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ABSTRACT 

We report on a preliminary case study to examine software safety 

risk in the early design phase of the NASA Constellation 

spaceflight program.  Our goal is to provide NASA quality 

assurance managers with information regarding the ongoing state 

of software safety across the program.  We examined 154 hazard 

reports created during the preliminary design phase of three major 

flight hardware systems within the Constellation program.  Our 

purpose was two-fold: 1) to quantify the relative importance of 

software with respect to system safety; and 2) to identify potential 

risks due to incorrect application of the safety process, 

deficiencies in the safety process, or the lack of a defined process.  

One early outcome of this work was to show that there are 

structural deficiencies in collecting valid safety data that make 

software safety different from hardware safety. In our conclusions 

we present some of these deficiencies. 

Categories and Subject Descriptors 

D.2.8 Metrics: Process metrics; D.2.9 Management: Software 

quality assurance 

General Terms 

Measurement, Reliability, Experimentation. 

Keywords 

Case study, NASA, Risk analysis, Safety metrics. 

1. INTRODUCTION 
Software safety has become a prominent issue due to the larger 

role software plays in complex systems of systems.  

Contemporary systems are more distributed and network-

connected than their predecessors and thus often contain greater 

amounts of software control.  These systems are constructed using 

many suppliers whose products fulfill a wide variety of roles in 

the systems, all of which must be integrated into a uniform vision.  

Complex hardware and software systems, such as automobiles, 

defense systems and heart monitors, are often safety-critical.  A 

safety-critical system is a system where a hardware, software or 

operational failure could result in loss of life, health or property.   

Assuring that such a system is acceptably safe is a challenging 

task that is often complicated by multiple suppliers using different 

approaches to address safety (and development in general).  

The problem we address is how to evaluate software safety during 

the development of large, complex systems.  Systems engineers, 

despite their expertise in hardware safety, are often unfamiliar 

with software risks.  This inexperience is compounded when the 

software safety process is not well-defined, lacks prescriptive 

guidance, and is not uniformly applied.  The challenge is to assist 

safety assurance personnel to monitor the quality of the software 

safety process, to identify areas of risk where software safety is 

not being appropriately addressed, to provide support for 

mitigating these risks and to recommend solutions for improving 

the software development process with regard to safety.  

The goal of our case study was to implement a software safety 

measurement program on a large, safety-critical system of 

systems: the NASA Constellation program.1  As NASA’s next 

generation spaceflight program, Constellation consists of rocket 

propulsion, a crew module, operations, and many more systems.  

Our approach to measuring software safety, originally developed 

for a large U.S. Department of Defense program [2], provides 

early visibility into the implementation of the fault-tree based 

hazard analysis process.  Our approach serves a two-fold 

purpose: 1) to assist safety assurance personnel in identifying 

system components of greatest software safety risk; 2) to identify 

potential risks due to incorrect application of the safety process, 

deficiencies in the safety process, or the lack of a defined process.   

This case study describes the application of our software safety 

measurement program to three spaceflight hardware systems in 

the Constellation program.  In this short paper, we focus on 

hidden process-related risks that we uncovered while applying our 

measurement program.  These risks are the result of the 

inconsistent application of the software safety process.  

2. BACKGROUND 
Software has played a critical role in system safety for some time.  

The root failure of the Ariane 5 Flight 501 rocket explosion was a 

numeric overflow [1], the Mariner 1 satellite was lost during 

launch because the correct requirement was mistranslated and 

unverified [4], and race conditions in the software controlling the 

safety mechanisms of the Therac-25 allowed lethal doses of 

radiation to be delivered to four people [6].  While software 

generated the root causes for these failures, each failure was 

                                                                 

1 Although it has been proposed that the Constellation program be 

terminated, several of the components of Constellation are expected to 

continue through implementation. 
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systemic in that the failure propagated through requirements, 

design, implementation, verification and project management.   

Most research in software safety focuses on a model of risk where 

the software being developed contains critical flaws, and methods 

are developed to find and quantify those risks.  Common safety 

analysis techniques, such as Failure Model Effects Analysis 

(FMEA) [7] and Fault Tree Analysis (FTA) [8], follow this 

model.  These techniques identify various components of the 

system and their interactions, potential areas where there can be 

defects in the tree are identified, and the effects of those defects 

are traced through the software design. Corrections to mitigate 

those flaws are developed as modifications to the design. 

2.1 The Software Safety Process on the 

Constellation Program 
The hardware and software safety processes for the Constellation 

program are governed by a number of official process documents.  

These documents provide outlines for the safety analyses to be 

performed, when the analyses should be performed, on what 

system components, and what safety artifacts should be delivered 

for development milestones.  The safety analysis techniques 

include hazard analysis, FMEA, probabilistic risk assessment, and 

many more.  The process documents governing the use of these 

techniques often do not prescribe how software should be 

handled.  In practice, the engineers must use their best judgment 

and consult NASA safety personnel on how best to apply these 

techniques to software.  System safety is overseen by NASA 

safety assurance personnel, who evaluate the safety analysis 

artifacts for completeness and quality.  Safety analysis artifacts, 

including hazard reports, FMEA worksheets, and system 

requirements that mitigate safety risks, are coordinated through a 

number of shared databases. 

The focus of our software safety measurement approach has been 

the hazard analysis process.  Hazard analysis is a fault-tree-based 

method that examines high level hazardous conditions (e.g. fuel 

tank explosion), identifies the potential causes of that condition, 

and creates design strategies or operational procedures for 

preventing those causes or mitigating their effects.  The primary 

output of hazard analysis is the hazard report (HR), which 

documents the hazard and is stored in the Constellation hazard 

tracking system (HTS).  Hazards have three attributes of interest: 

 Causes – The root or symptomatic reason for the occurrence 
of a hazardous condition; 

 Controls – An attribute of the design or operational 
constraint of the hardware/software that prevents a hazard or 
reduces the residual risk to an acceptable level; 

 Verifications – A method for assuring that the hazard control 
has been implemented and is adequate through test, analysis, 
inspection, simulation or demonstration. 

Project safety engineers with expertise in a specific area perform 

the hazard analysis.  At various times, checkpoint meetings are 

held by the Constellation Safety & Engineering Review Panel 

(CSERP), which acts as gatekeeper for development milestones.  

At each milestone, the development groups identify safety risks in 

system operation and design and create strategies (controls) for 

mitigating those risks.  The CSERP reviews the risks and the 

operational procedures or design strategies for mitigating these 

risks and makes recommendations for further analysis or the 

design of new controls. When applied to software, The CSERP 

assesses the hazard analysis process by measuring the levels of 

consistency and discipline that are applied in identifying and 

mitigating software-related hazards.  

3. CASE STUDY DESIGN 
Our goal is to develop and implement a set of process output 

measures that provide visibility into the system (and software) and 

the development process.  These measures provide information 

that will make a lack of process visible, and provide insights into 

weakness in the current processes.  The approach is based upon 

the premise that there is a relationship between the processes used 

during system development and the product's characteristics.  A 

lack of process implies a risk of not achieving the anticipated 

product characteristics. Analyzing the execution of the process 

through intermediate process artifacts provides insight into 

whether appropriate processes are being performed and performed 

appropriately.  

We first identified areas where software safety risk could 

potentially be measured by artifact analysis.  We then performed 

the following steps:  

1. Define goals and questions for each risk area to expose risks 

associated with software safety process artifacts. 

2. Develop and enumerate measures and interpretation 

models based on threshold values. 

3. Propose responses to identified risks, e.g., decisions and 

actions. 

We examined the hazards of three Constellation flight hardware 

systems to assist NASA safety personnel in assessing software 

safety and to identify areas of potential risk in the software safety 

process.  No measurement can guarantee software or system 

safety, but areas of risk can be identified.  The three systems were 

in the preliminary design phase of development.  Hazard analysis 

during the preliminary design phase focuses on clear and concise 

evaluation of hazard causes and the identification of an initial set 

of controls.  

We address the following Goal-Question-Metrics (GQM) goals 

[3]: 
1.  Analyze the hazards reported for the three components in 

order to characterize them with respect to the prevalence of 
software in hazards, causes, and controls from the point of 
view of NASA quality assurance personnel in the context of 
the Constellation program. 

2.  Analyze the software causes in the hazard reports for the 
three components in order to evaluate them with respect to 
the specificity of those software causes and hazards from the 
point of view of NASA quality assurance personnel in the 
context of the Constellation program.  

We used specificity, or how well specified were the hazards, as a 

measure of how thorough the development team was in 

performing appropriate safety analyses on their designs. If a 

hazard in the HTS used detailed information in specifying causes, 

we assumed the potential risk was better understood.  

To evaluate specificity, we manually evaluated three attributes for 

each hazard cause: 

 Origin – the name of the software component that fails to 
perform its operation correctly, 

 Erratum – a description of the erroneous command, 
command sequence or failed operation of the software, and 

 Impact – the effect of the erratum where failure to control 
results in the hazardous condition, and if known, the specific 
software or hardware subsystem(s) affected. 



Each cause was given a rating of L1 (all attributes present), L2 
(one or two attributes present), or L3 (no attributes present). The 
cause ratings were then used in an algorithm to generate an 
overall software cause specificity rating for the hazard ranging 
from La (highest, all L1 causes) to Le (lowest, all L3 causes).  
Additional information on these measures can be found in [5] 

3.1 Data collection and analysis 
We applied our analysis to 154 hazards containing 2013 causes 
and 4916 controls in the HTS for the three systems.  We began by 
categorizing cause and controls.  In the HTS, individual causes 
and controls are recorded as separate data fields.  Each control is 
associated with a hazard and, optionally, with one or more causes 
in that hazard.  A hazard may have 3-100+ controls, and 2-40+ 
causes.  We identified each cause and control as software-related 
or not. A software-related cause or control described the behavior 
or design of FCSW (flight computer software), the FC (flight 
computer), a specific CSCI (computer software configuration 
items), or used the word “software.”  Controls could also be 
transferred, meaning that another hazard report defined the 
control.  A cause was determined to be transferred when all of its 
corresponding controls were transferred. 

The categorization data was recorded in a matrix that mapped 
controls (columns) to causes (rows).  The same control could be 
applied to multiple causes, and causes typically had multiple 
controls.  These matrices then served as the basis for counting a 
number of metrics used to answer questions for our GQM goals in 
the previous section.  For full details of the data collection and 
analysis methods, including examples of the cause-control 
matrices, please see [5].  Please note that most of the analysis and 
counting was performed manually.  Random sampling suggests a 
counting error rate of less than 5% for causes and less than 2% for 
controls.   

4. RESULTS 
Table 1 describes the prevalence of software within the HTS 

(Goal 1 for our study, given earlier). Across the three systems, 

51% of the hazards contained at least one software cause (79 out 

of 154). What was also not apparent initially was that an 

additional 11 hazards (7%) that did not have a primary software 

cause had software as part of a control, which potentially can be 

the source of additional software hazards.  That is, the failure of 

software as a control or monitoring mechanism can itself be a 

software cause of a hazard.  Thus, close to 60% of all hazards 

were software-related.  It is clear that software plays a significant 

role in the safety of the Constellation program. 

Table 1. Software hazards in the HTS 

 No software 

causes 

At least one 

software cause 

No software control 64 (42%) 0 

At least one software 

control 
11 (7%) 79 (51%) 

Total 154 

 

A more revealing statistic is given by Table 2, where we look at 

the percent of hazard causes that were software. Of the total of 

2013 causes, 601 (30%) were transferred. A transferred cause 

meant that another hazard report was responsible for documenting 

the controls for that cause. Of the remaining 1412 causes, only 

204 (14%) were software causes. However, an additional 142 

(10%) causes that were not caused by software issues had at least 

one software control. Thus software was involved in almost a 

quarter of all hazard causes, almost double the number of causes 

initially identified as software. 

Table 2. Software causes in the HTS 

 Non-software 

cause 

Software 

cause 

No software control 1066 (76%) 0 

At least one software 

control 
142 (10%) 204 (14%) 

Transferred causes 601 

Total 2013 

 

Goal 2 for our study was harder to realize. Much like the earlier 

DoD study, traceability and specificity of the data was harder to 

quantify. Traceability and data integrity, at least with respect to 

software, were not as well defined as with hardware causes. Of 

the 79 hazards with a software cause, only 8 (10%) were highly 

rated for specificity (La), and 42 (53%) were poorly specified 

(Ld-Le).  Part of the low specificity score was due to the three 

Constellation components being in preliminary design. Much like 

in our evaluation of the DoD project, we observe that additional 

process-related safety risk is introduced when safety engineers 

create and maintain the hazard data manually within the HTS.  

(Note: These systems are not inherently unsafe; only that the 

software quality assurance team cannot certify that due diligence 

was used on analyzing the system for safety risks.) In the next 

section, we describe weaknesses in the hazard process that allow 

for less precise measurements and hence more risk. A more 

complete analysis of the Constellation study is also available [5]. 

4.1 Software safety process risks 
Our experience with an earlier DoD system [2] identified several 

problems in the implementation of a software safety process and 

hazard analysis in particular. Among these were: 

1. Software Hazard Identification. Safety-related 

requirements are often not identified as such.  

2. Hazard Traceability. The hazard tracking database does not 

provide sufficient linkages among the requirements 

documentation system, the test plan, and the defect tracking 

system.  

3. Data Integrity. Hazards and their causes and controls may 

not be described in sufficient detail to be understood and 

verified.   

4. Level of Rigor. There may be difficulty in differentiating 

among different levels of rigor (e.g., criticality of each 

hazard) for the various software safety requirements and 

identifying, assigning, and tracking the appropriate Level of 

Rigor (LoR) to specific software components that implement 

the safety-related requirement.  

Much like our earlier DoD study, traceability of artifacts, 

requirements, and hazards is inconsistent for software. We 

identify several risks inherent in the software safety process that 

increase the risk of not providing sufficient insights into the 

process for appropriate quantification of software safety risk: 

Risk 1 – Lack of consistency in structuring hazard report content, 

causes and control descriptions impairs understanding.   



All hazard reports in the Constellation program follow a standard 

template, but the content of the hazard reports, cause descriptions, 

and control descriptions differed substantially between the three 

programs and between hazard report authors within the same 

program.  This has abated over time as CSERP has worked with 

safety engineers to form a uniform expectation of hazards. 

Risk 2 – Lack of consistent scope in causes and controls impairs 

risk assessment.  

Related to Risk 1, there is a lack of uniformity in scoping software 

causes and controls between projects or between hazard reports 

within the same project.  A cause reading “Generic avionics 

failure or software flaw causes improper operation of control 

thruster” involves software but is not scoped to a specific software 

component as required by NASA procedure. This risk has abated 

over time due to experience, but is still present in some reports. 

Risk 3 – “Lumped” software causes and controls impede 

verification.  

Many hazard reports place all software causes and most software 

controls under a single cause labeled “Software-based error.”  In 

many cases, this cause had a single control with multiple pages of 

software design and operational information.  This large control 

then had a single verification.  This single control, while highly 

detailed, presents risk in that software design and behaviors will 

not be individually verified.   

Risk 4 – Incorrect references to hazard reports, causes and 

controls impair traceability.  

A number of references to missing or incorrect hazard reports, 

causes or controls were observed.  The most substantial risk is 

that a cause may not be adequately controlled when one or more 

of its controls are transferred to an incorrect or missing hazard 

report, cause, or control.  The HTS is being enhanced with some 

automated verification, traceability, and bookkeeping. 

Risk 5 – Sub-controls dissuade independent verification and add 

overhead.  

Many hazards have controls that contain enumerated “sub-

controls.”  Greater confidence in the control may be gained by 

verifying the sub-controls independently.  Controls are an explicit 

attribute of a hazard in the HTS, but sub-controls are not.  Thus, 

references to sub-controls may become lost or incorrect as these 

references must be manually maintained. 

Risk 6 – Ubiquity of transferred causes and controls may mask 

software risk.  

Across the studied components, 30% of causes and 17% of 

controls were transferred. (Note: Controls were only available for 

two of the projects.) While necessary and appropriate in 

documenting hazards, transferred causes and controls represent 

added risk.  The applicability of transferred causes and the 

adequacy of transferred controls must be re-evaluated in their 

original context whenever any changes are made to the hazard.  

Additional bookkeeping is necessary to ensure that the references 

to hazard reports, causes and controls are up to date. 

5. CONCLUSIONS & FUTURE WORK 
Many problems inherent in the hazard reports and the HTS are 

caused by an inadequate vision for the use of the HTS.  The HTS 

is viewed as a storage repository by engineers, but in actuality is 

used to support analysis of the hazard reports by safety assurance 

personnel.  It is important to make sure that (1) the HTS has 

adequate functionality, quality checks, and documentation; (2) 

there is traceability and synchronization among the various 

support systems (e.g., the HTS and the requirements management 

system and the defect tracking system); and (3) the quality of the 

data is monitored to minimize the need for data validation later 

on. The cost of not adhering to this advice is high rework costs 

and lower than desired system safety. Addressing these issues 

should be a part of the software safety development process. 

In the future, we are planning to compare the various systems in 

an attempt to build baselines for the various software measures. 

This will allow us to interpret the data more effectively. For 

example, if the three systems are similar, then we might expect 

software to play a similar role in the causes and controls.  If not, 

how might we characterize the differences? Analysis of the data 

shows that the software related hazards, causes, and controls for 

one project are much lower than those for another. Why might 

this be true?  The two systems may be sufficiently different with 

respect to their use of software, or the incompleteness of the data 

and the numerous transfers may be masking their similarities. 

By analyzing hazard reports, we gained insight into risk areas 

within the software safety analysis process by analyzing its 

process artifacts.  We identified six risks in software safety 

analysis reporting.  We are working with NASA Software 

Reliability and Quality Assurance personnel in an ongoing effort 

to educate NASA safety engineers on describing software safety 

risk, to improve NASA process documents and training materials, 

and to provide tool support to the software safety process.  
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