
 The Evolution and Impact of Code Smells: 
A Case Study of Two Open Source Systems 

 
Steffen Olbrich 

Dept. of Computer 
Sciences, University of 

Applied Sciences, 
Mannheim, Germany 
solbrich@gmail.com 

Daniela S. Cruzes 
IDI, Norwegian 

University of Science 
and Technology 

(NTNU), Trondheim, 
Norway 

dcruzes@idi.ntnu.no 

Victor Basili 
University of 
Maryland and 

Fraunhofer Center 
Maryland, College 

Park, USA 
basili@cs.umd.edu 

Nico Zazworka 
Dept. of Computer 

Science, University of 
Maryland, College 

Park, USA 
nico@cs.umd.edu 

 
 

Abstract 
 

Code smells are design flaws in object-oriented 
designs that may lead to maintainability issues in the 
further evolution of the software system. This study 
focuses on the evolution of code smells within a system 
and their impact on the change behavior (change 
frequency and size). The study investigates two code 
smells, God Class and Shotgun Surgery, by analyzing 
the historical data over several years of development 
of two large scale open source systems. The detection 
of code smells in the evolution of those systems was 
performed by the application of an automated 
approach using detection strategies. The results show 
that we can identify different phases in the evolution of 
code smells during the system development and that 
code smell infected components exhibit a different 
change behavior. This information is useful for the 
identification of risk areas within a software system 
that need refactoring to assure a future positive 
evolution. 
 
1. Introduction 
 

Good object-oriented software design features a set 
of non-functional quality characteristics, e.g., 
maintainability, understandability, ease of evolution, 
etc. In order to assure these non-functional 
requirements, object oriented software systems should 
follow a common set of design principles such as data 
abstraction, encapsulation, and modularity [7] [19] 
[20]. However, even when developers are familiar with 
those techniques, deadline pressure, too much focus on 
pure functionality, or just inexperience may lead to 
violations of these design rules. 

One possible way of identifying such design flaws 
in object oriented designs is the detection of ‘code 

smells’ [6] [18]. The term was coined by Fowler and 
Beck [6] by presenting an informal definition of 22 
code smells that provide a set of characteristics used as 
indicators for design flaws with respect to the 
maintainability of software systems. Each code smell 
examines a specific kind of system element (e.g. 
classes or methods), that can be evaluated by its inner 
and external characteristics. 

A manual detection of code smells by code 
inspections [6], leads to different issues which are 
identified by Marinescu [13] as: time-expensive, non-
repeatable and non-scalable. Even more issues 
concerning the manual detection of design flaws were 
identified by Mäntylä [11] [12]. He showed that as the 
experience a developer has with a certain software 
system increases, his ability to perform an objective 
evaluation of the system as well as his ability to detect 
design flaws decreases. 

Marinescu created a generic approach for 
identifying code smells in software systems [13], to 
avoid those issues. Instead of a purely manual 
detection approach, he used code metrics for the 
detection of risk areas in the system. This approach 
was later refined in [14], [15] and [16] with the 
introduction of metric based detection strategies. 

Li and Shatnawi [9] investigated the relationship 
between the class error probability and bad smells 
based on three versions of the Eclipse1 project. Their 
result showed that classes which are infected with the 
code smells Shotgun Surgery, God Class or God 
Methods have a higher class error probability than non- 
infected classes. Deligiannis et al. investigated in the 
impact of God Classes, based on Riel’s definition [18], 
on the maintainability of object oriented design [3] [4]. 
In an experiment, he showed that existing design 

                                                           
1 Eclipse <http://www.eclipse.org> 



violations in software systems lead to an increased 
probability that later changes, e.g. maintenance tasks, 
causes further design violations. 

These results show that it is important to evaluate 
how software evolves with respect to components with 
code smells. The question arises: How do components 
with code smells effect maintainability. Hidden 
dependencies of structurally unrelated, logically 
coupled system elements exhibit a high potential to 
negatively affect software evolution by exhibiting 
architectural deterioration over time. One question that 
arises is: Am I maintaining the quality of my software 
as I change or add functionality? Whereas related work 
in [3], [4] and [9] analyzed the impact and occurrence 
of code smells by single, static versions of software 
systems, this paper addresses questions related to the 
evolution of the code: How do code smells evolve over 
time and how do code smells influence the change 
behavior of the infected system elements? One 
hypothesis is that the bad smells increases over time, 
because as the software changes are performed, the 
software degrades. Another hypothesis is that the 
classes infected by the code smells suffer more and 
larger changes than the ones that are non-infected. 
Within the scope of this study we analyzed the 
historical data of two major Open-Source-Projects, 
Apache Lucene2 and Apache Xerces 2 J3. The study is 
focused on two well-known code smells: God Class, 
which "refers to those classes that tend to centralize the 
intelligence of the system." [14] and Shotgun Surgery, 
a code smell which indicates excessive, incoming low-
level coupling.  

The paper is structured as follows: first we 
introduce code smells and discuss how they can be 
detected, based on the detection strategies defined by 
Marinescu. Then we introduce the research questions 
we want to investigate in our study, followed by the 
experiment. Finally we will describe the results and 
discuss them. 
 
2. Detection Strategies 
 

Code metrics are quantification mechanisms that 
support the examination of system element 
characteristics. They can provide insight into whether 
the observed system artifact might contain a design 
flaw, but don’t provide an identification of the specific 
flaw. In other words, a metric result can be interpreted 
as a certain symptom of one or more problems but 
doesn’t show the actual problem.  

In an attempt to fill this gap, Marinescu [14] 
defined what he called a “detection strategy” which 
                                                           
2 Apache Lucene <http://lucene.apache.org> 
3 Apache Xerces 2 J <http://xerces.apache.org> 

combines different code metrics, filters the result and 
combines this information in order to detect problems 
in the code architecture. His formal definition is: “the 
quantifiable expression of a rule by which design 
fragments that conform to that rule can be detected in 
the source code” [16]. Thus, we can use code metrics 
on a more abstract level. The engineer is not forced to 
post-process and interpret a big and possibly confusing 
set of metric results by himself. Instead detection 
strategies are used as an automated mechanism for the 
interpretation of metric results. For this reason 
detection strategies are much closer to our purpose for 
using code metrics: the detection of design flaws. Even 
if it is reasonable that the result of a detection strategy 
is re-evaluated by an engineer to verify the flaw, it 
provides an overview of possible risk areas in the 
system in a quick and repeatable way. 

Each Detection Strategy is structured in three 
consecutive elements: 

1) A set of code metrics. 
2) A set of filtering rules, one rule for the 

interpretation of each metric result (i.e., 
comparison with an adequate threshold value). 

3) The composition of the filtered results (Logical 
composition of the results). 

 

 

When applied to a software system, the result of a 
detection strategy (DS) for an entity (E), i.e., a system 
element like a class,  is 1 or 0 depending on whether 
the rule of the detection strategy is satisfied or not (i.e., 
the entity possesses the design flaw addressed by the 
detection strategy). Figure 1 shows the generalized 
structure of a Detection Strategy related to Equation 1, 
where M denotes Metric and T Threshold. 
 

},{
},,,,{

,0
))(...)()((,1

)(

..1

..1

122221111

∨∧∈
≥≤=><∈

!
"
#

= −

n

n

nnnn

conc
comp

else
TcompMconcconcTcompMconcTcompM

EDS

Equation 1 
 

2.1. God Class Detection Strategy 
 

A class is identified as a God Class if it performs 
too much work on its own, delegating only minor 

Figure 1. Schematic structure of a Detection 
Strategy [16] 

Mi = Result of 
Metric i

M1

M2

Mn

compare(M1,T1)

Software Metrics Filtering

compare(M2,T2)

compare(Mn,Tn)

Ti = Threshold for 
Result of Metric i

Metric 
Result

Composition

composition

True

Detection 
Result

Design 
Flaw



details to a set of trivial classes and using the data from 
other classes [16].A God Class violates the object-
oriented design principle that the intelligence of a 
system should be uniformly distributed among the top-
level classes [18].  

A God Class instead represents "an aggregation of 
different abstractions and (mis)use other classes (often 
mere data holders) to perform its functionality." [16]. 
This causes a negative effect concerning the 
understandability and the evolution (i.e. the reusability 
and maintainability) of the system [3] [4]. The 
understandability issue is even intensified since God 
Classes tend to be large classes. Furthermore a higher 
error-probability can be observed on God Classes [9], 
which might be caused by the complexity of 
maintenance tasks on God Classes. Nevertheless, 
classes which show the structural characteristics of a 
God Class but are rather untouched and reside in a 
stable part of the system do not cause problems [16] 
[17].  
 

 

A God Class (GC) code smell features (1) a high 
complexity, (2) a low, inner-class cohesion and (3) a 
extensive access to the data of foreign classes [16]. 
Below we introduce the set of code metrics used to 
express those characteristics quantitatively: 

1) Weighted Method Count (WMC) is the sum of 
the static complexity of all methods in a class 
[2]. McCabe’s cyclomatic complexity is used as 
complexity measure for methods [10]. 

2) Tight Class Cohesion (TCC) is the relative 
number of directly connected public methods in 
the class. Two visible methods are directly 
connected, if they are accessing the same 
instance variables of the class [1]. 

3) Access to Foreign Data (ATFD) represents the 
number of attributes of foreign classes accessed 
directly or by using accessor methods [14]. 

Figure 2 shows the structure of the detection 
strategy, its formal representation is shown in Equation 
2. The threshold values for the filtering rules are based 
on the work of Marinescu [16]. 

Equation 2 
 

2.2 Shotgun Surgery Detection Strategy 
 

The Shotgun Surgery bad smell describes classes in 
which even a small semantic change may cause a 
cascade of different changes in many coupled classes 
[6]. The smell is an indicator of excessive low-level 
couplings, in the sense of strong afferent (incoming) 
coupling. It takes into account not only the coupling 
strength, based on the distinct number of calling 
operations, but also the dispersion over the system 
[16].  

Operations in classes infected by Shotgun Surgery 
have many design entities that depend on it. If a 
semantic change is performed on such operations, the 
developer is forced to make correlative modifications 
on each coupled entity. Because of the system-wide 
dispersion and the high amount of coupled entities 
there is a high risk of missing a required change, which 
causes maintenance problems [6] [16]. Similar to the 
God Class, Shotgun Surgery is also positively 
associated with the class error-probability [9]. 

Since the Shotgun Surgery (ShS) code smell is 
caused by afferent coupling instead of the structural 
characteristics of the observed system element (i.e., a 
class), an examination of its environment is necessary. 
Thus (1) the number of methods which call a method 
of the class has to be determined as well as (2) the 
number of classes which contain the calling methods. 
The set of code metrics used to measure those factors 
are: 

1) Changing Methods (CM): number of distinct 
methods that call a method of the class [14]. 

2) Changing Classes (CC): number of classes in 
which the methods that call the measured 
method are defined [14].  

Marinescu defined the Shotgun Surgery Detection 
Strategy on methods [16] instead of classes. Since we 
want to work with it on the class level, we defined that 
if at least one method of the class is infected by the 
smell then the class itself is infected. Figure 3 shows 
the structure of the detection strategy, its formal 
representation is shown in Equation 3. The threshold 
values for the filtering rules are based on Marinescu’s 
work [16].  
 

!
"
# >∧>

=
else

CCCM
EShS

,0
))5()10((,1

)(  

Equation 3 
 
 
 

Figure 2. Schematic structure of the Detection 
Strategy for the detection of the God Class 

code smell [16] 

Class uses directly more than a 
few attributes of other classes

Functional complexity of the 
class is very high

Class cohesion is low

God ClassAND

ATFD > FEW

WMC ! VERY HIGH

TCC < ONE THIRD

Class uses directly more than a 
few attributes of other classes

Functional complexity of the 
class is very high

Class cohesion is low

God ClassAND

ATFD > FEW

WMC ! VERY HIGH

TCC < ONE THIRD

$!

$
"
# >∧<∧≥

=
else

ATFDTCCWMC
EGC

,0

))5()
3
1()47((,1

)(



 

3. Research Questions 
3.1. Research Question I 
 

The first research question addresses the evolution 
of code smells in a software project. We want to know 
how the number of code smells changes over a long 
period of development time. The work of [3] [4] [6] 
shows that if no countermeasures are taken software 
quality decays over time. Our hypotheses are therefore: 

H1: The total number of code smells increases 
steadily. 

H2: The relative number of components having 
code smells increases over time. 
 
3.2. Research Question II 
 

The second question of interest aims at 
investigating if we can find evidence that code smells 
effect component development in terms of frequency 
and size of changes. Therefore, we want to investigate 
if software components associated with smells show a 
different change frequency than components without 
smells and if changes to classes with smells force 
successively larger changes on the whole system. Our 
theory is that classes, especially the ones with a God 
class smell, have to be maintained more frequently 
since code smells lead to a decreased measure of 
maintainability. Our two hypotheses are: 

H3: The change proneness of components with 
smells is higher than the ones without. 

H4: The code churn of changes in infected classes 
is significantly larger than the code churn on non-
infected classes. 
 
4. Experimental Setup 
4.1. Instrumentation 
 

The research questions stated above require an 
analysis of the evolution of software systems. 
Therefore, a Framework for the computation of the 
code metrics and the application of the detection 
strategies was developed as part of a larger tool 
framework, developed by our research group 

(CodeVizard4) see Figure 4. CodeVizard provides 
functionality to gather and mine data from source code 
repositories (i.e. Subversion5) and hence the past 
evolution of the stored systems. The tool also offers 
various visualizations for examining the infected 
classes and their change history. CodeVizard was 
designed for analysis on source file level. Thus, our 
analysis has the restriction, that the information of 
multiple classes per file is not stored in the data 
system, so only the name giving (i.e., public) class in 
each source file is investigated. 
 

 

The metric calculation module uses the Recoder 
API, “a Java framework for source code meta-
programming”6. The Recoder API allows the 
extraction of a source code meta-model including cross 
reference information of the Java source files. The 
extraction is dependent on a closed world assumption, 
i.e., all used system elements (i.e., classes, libraries, 
etc.) have to be known, and that the source code is 
syntactically correct. In other words, the system has to 
be compilable. Since each revision represents a 
snapshot of a system in development, this is not always 
assured. 
 
4.2 Working Products 
 

The applications selected for this case study had to 
meet different criteria, like the implementation 
language, system size and quality aspects. The 
different criteria can are shown in Table 1. 

We defined mature open source projects as projects 
which are still active and provide a present 
development time of more than three years. We 
defined well-established as projects with a broad user 
community (based on the users and authors) and well 
known in the open source community. For the 
                                                           
4 CodeVizard <http://hpcs.cs.umd.edu/index.php?id=21> 
5 Subversion <http://subversion.tigris.org > 
6 Recoder <http://recoder.sourceforge.net> 

Operations are called by too 
many other Methods

Incoming calls are divided 
over too many classes

Shotgun 
SurgeryAND

CM > Short Memory Cap

CC > MANY

Operations are called by too 
many other Methods

Incoming calls are divided 
over too many classes

Shotgun 
SurgeryAND

CM > Short Memory Cap

CC > MANY

Figure 4. Schematic structure of the Detection 
Strategy for the detection of the Shotgun 

Surgery code smell [16] 

Version Control
System

(i.e., SubVersion)

Version Control
System

(i.e., SubVersion)

CodeVizard
Database

CodeVizard

Extracting the Version Control Data

Metric Calculation

Visualization

System 
Evolution

Metric 
Results

Detection 
Strategies

DS 
Results

Recoder

Version Control
System

(i.e., SubVersion)

Version Control
System

(i.e., SubVersion)

CodeVizard
Database

CodeVizard

Extracting the Version Control Data

Metric Calculation

Visualization

System 
Evolution

Metric 
Results

Detection 
Strategies

DS 
Results

Recoder

Figure 3. Schematic representation of 
CodeVizard 



evaluation of those rather difficult to measure aspects 
we used the open source network Ohloh7.  

Table 1 shows an overview of our selection criteria. 
Based on the criteria, we selected two open source 
projects: Apache Lucene and Apache Xerces 2 Java, 
both developed under the leadership of the Apache 
Software Foundation. 
 

Table 1. Selection criteria 
Implementation Language: Java 
Version Control System: SubVersion 
Historical data (# of 
revisions): 

> 1000 revisions 

Project size (# of classes): > 350 classes 
Q1 – Mature (development 
time): 

> 3 years 

Q2 – Well-established: (1) broad user community 
(2) well-known in OS 

community 
 

Apache Lucene is “a high-performance, full-
featured text search engine library written entirely in 
Java”. Apache Lucene, referred to as Lucene, contains 
383 Java files in its latest version and the historical 
data contains 1408 versions.  
 

Table 2. Application fact-sheet 
 Lucene Xerces 

Project website: lucene.apache.org xerces.apache.org 
Project size (latest 

version):
383 source files 618 source files 

Historical data: 1400 revisions 3250 revisions 
Q1 – Mature (dev. 

time):
6 years 6 years 

 

Apache Xerces 2 J is a “library for parsing, 
validating and manipulating XML documents”. The 
project size of Apache Xerces 2 J, referred to as 
Xerces, is 687 Java files and 3902 versions of 
historical data are available. An overview of both 
applications is shown in Table 2Error! Reference 
source not found.8. 
 
4.3 Data Collection 
 

With the high number of revisions for each of the 
two software applications it became necessary to 
define a strategy to select a reasonable but still 
significant revision sample of the two applications. We 
decided to use the aggregation of changes in chunks of 
50 revisions as shown in Figure 5. Based on the given 
                                                           
7 Ohloh, the open source network <http://www.ohloh.net> 
8 Based on the used historical data (Only the historical data 

from 1999-2005 is used for the analysis of Xerces.). 

constraints (See also section 4.1), 25 revisions of 
Lucene and 51 revisions of Xerces were analyzed. 
 

 

4.3.1 Data Collection for Research Question I. For 
the analysis of the evolution of code smells (research 
question 1), we compare the number of entities (E) 
(i.e., classes) which contain a code smell (F) with the 
total number of entities in the system (|S|, whereas S is 
representing the system as set of entities E) at time t 
(i.e., the respective revision).  
Equation 4 shows if an analyzed entity features a code 
smell at time t (the respective result of the applied 
detection strategy). Equation 5 represents the 
calculation of the number of flawed entities (FE) at 
time t based on the detected, flawed classes (Suspectt) 
defined in  
Equation 4. Equation 6 represents the calculation of the 
total number of entities (TE) at time t. 
 

!
"
#

=
else

EShSEGCFsmellfeaturesE
FESuspect ttt

t ,0
))(/)((,1

),(
 

Equation 4 
 

%
∈∀

=
tSE

tt FESuspectFSFE ),(),(  

Equation 5 
 

tt SSTE =)(  
Equation 6 

 

4.3 Data Collection for Research Question II. The 
monitored data for the investigation of the change 
frequency and change size of each revision contains 
the following information:  

1) A unique identifier for each entity (E). 
2) The detected status of the entity (Equation 4) at 

time t1. 
3) Transition type between the entity status at 

revision t0 and revision t1, e.g., code smell class 
to non-code smell class. 

4) The number of changes performed on the entity 
between revision t0 and revision t1 
(ChangeFrequency(E,t0,t1); Equation 7). 

5) The average code churn (i.e., number of lines 
modified, added and deleted) based on each 
change between time t0 and time t1 
(AverageChurn(E,t0,t1); Equation 8). 

Figure 5. Analyzed Intervals 

AV AV

1st 50th

Revisions

.  .  . AV AV

(50·(n-1))th (50·n)th

First Interval

Last Interval

AV analyzed Versions not analyzed Versions

AV AV

1st 50th

Revisions

.  .  . AV AV

(50·(n-1))th (50·n)th

First Interval

Last Interval

AV analyzed Versions not analyzed Versions



 

)(),,(
1

0
10 %

=
=

t

tt
tEchangettEuencyChangeFreq  

Equation 7 
 

),,(

)(
),,(

10
10

1

0

ttEuencyChangeFreq

Echurn
ttErnAverageChu

t

tt
t%

==  

Equation 8 
 

If there is a change in the status within revision t0 to 
revision t1, it would not be possible to identify whether 
the changes or churns are associated with the code 
smell or not. Thus we eliminated those transitions from 
our study.  We identified two stable transitions: a 
normal class (i.e., non-infected class - NC) at time t0 to 
normal class at t1 denoted as NCNC (Equation 9) and a 
smell class (i.e., infected class - SC) at time t0 to smell 
class at t1 denoted as SCSC (Equation 10). If we 
include classes appearing and disappearing, i.e., the 
transitions to and from NC or SC to non-existing class 
(NA) then we have eight possible transitions as shown 
in Figure 6. 

 
 

),(

)),(),((),,,(

1

1010

FESuspect

FESuspectFESuspectttFENCNC

t

tt

¬∧
===

 
Equation 9 

 

),(

)),(),((),,,(

1

1010

FESuspect

FESuspectFESuspectttFESCSC

t

tt

∧
===

 

Equation 10 
 

5. Results 
5.1 Results of Research Question I 
 

The analysis of the evolution of the code smells in 
the system is based on a comparison of the set of 
classes which are infected with a certain smell F at 
time t relative to the set of all classes in the system at 
time t (RFEt(S,F), the number of infected classes, FEt, 

divided by the number of all classes, TEt, in the 
system).  

We investigated the evolution of each analyzed 
revision compared to the previous one with respect to  
patterns in the behavior of the relative number of code 
smells. Patterns were identified as  increasing 
(RCSIt(S,F), Equation 11), decreasing (RCSDt(S,F), 
Equation 12) or stable (RCSSt(S,F), Equation 13). In 
order to avoid a too fine a grained result which might 
lead to an overfitting of the analysis, we defined 
thresholds for the indication of significant increases or 
decreases in the relative number of code smells (TCS). 
The thresholds are 0.5% for the God Class and 0.28% 
for Shotgun Surgery smell were used. These are 
generic values, based on the mean of 1/10 of the 
distance between the observed maximum and 
minimum value of the relative number of a certain 
smell over both projects. 

)1(
,0

),(),(,1
),( 1

≥
!
"
# +>

= −

t
else

TFSRFEFSRFE
FSRCSI CStt

t  

Equation 11 
 

)1(
,0

),(),(,1
),( 1

≥
!
"
# −<

= −

t
else

TFSRFEFSRFE
FSRCSD CStt

t  

Equation 12 
 

)1(
,0

),(),(),(,1
),( 11

≥
!
"
# +<<−

= −−

t
else

TFSRFEFSRFETFSRFE
FSRCSS CSttCSt

t

 
Equation 13 

 

Observing the evolution behavior of the code smell 
density allows us an identification and interpretation of 
three different evolution phases, listed below: 

Positive evolution: 
RCSDt(S,F) = 1; the relative number of classes 

infected with code smells is decreasing significantly. 
Decreases in the relative number of code smells 

may imply that code smells were reduced on purpose 
(i.e., by refactoring) or that newly added classes are 
mostly non-infected.  

Stable evolution:  
RCSSt(S,F) = 1; the relative number of classes 

infected with code smells is stable.  
The density of code smells in the system remains 

stable, if the absolute number of infected classes 
behaves proportional to the system size. This may 
imply that performed maintenance tasks did not lead to 
a further infection of classes. Furthermore it might 
show that added or deleted classes contain a 
proportional subset of infected classes. 

Lifecylcle of 
Class A

Lifecylcle of 
Class B

Lifecylcle of 
Class C

Lifecylcle of 
Class D

1 2 3 4

Class features a Code Smell

Class does not feature a Code Smell

NC SC SC SC

NC NC NC SC

NA NC SC NC

SC NC SC NA

Lifecylcle of 
Class A

Lifecylcle of 
Class B

Lifecylcle of 
Class C

Lifecylcle of 
Class D

1 2 3 4

Class features a Code Smell

Class does not feature a Code Smell

NC SC SC SC

NC NC NC SC

NA NC SC NC

SC NC SC NA

Figure 6. Only the stable transition sets of 
Class A and Class B are used for the analysis



Negative evolution: 
RCSIt(S,F) = 1; the relative number of classes 

infected with code smells is increasing significantly.  
The increase of the relative number of classes 

infected with code smells may imply that functionality 
was added to the system by extending existing classes, 
which led to an infection with code smells or by adding 
new, infected classes. Another reason would be the 
reduction of functionality by deleting mostly non-
infected classes. 

Even more specific assumptions and interpretations 
of each phase are possible if we enrich this information 
with the observed evolution of the system size.  
 
5.1.1. God Class. The first analyzed revision of 
Lucene (date 10/06/03) had five (5) God Classes and 
the last version analyzed (01/04/09) had 21 god 
classes. The first analyzed revision of Xerces 2 J (date 
11/03/99) contained 12 God Classes. Its last analyzed 
version (05/02/05) had 69 God Classes. Those values 
are also the minimum and maximum of the detected 
absolute number of flawed classes. Figure 7 shows the 
evolution of the God Class code smell in Lucene, 
concerning the relative number of infected classes. 
Figure 8 shows the same information for Xerces. 
 

 

In the historical data of Lucene we can identify four 
successive evolution phases. Initially we can see a 
stable evolution with increasing system size at the end 
of the phase. The second phase shows a negative 
evolution whereas the system size stays stable. A 
possible interpretation is that the maintenance tasks on 
existing classes led to an infection of some classes with 
the God Class code smell. This phase is followed by a 
positive and partially stable evolution. Since the 
system size does not show a significant change, this 
may imply that a refactoring was performed, focused 
on the reduction of God Class smells. Finally the 
system shows a stable evolution phase with an increase 
in system size. In this phase, new smells were 
introduced proportional to the absolute number of 
classes. 

Xerces historical data can be partitioned into six 
God Class evolution phases. Initially we observed a 
positive evolution with a strong increase in the system 
size and a simultaneous decrease in the relative number 
of God Classes (but a slight increase of the absolute 
number of God Classes). The second phase shows a 
negative evolution since the number of code smells is 
increasing at a higher speed than the system size. The 
following phase indicates a positive / stable evolution 
with one negative outlier in the middle. Since the 
system size is increasing, at some points significantly 
(more than 10%, relative to the size of the first 
revision), we can assume that new classes were added 
to the system with no or just a few God Classes. The 
fourth detected phase shows a negative / stable 
evolution. The last revision in the phase shows a 
dramatic reduction in the system size with the relative 
number of code smells increasing; this may imply that 
a subsystem was deleted which did not contain any 
smells or just a few. The next phase shows a 
stabilization of the system with a small increase in the 
relative number of God Classes. The last phase again 
shows a negative evolution with a significant decrease 
in system size, as before, this may imply the deletion 
of a subsystem with a low God Class density. 
 

 

Consider our initial hypotheses about God Classes: 
H1 (The total number of code smells increases 
steadily) and H2 (The relative number of components 
having code smells increases over time). Since we can 
identify revisions that show a reduction in the absolute 
number as well as in the relative number of detected 
smells, we should reject both hypotheses. However, we 
can identify a large correlation between system size 
and the number of God Class smells (0.83 for Lucene 
and 0.77 for Xerces). This also leads to the assumption 
that the bigger the size of a system the more God 
Classes it contains. 
 
5.1.2 Shotgun Surgery. The first analyzed revision of 
Lucene (date 10/06/03) had five (5) classes infected 
with the Shotgun Surgery code smell and the last 

Figure 7. God Class Evolution (Relative), 
Lucene 

God Class Evolution (Relative), Apache Lucene

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

10
.0

6.
03

02
.0

6.
04

06
.0

6.
04

10
.0

6.
04

02
.0

6.
05

06
.0

6.
05

10
.0

6.
05

02
.0

6.
06

06
.0

6.
06

10
.0

6.
06

02
.0

6.
07

06
.0

6.
07

10
.0

6.
07

02
.0

6.
08

06
.0

6.
08

10
.0

6.
08

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

0
50
100
150
200
250
300
350
400

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

Relative Number of classes infected w ith the God Class code smell at time t

System size (Number of  classes) at time t

stable
evolution

negative / s. 
evolution positive / stable evolution stable evolution

God Class Evolution (Relative), Apache Lucene

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

10
.0

6.
03

02
.0

6.
04

06
.0

6.
04

10
.0

6.
04

02
.0

6.
05

06
.0

6.
05

10
.0

6.
05

02
.0

6.
06

06
.0

6.
06

10
.0

6.
06

02
.0

6.
07

06
.0

6.
07

10
.0

6.
07

02
.0

6.
08

06
.0

6.
08

10
.0

6.
08

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

0
50
100
150
200
250
300
350
400

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

Relative Number of classes infected w ith the God Class code smell at time t

System size (Number of  classes) at time t

stable
evolution

negative / s. 
evolution positive / stable evolution stable evolution

God Class Evolution (Relative), Apache Xerces 2 J

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

11
.0

3.
99

03
.0

3.
00

07
.0

3.
00

11
.0

3.
00

03
.0

3.
01

07
.0

3.
01

11
.0

3.
01

03
.0

3.
02

07
.0

3.
02

11
.0

3.
02

03
.0

3.
03

07
.0

3.
03

11
.0

3.
03

03
.0

3.
04

07
.0

3.
04

11
.0

3.
04

03
.0

3.
05

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

0
100
200
300
400
500
600
700
800

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

Relative Number of classes infected w ith the God Class code smell at time t

System size (Number of classes) at time t

negative evolution
positive / stable

evolution
negative / s. 

evolution stable evolutionp. e.

God Class Evolution (Relative), Apache Xerces 2 J

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

11
.0

3.
99

03
.0

3.
00

07
.0

3.
00

11
.0

3.
00

03
.0

3.
01

07
.0

3.
01

11
.0

3.
01

03
.0

3.
02

07
.0

3.
02

11
.0

3.
02

03
.0

3.
03

07
.0

3.
03

11
.0

3.
03

03
.0

3.
04

07
.0

3.
04

11
.0

3.
04

03
.0

3.
05

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

0
100
200
300
400
500
600
700
800

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

Relative Number of classes infected w ith the God Class code smell at time t

System size (Number of classes) at time t

negative evolution
positive / stable

evolution
negative / s. 

evolution stable evolutionp. e.

Figure 8. God Class Evolution (Relative), 
Xerces 



version analyzed (01/04/09) had 17 classes. The first 
analyzed revision of Xerces 2 J (date 11/03/99) 
contained three (3) infected classes. Its last analyzed 
version (05/02/05) had 69 classes featuring the 
Shotgun Surgery smell. Similar to god classes, these 
values are the detected minimum and maximum of the 
detected absolute number of classes with Shotgun 
Surgery. Figure 9 shows the evolution of the Shotgun 
Surgery code smell in Lucene, concerning the relative 
number of infected classes. And Figure 10 shows the 
same information for Xerces. 
 

 

The historical data of Lucene features six different 
phases concerning the evolution of Shotgun Surgery 
smells. Initially, we can identify a negative / stable 
evolution with one positive outlier; since the system 
size is not or only slightly increasing we can assume 
that maintenance tasks led to an infection of existing 
classes with the Shotgun Surgery smell. The second 
phase shows a positive evolution with a rather stable 
system size. This may imply that maintenance tasks 
were focused on an improvement of the design. This is 
followed by a small negative phase which led to an 
increase in smells. Since the system size is stable, this 
implies that existing classes got infected with code 
smells. In phase four we can see again a positive 
evolution; since the system size is increasing we can 
assume that smells where also reduced on purpose. The 
following phase features a negative evolution; since the 
system size is increasing we can assume that newly 
added classes which coupled with existing classes led 
to an infection of them with the Shotgun Surgery 
smell. The final phase shows a positive evolution with 
a simultaneous increase in the system size, which may 
imply that maintenance tasks were performed in order 
to reduce the existing, excessive low level coupling 
which also led to a reduction of the smells density. 

Xerces’ historical data also allows the partition into 
six phases. Initially we observed a negative / stable 
evolution connected with a simultaneous increase in 
the system size. This may imply that, since the system 
grew, new classes got coupled to existing classes 

which led to an infection with the Shotgun Surgery 
smell. Phase one is followed by a stable phase 
concerning the relative number of infected classes and 
the system size. After a short negative evolution phase 
with the same implications as the first phase, the 
evolution gets stable again with an insignificant subset 
of outliers. The fifth phase shows a negative evolution, 
with an initial significant decrease in the system size. 
This may imply that a subsystem with a low Shotgun 
Surgery density was deleted. Afterwards the system 
again shows a stable evolution with only insignificant 
changes in the system size and the number of infected 
classes. The last phase again shows a negative 
evolution with the same implications as in phase five, 
since the system size is significantly decreasing. 

Since the observed evolution of the Shotgun 
Surgery code smell features intervals with a reduction 
of the absolute as well as the relative number of 
infected classes we can reject H1 and H2 for both 
projects. Still, we can see the same large correlation as 
for God Class smells, concerning the system size and 
the number of Shotgun Surgery smells (0.94 for 
Lucene and 0.88 for Xerces). 
 

 

5.2. Results of Research Question II 
 

This section presents the results concerning the 
change frequency and change size of infected and non-
infected classes. To test that the results were directly 
related to the investigated code smell and not co-
influenced by the other smell. Therefore, we 
investigated the intersections of infected class in the 
last revision of both systems. There is an intersection 
of 0.28% in Lucene and 0.97% in Xerces of classes 
which exhibit both smells. Based on this insignificant 
intersection we can interpret the results for both smells 
independently of each other.  
 
5.2.1 Part I: Entity change behavior. The results of 
this section address H3 (The change proneness of 
components with smells is higher than the ones 
without). 

Figure 10. Shotgun Surgery Evolution 
(Relative), Xerces 

0
100
200
300
400
500
600
700
800

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

11
.0

3.
99

03
.0

3.
00

07
.0

3.
00

11
.0

3.
00

03
.0

3.
01

07
.0

3.
01

11
.0

3.
01

03
.0

3.
02

07
.0

3.
02

11
.0

3.
02

03
.0

3.
03

07
.0

3.
03

11
.0

3.
03

03
.0

3.
04

07
.0

3.
04

11
.0

3.
04

03
.0

3.
05

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

Shotgun Surgery Evolution (Relative), Apache Xerces 2 J

Relative Number of classes infected with the Shotgun Surgery code smell at time t

System size (Number of classes) at time t

negative / stable 
evolution

stable 
evolution

n. 
e. stable evolution n. e. stable evolution

Shotgun Surgery Evolution (Relative), Apache Lucene

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

10
.0

6.
03

02
.0

6.
04

06
.0

6.
04

10
.0

6.
04

02
.0

6.
05

06
.0

6.
05

10
.0

6.
05

02
.0

6.
06

06
.0

6.
06

10
.0

6.
06

02
.0

6.
07

06
.0

6.
07

10
.0

6.
07

02
.0

6.
08

06
.0

6.
08

10
.0

6.
08

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

0
50
100
150
200
250
300
350
400

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

Relative Number of classes infected w ith the Shotgun Surgery code smell at time t

System size (Number of  classes) at time t

negative evolution
positive 

evolution positive evolutionp. e.
negative 
evolution

Shotgun Surgery Evolution (Relative), Apache Lucene

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

10
.0

6.
03

02
.0

6.
04

06
.0

6.
04

10
.0

6.
04

02
.0

6.
05

06
.0

6.
05

10
.0

6.
05

02
.0

6.
06

06
.0

6.
06

10
.0

6.
06

02
.0

6.
07

06
.0

6.
07

10
.0

6.
07

02
.0

6.
08

06
.0

6.
08

10
.0

6.
08

R
el

at
iv

e 
# 

of
 C

od
e 

Sm
el

ls

0
50
100
150
200
250
300
350
400

Sy
st

em
 s

iz
e 

(#
cl

as
se

s)

Relative Number of classes infected w ith the Shotgun Surgery code smell at time t

System size (Number of  classes) at time t

negative evolution
positive 

evolution positive evolutionp. e.
negative 
evolution

Figure 9. Shotgun Surgery Evolution 
(Relative), Lucene 



To analyze the statistical difference in the change 
behavior of classes which are infected with a code 
smell and non-infected classes, we applied a two-
sample t-test (Difference between means !) on the 
collected data. The two samples are the change 
information of the classes with stable transitions 
without smell (NCNC) and the stable transitions with 
smells (SCSC) (See section 4.3.2). As level of 
significance, we use a p-value of 0.05. 

Table 3 shows the characteristics of the two 
samples as well as the result of the hypothesis test 
applied on the change data of Lucene and Xerces 
considering the God Class smell. 
 

Table 3. Entity change behavior, Lucene and 
Xerces, God Class Code Smell 

Stable transitions without smell Stable transitions with smell 
 Lucene Xerces  Lucene Xerces 

1n  4602 26121 2n  282 2148 

1X  0.45 0.22 2X  1.79 1.08 

1s  0.86 0.64 2s  2.61 2.20 
Lucene: 16

21 1096.3:;0: −⋅−<− valuepH A µµ  
Xerces: 68

21 1028.2:;0: −⋅−<− valuepH A µµ  
 

Table 4. Entity change behavior, Lucene and 
Xerces, Shotgun Surgery Code Smell 

Stable transitions without smell Stable transitions with smell 
 Lucene Xerces  Lucene Xerces 

1n  4622 27388 2n  276 924 

1X  0.53 0.28 2X  0.68 0.67 

1s  1.09 0.88 2s  2.61 1.54 
Lucene: 034.0:;0: 21 valuepH A −<− µµ  

Xerces: 14
21 1091.1:;0: −⋅−<− valuepH A µµ  

 

Based on the applied two-sample t-test on the 
experimental data, we can see that classes which are 
infected with a God Class code smell get changed 
significantly more often in both projects. Therefore we 
can accept H3. This is an expected behavior since a 
god class describes a class which tends to centralize the 
intelligence of the system; consequently, it is necessary 
to ‘touch’ it more often than a regular class.  

The calculated mean values ( 1X ; 2X ) about the 
frequency of performed changes (within each 50th 
revision) show that god classes get changed 4 times 
more often in Lucene and 5 times more often in 
Xerces.  

Table 4 shows the characteristics of the two 
samples as well as the result of the hypothesis test 
applied on the change data of Lucene and Xerces 
considering the Shotgun Surgery smell. 

The analysis of the change behavior of classes 
infected with a Shotgun Surgery smell was mainly 
done for comparison to the god class behavior. The 

change behavior of classes infected with Shotgun 
Surgery smell does not allow an investigation of the 
actual maintenance issues caused by the smell (changes 
on the infected component cause a lot of minor 
changes on coupled components).  For the analysis of 
this issue the change behavior of the coupled classes in 
relation to changes on class infected by Shotgun 
Surgery would have to be investigated. However, we 
can assume that classes infected with a Shotgun 
Surgery smell may show a higher change frequency, 
since they might be used as e.g., function libraries or 
data access classes, thus, their functionality has to be 
improved more often, which leads to more changes.  

Similar to the God Class smell, classes which are 
infected with Shotgun Surgery show a significantly 
higher change frequency compared to non-infected 
classes for both projects. Based on the t-test result we 
can accept H3 for Shotgun Surgery code smells.  
 
5.2.2. Part II: Entity churn comparison. This section 
contains the results regarding H4 (The size of changes of 
infected classes is significant larger than the size of changes 
on non-infected classes.) Similar to the analysis of the change 
behavior, we also applied a two sample t-test to identify 
significant differences in the change size between classes 
which provide stable transitions with smell (SCSC) and the 
ones with stable transitions without smell (NCNC). Again we 
use a p-value of 0.05 as level of significance. 
 

 Table 5. Entity churn comparison, Lucene and 
Xerces, God Class Code Smell 

Stable transitions without smell Stable transitions with smell 
 Lucene Xerces  Lucene Xerces 

1n  1409 4249 2n  169 993 

1X  24.72 32.67 2X  45.05 43.91 

1s  35.91 68.65 2s  387.90 140.11 
Lucene: 00027.0:;0: 21 valuepH A −<− µµ  
Xerces: 007,0:;0: 21 valuepH A −<− µµ  
 

Table 6. Entity churn comparison, Lucene and 
Xerces, Shotgun Surgery Code Smell 

Stable transitions without smell Stable transitions with smell 
 Lucene Xerces  Lucene Xerces 

1n  1497 5007 2n  100 296 

1X  27.99 32.67 2X  25.32 36.03 

1s  44.61 101.18 2s  27.27 69.73 
Lucene: 82.0:;0: 21 valuepH A −<− µµ  
Xerces: 55.0:;0: 21 valuepH A −<− µµ  
 

Table 5 shows the characteristics of the two 
samples as well as the result of the hypothesis test 
applied on the change data of Lucene and Xerces 
concerning the God Class smell. The two sample t-
tests on the experimental data shows that the size of 
changes is significantly larger for classes which are 



infected with the God Class code smell that non-
infected classes. Thus we can accept H4.  

The calculated mean values ( 1X ; 2X ) concerning 
the average code churn (within each 50th revision) 
shows that the change size of god classes is 1.8 times 
higher in Lucene and 1.3 times in Xerces. 

Table 6 shows the characteristics of the two 
samples as well as the result of the hypothesis test 
applied on the change data of Lucene and Xerces 
concerning the Shotgun Surgery smell. 

The applied two sample t-test on the experimental 
data shows that there is no significant difference 
concerning the size of changes on classes infected with 
the Shotgun Surgery smell and non-infected classes. 
Thus H4 is rejected. The calculated mean values 
( 1X ; 2X ) show that the average code churn is even 
lower (but not significant) for classes infected with the 
Shotgun Surgery smell. 
 
6. Validity 
 

In this section we will discuss the different internal 
and external threats of the validity in this study. 

This was an exploratory study. Although we tried 
to select two projects for this initial study that were 
representative of open source projects, the results may 
not be generalizable to all open source projects or to 
non-open source projects. More evidence of these 
results needs to be gathered from other open source 
projects and software systems with different 
characteristics (e.g., system size, problem domain).  

The detection of code smells in this study is based 
on detection strategies (See section 2.). Even though 
detection strategies deliver many advantages compared 
to manual code inspections, they offer the chance for 
measurement error, i.e., were the right metrics and 
thresholds chosen? 

Another confounding factor is the aggregation of 
changes (See section 4.3). Since we only analyzed the 
infection status of each 50th revision it might be 
possible that we missed changes in the infection status 
between the analyzed revisions. This could affect our 
second research question. For example, it is possible 
that some change data is assigned to the wrong group 
since the respective entity had a different infection 
status at time t0 and t1 then within the interval (t0, t1). 
Since we can assume that such exceptions occur 
uniformly distributed for both cases we can ignore this 
issue. However, a more fine grained aggregation or the 
complete abdication of it would avoid such doubts. 

As described in section 4.1, we analyzed only the 
public class for each source file. This was done 
because of restrictions of the tool framework used. 
Even if we can assume that this class is the most 

important, we might be losing information. Further 
studies should take multiple classes per source file into 
account. 

Since this study is focused on the influence of code 
smells, we did not take other possible influencing 
factors into account, such as the authors that worked on 
the system or the underlying development processes. In 
future studies it is necessary to find a way to deal with 
those factors. 
 
7. Conclusion 
 

In this study we offered an approach for analyzing 
the evolution of code smells on software systems and 
the impact on the frequency and size of changes. The 
analysis identifies different phases in the evolution of 
the system that point to periods of time when ‘good’ or 
‘bad’ evolution is occurring. Good or bad is with 
respect to the increase or decrease of code smells 
infected components. We believe that a more fine 
grained approach on the entity level would provide 
even more insights on the effects of the code smells in 
the software evolution (see section 5.1). Only an 
analysis which takes the evolution of each class into 
account would provide all the information needed for a 
comprehensive interpretation of the system evolution. 
However, as shown in this paper, the observed code 
smell density can be used to show some patterns in the 
evolution of the software systems and can be used to 
compare behaviors. 

With regard to change behavior, in this study the 
classes infected with code smells have a higher change 
frequency; such classes seem to need more 
maintenance than non-infected classes; furthermore 
God Classes feature bigger changes Thus, the 
probability is higher that maintenance tasks take more 
effort since more modifications to the code (i.e., 
modifying, adding or deleting) is required. Initially we 
made the assumption that classes infected with shotgun 
surgery would have a lower change frequency since 
people would be hesitant to touch them because this 
implies too many changes on coupled classes and thus 
too much effort. The results here show that, in fact, 
those classes are touched much more than normal 
classes. One possible explanation for this is that since 
they provide functionality for a lot of components in 
the system, their functionality has to be extended more 
often. The monitored frequency of changes and change 
size can be used as indicators of when refactoring on a 
specific entity is necessary. The results also may imply 
that the negative impact of shotgun surgery is lower 
compared to god class since the changes are not as big, 
but further analysis needs to be performed in order to 
verify the results in other systems and investigate the 



issues caused by the afferent coupling. 
Contributions of this work include the application 

of strategies and code smells to the analysis of 
historical data on the evolution of software systems. 
Specifically, the analysis of two large, multi-year 
developments, opening the opportunity for analysis of 
a variety of systems and diverse analysis on the 
behavior of the systems infected with code smells. 

Based upon this first insight into the evolution of 
code with respect to code smells and their influence on 
the change frequency and size in open source projects, 
it would be interesting to investigate the evolution of 
closed source projects for comparison as well as other 
open source systems with different characteristics. A 
long term goal would be the creation of thresholds for 
acceptable levels of code smell densities in different 
environments. For Shotgun Surgery in particular, we 
want to investigate afferent coupling issues to better 
understand its impact on the software evolution. We 
intend on implementing other code smells detection 
strategies and analyze their impact on the software 
system evolution as well as analyzing the effects of 
multiple code smells in a class. 
 
8. Acknowledgements 
 

This research was supported in part by NSF grant 
CF0438933, "Flexible High Quality Design for 
Software" to the University of Maryland. The authors 
would like to thank Dr. Forrest Shull for comments 
during the work on this project. 
 
9. References 
 
[1] Bieman, J.; Kang, B. (1995). Cohesion and reuse in an 
object oriented system. Proceedings of ACM Symposium on 
Software Reusability (SSR'95), 259-262. 
 
[2] Chidamber, S. R.; Kemerer, C. F. (1994). A metrics suite 
for object oriented design. IEEE Transactions on Software 
Engineering, 20(6):476-493, June 1994. 
 
[3] Deligiannis, Ignatios; Stamelos, Ioannis; Angelis, 
Lefteris; Roumeliotis, Manos; Shepperd, Martin (2003). A 
controlled experiment investigation of an object oriented 
design heuristic for maintainability Journal of Systems and 
Software, v.65 n.2, p.127-139, 15 February 2003. 
 
[4] Deligiannis, I.; Shepperd, M.; Roumeliotis, M.; Stamelos, 
I. (2004). An empirical investigation of an object-oriented 
design heuristic for maintainability. The Journal of Systems 
and Software 72 (2), 129-143. 
 
[5] Demeyer, S.; Ducasse, S.; Nierstarsz, O. (2002). Object-
Oriented Reengineering Patterns. Morgan Kaufmann. 

 
[6] Fowler, Martin (1999). Refactoring. Improving the 
Design of Existing Code. Addison-Wesley. 
 
[7] Johnson, R.E.; Foote, B. (1988). Designing reusable 
classes. Journal of Object-Oriented Programming, Journal of 
Object Oriented Programming 1, 2 (June/July 1988), 22-35. 
 
[8] Koru, A. Günes (2005). Comparing High-Change 
Modules and Modules with the Highest Measurement Values 
in Two Large-Scale Open-Source Projects. IEEE Trans. 
Software Eng. 31(8): 625-642 (2005). 
 
[9] Li, Wei. Shatnawi, Raed (2007): An empirical study of 
the bad smells and class error probability in the post-release 
object-oriented system evolution. Journal of Systems and 
Software 80(7): 1120-1128. 
 
[10] McCabe, T. (1976). A measure of complexity. IEEE 
TSE 2(4):308-320, Dec. 1976. 
 
[11] Mäntylä, Mika. Vanhanen, Jari and Lassenius, Casper 
(2003): A Taxonomy and an Initial Empirical Study of Bad 
Smells in Code. ICSM 2003: 381-384. 
 
[12] Mäntylä, M.; Vanhanen, J.; Lassenius, C. (2004). Bad 
Smells - Humans as Code Critics. ICSM 2004: 399-408. 
 
[13] Marinescu, R. (2001). Detecting Design Flaws via 
Metrics in Object-Oriented Systems. TOOLS (39): 173-182. 
 
[14] Marinescu, Radu (2002). Measurement and Quality in 
Object-Oriented Design. Ph.D. Thesis, Department of 
Computer Science, "Politehinca" University of Timisora. 
 
[15] Marinescu, Radu (2004). Detection Strategies: Metric 
Based Rules for Detecting Design Flaws. ICSM 2004: 350-
359. 
 
[16] Marinescu, Radu; Lanza, Michelle (2006). Object-
Oriented Metrics in Practice. Springer. 
 
[17] Ratiu, Daniel; Ducasse, Stéphane; Girba, Tudor; 
Marinescu, Radu (2004). Using History Information to 
Improve Design Flaws Detection. CSMR 2004: 223-232. 
 
[18] Riel, Arthur (1996). Object-Oriented Design Heuristics. 
Addison Wesley. 
 
[19] Rising, L.S.; Calliss, F.W. (1993). An experiment 
investigating the effect of information hiding on 
maintainability. 12th Ann. Int. Phoenix Conference on 
Computers and Communication, March, pp. 510-516. 
 
[20] Wilde, N.; Mathews, P.; Ross, H. (1993). Maintaining 
Object-Oriented Software. Addison-Wesley. 
 

 


