems, g is nonlinear and f is linear. In 
discrimination problems, both g and f are nonlinear functions. The input labeled “b” is called bias. It is an input that 
provides a constant value of 1. The bias plays the same role as the intercept in a polynomial function. In Figure 
2(b), f units are called hidden because they are intermediate. Hidden layers express the complexity of a model. In 
particular, the number of hidden units corresponds to the degree of a polynomial. For instance, an NN having two 
hidden units is more complex than an NN with just one hidden unit just as a second order polynomial is more 
complex than a first-order polynomial.  Based on observations (both inputs and outputs), the problem is then to 
calculate the model weights (wi) such that the input values are mapped to output values. The weight calculation is 
also called model training. In order to get this mapping, a cost function has to be minimized [3, pp.194-201]. The 
most common cost function is the Euclidian distance. When using polynomials, it is possible to apply OLS to 
calculate the model parameters, but it is not applicable with NNs. Usually, the best training technique is 
Backpropagation [10]. This is an iterative method based on calculating gradients. In particular, the gradient of the 
cost function is calculated. It happens for each step and the gradient is used to update the parameters found in the 
previous step. The algorithm stops when satisfactory conditions have been met [3]. It is very important to note 
that, the hidden neurons play a principal role here. In fact, their output can be considered as a representation of 
the input in mapping the output [10]. This property will be used for implementing auto-associative NNs. 

3.2 Auto-Associative Multi-layer Neural Networks 

An auto-associative neural network (AANN) is a particular kind of multi-layer feed-forward NN. Figure 3 shows an 
example of AANN topology. The aim of this kind of neural network is to perform nonlinear dimensionality 
reduction. The strategy is to map N input variables into N output variables. The observed outputs used to train the 
network (targets) are just the observed inputs themselves (for this reason this network is called auto-associative). 
The auto-associative network in Figure 3 tries to map each observed input into itself [3, p. 314]. This strategy is 
worth for dimensionality reduction when the number M of the neurons in the second hidden layer (Figure 3) is less 
than N. To get a correct dimensionality reduction, the output units must be linear (Lin = Linear) as well as the M 
units in the second hidden layer (Lin). The first and the third hidden layer must be nonlinear (Sig = Sigmoidal 
function). The training of this kind of network is based on minimizing an Euclidian distance similar to the one 
mentioned above [3, p. 314]. Note that, AANN in Figure 3 can be considered as composed of two different 
networks. The first network (F1, dashed rectangle) projects the initial N-dimensional data onto an M-dimensional 
space (M<N). This space is composed of the output of F1 when feeding it with the original observations. The 
curvilinear components of this space are encapsulated in F1. This means that, once F1 has been calibrated, it can 
be used for transforming any input into an equivalent representation with respect to the original one with fewer 
dimensions (from N to M dimensions). The second network (F2) maps the output of F1 having M dimensions back 
into the initial N-dimensional space. 
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Fig. 3. An auto-associative multi-layer neural network for nonlinear dimensionality reduction. 

The result is that, the output of F1 is a nonlinear representation (projection) of the original N-dimensional space 
onto a shrunken space composed of M components. This network actually performs a curvilinear component 
analysis also called Nonlinear Principal Component Analysis (see [7] for the definition of Principal Component 
Analysis). This important result is made possible because of the presence of nonlinear activation functions in the 
first and third hidden layer (Sig). Note that, this kind of technology is able to perform both linear and curvilinear 
component analysis. 

3.3 Using CCA together with OLS (The Strategy) 

The ten steps below explain the strategy that we propose for dimensionality reduction with CCA together with 
OLS. Note that, this strategy would be the same even if we considered different parametric models (e.g., machine 
learning, neural networks). The aim of this strategy is to figure out whether the available data can be shrunk by a 
curvilinear transformation because of the redundancy of some input variables unknown. So, a model that is more 
parsimonious (i.e., the one having less parameters because built upon fewer input variables) should provide better 
results in terms of accuracy. The strategy is the following: 
1. Split up the available data (i.e., past observations) into two subsets as explained in Section 2 and Figure 1 (e.g., 

2/3 – 1/3 or 80% – 20%), so obtain both training set, TrS (e.g. 2/3), and test set, TsS (e.g. 1/3) 
2. Let N be the number of input variables (N = 16 for the COCOMO model). Based upon the split made in Step 1,  

use TrS to train N-1 models applying CCA as many times, where each time the data set is reduced by 1 
component (i.e., in the first CCA application, TrS turns into N-1 dimensions, in the second one, it turns into N-2 
dimensions, and so on up to 1) 

3. Calculate the Mean(RE) and STD(RE) for the obtained N-1 models feeding each model with TsS 
4. Among the N-1 models obtained in Step 2, select the model having the best score calculated in Step 3, i.e., the 

Mean(RE) closest to zero  
5. Use TrS to train a log-linear function applying OLS without CCA 
6. Calculate the Mean(RE) and STD(RE) feeding the model with TsS 
7. Repeat Steps 1 through 6 for a statistically sufficient number of times (e.g. 30) changing the composition of TrS 

and TsS and get two distributions for each considered summary statistic, i.e., MnRECCA ≡ {MeanCCA(RE
1
) … 

MeanCCA(RE
30

)}, STDRECCA ≡ {STDCCA(RE
1
) … STDCCA(RE

30
)}, and MnRENO-CCA ≡ {MeanNO-CCA(RE

1
) … 

MeanNO-CCA(RE
30

)}, STDRENO-CCA ≡ {STDNO-CCA(RE
1
) … STDNO-CCA(RE

30
)}, respectively 

8. Based upon suitable statistical tests (i.e., parametric or non-parametric), evaluate the hypotheses whether (1) 
the distribution MnRECCA is significantly better than MnRENO-CCA and (2) the distribution STDRECCA is 
insignificantly different from STDRENO-CCA. If the statistical tests significantly confirm hypotheses (1) and (2), 
then execute Steps 9 and 10, otherwise stop this procedure because CCA cannot significantly improve the 
accuracy. In the latter case, other feature selection techniques should be considered (e.g., stepwise [9]) 

9. Select the model corresponding to the best value in MnRECCA ≡ {MeanCCA(RE
1
) … MeanCCA(RE

30
)}. If two 

models have the same score choose the one having the smallest spread 
10.Use this model to make predictions (on new projects). 

4 EXPERIMENT DESIGN 

Our experimental setting is based on the strategy reported in Section 3.3. The aim of this experiment is to show 
that applying the procedure in Section 3.3 can lead to improving the estimation accuracy of a log-linear function 
trained by OLS (Section 2). To this end, we organized the available data as reported in Figure 4. 
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Fig. 4. Experimental setting 

We used 60 projects of the COCOMO data set [12] for building randomly 30 different data sets.  The first row of 
the 30x60 matrix in Figure 4 includes the experiment-projects’ identifiers, which we assigned randomly from 1 to 
60; each of the remaining rows is composed of a different randomly selected circular permutation of the first row. 
Then, we split up this matrix into two subsets of columns (A and B) and considered set A as a set of 30 different 
training sets and set B as a set of 30 different test sets. The split proportion was 2/3 – 1/3, thus each item of set A 
included 40 project instances, and each item of set B included 20 instances. Our experimental setting simulated 
the situation where there is a data set of past observations (Set A) and a set of projects being estimated (set B), 
unknown at estimation time. The insight is that, if actually CCA was able to improve the accuracy of a log-linear 
OLS function, we should observe for it more accurate results (i.e., in terms of bias and spread) than the ones 
obtained without applying any improvement technique and it should happen for a significant number of times (at 
least 30 times with randomization).  

We started with calculating the log-linear OLS functions with CCA. To this end, we considered set A as a set of 
past observations and used set B for calculating bias and spread of each of the 30 obtained functions by applying 
CCA, i.e., we calculated MnRECCA(k) and STDRECCA(k), for k = 1 through 30. We used MnRECCA and STDRECCA for 
denoting the two distributions (Appendix 1). Applying the proposed strategy to set A meant dividing this set into 
two further subsets, A

A
 and A

B
 (Figure 4) with the proportion 2/3 and 1/3, as explained in Section 3.3. Set A

A
 was 

used for training and set A
B
 for selecting the best function (Section 3.3., Step 4). Note that, each element of sets 

A
A
, A

B
 and B was made of different projects with respect to each other element of the same set. 

With respect to the log-linear OLS functions without applying CCA, first we considered the 30 elements of set 
A

A
 for training as many log-linear OLS functions and then we used set B for calculating MnRENO-CCA(k) and 

STDRENO-CCA(k), with k = 1 through 30, thus we got MnRENO-CCA and STDRENO-CCA (Appendix 1). Then, we 
compared the obtained distributions in order to figure out whether MnRECCA was better than MnRENO-CCA and 
whether, at the same time, STDRECCA was insignificantly different from STDRENO-CCA. 

In a real case, any hold out method (i.e., the ones that split up the observations into two subsets, one for 
training, and one for test) may lead to loosing information because of the hold out strategy. In fact, projects in set 
A

B
 cannot be used for training the log-linear OLS function with CCA. For this reason, we wondered whether the 

accuracy of the functions with CCA was better than the accuracy of functions trained with the complete set A. To 
this end, we retrained  30 log-linear OLS functions by considering each element of set A as a training set and used 
the corresponding elements of set B for calculating the two bias and spread distributions, thus we got MnRE

A
NO-

CCA and STDRE
A

NO-CCA (Appendix 1), where the apex A refers to functions trained using set A. Similarly to the 
previous case, we tested the hypothesis {MnRECCA is significantly better than MnRE

A
NO-CCA} and {STDRECCA is 

insignificantly different from STDRE
A

NO-CCA}. 

5 RESULTS AND DATA ANALYSIS 

First, for each considered distribution, we performed some statistical tests for normality (Chi-Square goodness-of-
fit statistic, Shapiro-Wilks, Z score for skewness, and Z score for kurtosis).  
 

 
 

Fig. 5. Bias Analysis (MnRECCA vs MnRENO-CCA) 
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All these tests rejected the idea that the distributions came from a normal population with 99% of confidence. 
Then, we had to apply non-parametric tests.  

Based on the experimental design in Section 4, we started with comparing MnRECCA to MnRENO-CCA (Figure 5 
and Appendix 1). We applied both Mann-Whitney test (p-value = 0.015) to compare the medians of the two 
samples and Signed rank test (p-value = 0.045). Even though the two obtained samples were independent and 
the experiment was not paired, we applied the Signed rank test to increase the power of our non-parametric 
inference [8]. However, both tests rejected the null hypothesis with 95% of confidence.  

Then, we tested the hypothesis whether CCA was able to provide estimates as stable as the ones provided 
without applying CCA. To this end, we compared STDRECCA to STDRENO-CCA (Figure 6 and Appendix 1). 

 

 

Fig. 6. Spread Analysis (STDRECCA vs STDRENO-CCA) 

We applied both Mann-Whitney test (p-value = 0.437) and Signed rank test (p-value = 0.813) for the same 
reasons explained above. Both tests did not reject the null hypothesis with 95% of confidence, i.e., they pointed 
out that the two considered distributions were not statistically different. Note that, the distributions in Figure 6 were 
obtained from the same randomization as the one applied for the bias distributions (Figure 5 and Appendix 1).  

Based on these results, we concluded that CCA was able to improve the accuracy of the log-linear OLS 
functions without making worse their variability. Then we tested the second hypothesis, i.e., we compared the 
distribution MnRECCA to MnRE

A
NO-CCA (Figure 7 and Appendix 1). 

 

 

Fig. 7. Bias Analysis (MnRECCA vs MnRE
A

NO-CCA) 

Based on the strategy applied for the previous analyses, we performed both Mann-Whitney test (p-value = 
0.002) and Signed rank test (p-value = 0.003), which rejected the null hypothesis with 95% of confidence. Then, 
we tested the hypothesis whether CCA was able to provide estimates as stable as the ones provided without 
applying CCA. To this end, we compared STDRECCA to STDRE

A
NO-CCA (Figure 8 and Appendix 1). 

 

 

Fig. 8. Spread Analysis (STDRECCA vs STDRE
A

NO-CCA) 

 
We applied again both Mann-Whitney test (p-value = 0.181) and Signed rank test (p-value = 0.813). Since tests 

did not reject the null hypothesis with 95% of confidence, we concluded that the two considered distributions were 
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non-statistically different. Overall, we concluded that applying CCA to log-linear OLS functions improved the 
accuracy for the COCOMO data set without making worse the variability. 

6 DISCUSSION AND CONCLUSION 

Let us consider the implications of the results reported in Section 5. Based on the COCOMO data set, we have 
shown that applying CCA to log-linear OLS functions produces estimates that are more accurate than the ones 
provided by the same kind of functions without applying CCA.  

A valuable result is that the proposed technology increases the correctness of the estimates without worsening 
the variability. In order to evaluate the reliability of our experiment, we also compared the variability (spread) of the 
obtained distributions. With respect to Figures 5 and 6, the spread of the CCA distributions is less than the ones 
without applying CCA. Note that, the spread is expressed by the length of the box from lower tail to upper tail. This 
happens both for the bias and spread distributions. This means that, CCA is able to provide more stable estimates 
with respect to the same kind of functions trained without applying CCA.  

With respect to Figure 7, we can see that the functions trained with a greater number of data points and without 
applying CCA (i.e., MnRE

A
NO-CCA) provide a distribution slightly sharper than the one obtained by applying CCA. 

However, this is the effect of using more data points. In fact, this spread improvement is not confirmed in Figure 8, 
where the standard deviation obtained by applying CCA is better than the one obtained without CCA. 

Although, running a CCA procedure requires non-negligible effort, this loss can be compensated by obtaining 
estimates that are more accurate. If CCA cannot provide better estimates, it can improve the estimation reliability. 
In fact, we have shown that CCA is able to provide distributions having fewer outliers (Figures 5, 6, 7, and 8). 
Then, practitioners and organizations dealing with software estimates may apply CCA for reducing the number of 
outliers even though the accuracy would not be improved. Since reducing the number of outliers expresses 
reliability, CCA can be a useful tool not only for improving estimation accuracy, but also for improving its reliability. 

Another advantage of applying CCA is that, it can be used with any kind of data and prediction model (e.g., 
software cost, fault proneness, defect slippage). However, the effectiveness of applying CCA to different data sets 
and contexts has to be evaluated empirically through replicated experiments that we wish researchers would try 
out.  

From a practical point of view, another advantage of applying CCA is that we do not need to know the relevance 
of each attribute being removed with respect to the considered context. This is an advantage because, for 
instance, stepwise feature selection requires knowing that [9]. Moreover, CCA does not suffer from 
multicollinearity (i.e., having two or more input variables whose effect cannot be separated on the output), which 
can affect stepwise methods. CCA overcomes this problem by considering the simultaneous effect of every input 
variable through a nonlinear auto-associative neural network, (i.e., CCA does not separate the effect of each 
variable on the output, but it finds a nonlinear, equivalent, and more compact representation keeping the effect of 
each variable along with the others. In fact, CCA reduces multicollinearity by finding out the redundant variables 
(i.e., variables that can be expressed by a linear or nonlinear transformation of other variables). A further 
advantage is that, CCA can be implemented as an automatic procedure for estimation model improvement. Note 
that, once we have implemented it for the first time, we can reuse it thereafter without changes. We believe that, 
results of the proposed work can be used by practitioners, academics, and organizations as a baseline for further 
empirical investigations aiming at figuring out whether CCA can be effectively applied to other data sets, as well. 

CCA has some drawbacks. For instance, the procedure that we proposed in Section 3.3 is based on the 
assumption that we have enough data to split up the data set into two subsets (TrS and TsS). Conversely, CCA 
would not be applicable. CCA is based on NNs, which require knowing some optimization techniques to reduce 
the training time. Not applying any optimization technique, may increase the effort and reduce the gain of applying 
it. The successful application of the CCA to the COCOMO data set that we have shown in this work should be 
considered as a first step towards such an emerging approach, which may eventually integrate canonical statistics 
that the scientific community has effectively undertaken so far. 

In the future, we plan to compare the proposed approach with other feature selection techniques based on 
stepwise methods [9] as well as explore the possibility of combining together CCA and stepwise to get benefits 
from both techniques. 
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Appendix A 

Table 1 
 

Experimental Results 
 

OBJ MnRECCA STDRECCA MnRENO-CCA STDRENO-CCA MnRE
A

NO-CCA STDRE
A

NO-CCA 
1 0.14371208 -0.054929955 1.0562069 0.53698988 -5.80E+09 0.53699 

2 0.21722044 -0.35892088 0.43654432 0.89398832 -22726.606 0.893988 

3 -0.16971426 -0.96359809 0.9497333 3.4363606 -0.8234748 3.436361 

4 0.27820802 -0.57894423 0.40653336 2.1020914 -0.7888032 2.102091 

5 -0.29615245 -1.4307502 0.83354207 3.9235776 -0.9651689 2.401476 

6 -0.30193239 -0.32886636 0.9661099 0.77139013 -2.9967061 3.923578 

7 -0.2996719 -0.25792587 0.8046919 0.78477421 -2703.6933 0.77139 

8 -0.36172906 -0.28649363 0.84352196 0.77192256 0.005064 0.784774 

9 -0.099800576 -0.18388187 1.1393905 0.80648144 -0.0846081 0.771923 

10 0.12056456 0.078546418 0.42813771 0.35174426 0.01248237 0.806481 

11 -0.05480207 0.027372728 0.94871949 0.36093028 -2.2124166 0.351744 

12 -0.08093991 0.054227376 1.2444559 0.28582551 -0.2821303 0.36093 

13 -0.005545097 0.05052095 0.8794604 0.29834485 -0.339955 0.285826 

14 -0.34571939 -0.072447687 1.0164966 0.22644037 -0.1514146 0.298345 

15 -0.22464008 -0.086719192 0.394165 0.23561617 -7158.3085 0.22644 

16 -0.39813303 -0.16536665 0.8162177 0.38368032 -4.45E+35 0.235616 

17 -0.21172515 -0.23266126 0.97092145 0.45347181 -280.54155 0.38368 

18 0.004817188 -0.22589982 1.0815658 0.47739908 0.99145512 0.445251 

19 0.2684083 -0.32992664 0.40555368 0.52906098 0.13757051 0.453472 

20 0.04383431 -0.33450622 0.51076848 0.59924966 0.98993829 0.477399 

21 -6.4798323 -0.32688714 13.513739 0.58941184 -3932705.1 0.529061 

22 0.08410293 -0.36335451 0.52954395 0.76358409 -1.41E+18 0.59925 

23 0.03498114 -0.55314384 1.1002098 1.1088234 -5.5540794 0.589412 

24 0.3896364 -0.36060205 0.59261704 0.68180914 0.15092503 0.763584 

25 0.23389932 -0.38411264 0.8175946 1.0134382 -195.4707 1.108823 

26 0.29336838 -0.16646417 0.97438834 0.53712992 -39.399898 0.681809 

27 0.34308829 -0.15403468 0.50449756 0.45911063 -2.31E+08 1.013438 

28 0.20007009 -0.28893062 0.34205892 3.9460798 -342.03693 0.53713 

29 -0.387412 -0.22527862 1.3345788 0.44525143 -1.01E+27 0.459111 

30 -0.33046474 -0.65085382 0.8553278 2.4014763 -6.8954419 3.94608 

 
 
 
 
 
 
 


