
Obtaining Valid Safety Data for Software Safety
Measurement and Process Improvement

Victor R. Basili, Marvin V. Zelkowitz
University of Maryland and

Fraunhofer CESE
College Park, MD

{basili,mvz}@cs.umd.edu

Lucas Layman, Kathleen Dangle,
Madeline Diep
Fraunhofer CESE

College Park, MD

{llayman,kdangle,mdiep}@fc-md.umd.edu

ABSTRACT

We report on a preliminary case study to examine software safety

risk in the early design phase of the NASA Constellation

spaceflight program. Our goal is to provide NASA quality

assurance managers with information regarding the ongoing state

of software safety across the program. We examined 154 hazard

reports created during the preliminary design phase of three major

flight hardware systems within the Constellation program. Our

purpose was two-fold: 1) to quantify the relative importance of

software with respect to system safety; and 2) to identify potential

risks due to incorrect application of the safety process,

deficiencies in the safety process, or the lack of a defined process.

One early outcome of this work was to show that there are

structural deficiencies in collecting valid safety data that make

software safety different from hardware safety. In our conclusions

we present some of these deficiencies.

Categories and Subject Descriptors

D.2.8 Metrics: Process metrics; D.2.9 Management: Software

quality assurance

General Terms

Measurement, Reliability, Experimentation.

Keywords

Case study, NASA, Risk analysis, Safety metrics.

1. INTRODUCTION
Software safety has become a prominent issue due to the larger

role software plays in complex systems of systems.

Contemporary systems are more distributed and network-

connected than their predecessors and thus often contain greater

amounts of software control. These systems are constructed using

many suppliers whose products fulfill a wide variety of roles in

the systems, all of which must be integrated into a uniform vision.

Complex hardware and software systems, such as automobiles,

defense systems and heart monitors, are often safety-critical. A

safety-critical system is a system where a hardware, software or

operational failure could result in loss of life, health or property.

Assuring that such a system is acceptably safe is a challenging

task that is often complicated by multiple suppliers using different

approaches to address safety (and development in general).

The problem we address is how to evaluate software safety during

the development of large, complex systems. Systems engineers,

despite their expertise in hardware safety, are often unfamiliar

with software risks. This inexperience is compounded when the

software safety process is not well-defined, lacks prescriptive

guidance, and is not uniformly applied. The challenge is to assist

safety assurance personnel to monitor the quality of the software

safety process, to identify areas of risk where software safety is

not being appropriately addressed, to provide support for

mitigating these risks and to recommend solutions for improving

the software development process with regard to safety.

The goal of our case study was to implement a software safety

measurement program on a large, safety-critical system of

systems: the NASA Constellation program.1 As NASA’s next

generation spaceflight program, Constellation consists of rocket

propulsion, a crew module, operations, and many more systems.

Our approach to measuring software safety, originally developed

for a large U.S. Department of Defense program [2], provides

early visibility into the implementation of the fault-tree based

hazard analysis process. Our approach serves a two-fold

purpose: 1) to assist safety assurance personnel in identifying

system components of greatest software safety risk; 2) to identify

potential risks due to incorrect application of the safety process,

deficiencies in the safety process, or the lack of a defined process.

This case study describes the application of our software safety

measurement program to three spaceflight hardware systems in

the Constellation program. In this short paper, we focus on

hidden process-related risks that we uncovered while applying our

measurement program. These risks are the result of the

inconsistent application of the software safety process.

2. BACKGROUND
Software has played a critical role in system safety for some time.

The root failure of the Ariane 5 Flight 501 rocket explosion was a

numeric overflow [1], the Mariner 1 satellite was lost during

launch because the correct requirement was mistranslated and

unverified [4], and race conditions in the software controlling the

safety mechanisms of the Therac-25 allowed lethal doses of

radiation to be delivered to four people [6]. While software

generated the root causes for these failures, each failure was

1 Although it has been proposed that the Constellation program be

terminated, several of the components of Constellation are expected to

continue through implementation.

© 2010 Association for Computing Machinery. ACM acknowledges that

this contribution was authored or co-authored by a contractor or affiliate

of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to

allow others to do so, for Government purposes only.

ESEM’10, September 16–17, 2010, Bolzano-Bozen, Italy.
Copyright 2010 ACM 978-1-4503-0039-01/10/09…$10.00.

systemic in that the failure propagated through requirements,

design, implementation, verification and project management.

Most research in software safety focuses on a model of risk where

the software being developed contains critical flaws, and methods

are developed to find and quantify those risks. Common safety

analysis techniques, such as Failure Model Effects Analysis

(FMEA) [7] and Fault Tree Analysis (FTA) [8], follow this

model. These techniques identify various components of the

system and their interactions, potential areas where there can be

defects in the tree are identified, and the effects of those defects

are traced through the software design. Corrections to mitigate

those flaws are developed as modifications to the design.

2.1 The Software Safety Process on the

Constellation Program
The hardware and software safety processes for the Constellation

program are governed by a number of official process documents.

These documents provide outlines for the safety analyses to be

performed, when the analyses should be performed, on what

system components, and what safety artifacts should be delivered

for development milestones. The safety analysis techniques

include hazard analysis, FMEA, probabilistic risk assessment, and

many more. The process documents governing the use of these

techniques often do not prescribe how software should be

handled. In practice, the engineers must use their best judgment

and consult NASA safety personnel on how best to apply these

techniques to software. System safety is overseen by NASA

safety assurance personnel, who evaluate the safety analysis

artifacts for completeness and quality. Safety analysis artifacts,

including hazard reports, FMEA worksheets, and system

requirements that mitigate safety risks, are coordinated through a

number of shared databases.

The focus of our software safety measurement approach has been

the hazard analysis process. Hazard analysis is a fault-tree-based

method that examines high level hazardous conditions (e.g. fuel

tank explosion), identifies the potential causes of that condition,

and creates design strategies or operational procedures for

preventing those causes or mitigating their effects. The primary

output of hazard analysis is the hazard report (HR), which

documents the hazard and is stored in the Constellation hazard

tracking system (HTS). Hazards have three attributes of interest:

 Causes – The root or symptomatic reason for the occurrence
of a hazardous condition;

 Controls – An attribute of the design or operational
constraint of the hardware/software that prevents a hazard or
reduces the residual risk to an acceptable level;

 Verifications – A method for assuring that the hazard control
has been implemented and is adequate through test, analysis,
inspection, simulation or demonstration.

Project safety engineers with expertise in a specific area perform

the hazard analysis. At various times, checkpoint meetings are

held by the Constellation Safety & Engineering Review Panel

(CSERP), which acts as gatekeeper for development milestones.

At each milestone, the development groups identify safety risks in

system operation and design and create strategies (controls) for

mitigating those risks. The CSERP reviews the risks and the

operational procedures or design strategies for mitigating these

risks and makes recommendations for further analysis or the

design of new controls. When applied to software, The CSERP

assesses the hazard analysis process by measuring the levels of

consistency and discipline that are applied in identifying and

mitigating software-related hazards.

3. CASE STUDY DESIGN
Our goal is to develop and implement a set of process output

measures that provide visibility into the system (and software) and

the development process. These measures provide information

that will make a lack of process visible, and provide insights into

weakness in the current processes. The approach is based upon

the premise that there is a relationship between the processes used

during system development and the product's characteristics. A

lack of process implies a risk of not achieving the anticipated

product characteristics. Analyzing the execution of the process

through intermediate process artifacts provides insight into

whether appropriate processes are being performed and performed

appropriately.

We first identified areas where software safety risk could

potentially be measured by artifact analysis. We then performed

the following steps:

1. Define goals and questions for each risk area to expose risks

associated with software safety process artifacts.

2. Develop and enumerate measures and interpretation

models based on threshold values.

3. Propose responses to identified risks, e.g., decisions and

actions.

We examined the hazards of three Constellation flight hardware

systems to assist NASA safety personnel in assessing software

safety and to identify areas of potential risk in the software safety

process. No measurement can guarantee software or system

safety, but areas of risk can be identified. The three systems were

in the preliminary design phase of development. Hazard analysis

during the preliminary design phase focuses on clear and concise

evaluation of hazard causes and the identification of an initial set

of controls.

We address the following Goal-Question-Metrics (GQM) goals

[3]:
1. Analyze the hazards reported for the three components in

order to characterize them with respect to the prevalence of
software in hazards, causes, and controls from the point of
view of NASA quality assurance personnel in the context of
the Constellation program.

2. Analyze the software causes in the hazard reports for the
three components in order to evaluate them with respect to
the specificity of those software causes and hazards from the
point of view of NASA quality assurance personnel in the
context of the Constellation program.

We used specificity, or how well specified were the hazards, as a

measure of how thorough the development team was in

performing appropriate safety analyses on their designs. If a

hazard in the HTS used detailed information in specifying causes,

we assumed the potential risk was better understood.

To evaluate specificity, we manually evaluated three attributes for

each hazard cause:

 Origin – the name of the software component that fails to
perform its operation correctly,

 Erratum – a description of the erroneous command,
command sequence or failed operation of the software, and

 Impact – the effect of the erratum where failure to control
results in the hazardous condition, and if known, the specific
software or hardware subsystem(s) affected.

Each cause was given a rating of L1 (all attributes present), L2
(one or two attributes present), or L3 (no attributes present). The
cause ratings were then used in an algorithm to generate an
overall software cause specificity rating for the hazard ranging
from La (highest, all L1 causes) to Le (lowest, all L3 causes).
Additional information on these measures can be found in [5]

3.1 Data collection and analysis
We applied our analysis to 154 hazards containing 2013 causes
and 4916 controls in the HTS for the three systems. We began by
categorizing cause and controls. In the HTS, individual causes
and controls are recorded as separate data fields. Each control is
associated with a hazard and, optionally, with one or more causes
in that hazard. A hazard may have 3-100+ controls, and 2-40+
causes. We identified each cause and control as software-related
or not. A software-related cause or control described the behavior
or design of FCSW (flight computer software), the FC (flight
computer), a specific CSCI (computer software configuration
items), or used the word “software.” Controls could also be
transferred, meaning that another hazard report defined the
control. A cause was determined to be transferred when all of its
corresponding controls were transferred.

The categorization data was recorded in a matrix that mapped
controls (columns) to causes (rows). The same control could be
applied to multiple causes, and causes typically had multiple
controls. These matrices then served as the basis for counting a
number of metrics used to answer questions for our GQM goals in
the previous section. For full details of the data collection and
analysis methods, including examples of the cause-control
matrices, please see [5]. Please note that most of the analysis and
counting was performed manually. Random sampling suggests a
counting error rate of less than 5% for causes and less than 2% for
controls.

4. RESULTS
Table 1 describes the prevalence of software within the HTS

(Goal 1 for our study, given earlier). Across the three systems,

51% of the hazards contained at least one software cause (79 out

of 154). What was also not apparent initially was that an

additional 11 hazards (7%) that did not have a primary software

cause had software as part of a control, which potentially can be

the source of additional software hazards. That is, the failure of

software as a control or monitoring mechanism can itself be a

software cause of a hazard. Thus, close to 60% of all hazards

were software-related. It is clear that software plays a significant

role in the safety of the Constellation program.

Table 1. Software hazards in the HTS

 No software

causes

At least one

software cause

No software control 64 (42%) 0

At least one software

control
11 (7%) 79 (51%)

Total 154

A more revealing statistic is given by Table 2, where we look at

the percent of hazard causes that were software. Of the total of

2013 causes, 601 (30%) were transferred. A transferred cause

meant that another hazard report was responsible for documenting

the controls for that cause. Of the remaining 1412 causes, only

204 (14%) were software causes. However, an additional 142

(10%) causes that were not caused by software issues had at least

one software control. Thus software was involved in almost a

quarter of all hazard causes, almost double the number of causes

initially identified as software.

Table 2. Software causes in the HTS

 Non-software

cause

Software

cause

No software control 1066 (76%) 0

At least one software

control
142 (10%) 204 (14%)

Transferred causes 601

Total 2013

Goal 2 for our study was harder to realize. Much like the earlier

DoD study, traceability and specificity of the data was harder to

quantify. Traceability and data integrity, at least with respect to

software, were not as well defined as with hardware causes. Of

the 79 hazards with a software cause, only 8 (10%) were highly

rated for specificity (La), and 42 (53%) were poorly specified

(Ld-Le). Part of the low specificity score was due to the three

Constellation components being in preliminary design. Much like

in our evaluation of the DoD project, we observe that additional

process-related safety risk is introduced when safety engineers

create and maintain the hazard data manually within the HTS.

(Note: These systems are not inherently unsafe; only that the

software quality assurance team cannot certify that due diligence

was used on analyzing the system for safety risks.) In the next

section, we describe weaknesses in the hazard process that allow

for less precise measurements and hence more risk. A more

complete analysis of the Constellation study is also available [5].

4.1 Software safety process risks
Our experience with an earlier DoD system [2] identified several

problems in the implementation of a software safety process and

hazard analysis in particular. Among these were:

1. Software Hazard Identification. Safety-related

requirements are often not identified as such.

2. Hazard Traceability. The hazard tracking database does not

provide sufficient linkages among the requirements

documentation system, the test plan, and the defect tracking

system.

3. Data Integrity. Hazards and their causes and controls may

not be described in sufficient detail to be understood and

verified.

4. Level of Rigor. There may be difficulty in differentiating

among different levels of rigor (e.g., criticality of each

hazard) for the various software safety requirements and

identifying, assigning, and tracking the appropriate Level of

Rigor (LoR) to specific software components that implement

the safety-related requirement.

Much like our earlier DoD study, traceability of artifacts,

requirements, and hazards is inconsistent for software. We

identify several risks inherent in the software safety process that

increase the risk of not providing sufficient insights into the

process for appropriate quantification of software safety risk:

Risk 1 – Lack of consistency in structuring hazard report content,

causes and control descriptions impairs understanding.

All hazard reports in the Constellation program follow a standard

template, but the content of the hazard reports, cause descriptions,

and control descriptions differed substantially between the three

programs and between hazard report authors within the same

program. This has abated over time as CSERP has worked with

safety engineers to form a uniform expectation of hazards.

Risk 2 – Lack of consistent scope in causes and controls impairs

risk assessment.

Related to Risk 1, there is a lack of uniformity in scoping software

causes and controls between projects or between hazard reports

within the same project. A cause reading “Generic avionics

failure or software flaw causes improper operation of control

thruster” involves software but is not scoped to a specific software

component as required by NASA procedure. This risk has abated

over time due to experience, but is still present in some reports.

Risk 3 – “Lumped” software causes and controls impede

verification.

Many hazard reports place all software causes and most software

controls under a single cause labeled “Software-based error.” In

many cases, this cause had a single control with multiple pages of

software design and operational information. This large control

then had a single verification. This single control, while highly

detailed, presents risk in that software design and behaviors will

not be individually verified.

Risk 4 – Incorrect references to hazard reports, causes and

controls impair traceability.

A number of references to missing or incorrect hazard reports,

causes or controls were observed. The most substantial risk is

that a cause may not be adequately controlled when one or more

of its controls are transferred to an incorrect or missing hazard

report, cause, or control. The HTS is being enhanced with some

automated verification, traceability, and bookkeeping.

Risk 5 – Sub-controls dissuade independent verification and add

overhead.

Many hazards have controls that contain enumerated “sub-

controls.” Greater confidence in the control may be gained by

verifying the sub-controls independently. Controls are an explicit

attribute of a hazard in the HTS, but sub-controls are not. Thus,

references to sub-controls may become lost or incorrect as these

references must be manually maintained.

Risk 6 – Ubiquity of transferred causes and controls may mask

software risk.

Across the studied components, 30% of causes and 17% of

controls were transferred. (Note: Controls were only available for

two of the projects.) While necessary and appropriate in

documenting hazards, transferred causes and controls represent

added risk. The applicability of transferred causes and the

adequacy of transferred controls must be re-evaluated in their

original context whenever any changes are made to the hazard.

Additional bookkeeping is necessary to ensure that the references

to hazard reports, causes and controls are up to date.

5. CONCLUSIONS & FUTURE WORK
Many problems inherent in the hazard reports and the HTS are

caused by an inadequate vision for the use of the HTS. The HTS

is viewed as a storage repository by engineers, but in actuality is

used to support analysis of the hazard reports by safety assurance

personnel. It is important to make sure that (1) the HTS has

adequate functionality, quality checks, and documentation; (2)

there is traceability and synchronization among the various

support systems (e.g., the HTS and the requirements management

system and the defect tracking system); and (3) the quality of the

data is monitored to minimize the need for data validation later

on. The cost of not adhering to this advice is high rework costs

and lower than desired system safety. Addressing these issues

should be a part of the software safety development process.

In the future, we are planning to compare the various systems in

an attempt to build baselines for the various software measures.

This will allow us to interpret the data more effectively. For

example, if the three systems are similar, then we might expect

software to play a similar role in the causes and controls. If not,

how might we characterize the differences? Analysis of the data

shows that the software related hazards, causes, and controls for

one project are much lower than those for another. Why might

this be true? The two systems may be sufficiently different with

respect to their use of software, or the incompleteness of the data

and the numerous transfers may be masking their similarities.

By analyzing hazard reports, we gained insight into risk areas

within the software safety analysis process by analyzing its

process artifacts. We identified six risks in software safety

analysis reporting. We are working with NASA Software

Reliability and Quality Assurance personnel in an ongoing effort

to educate NASA safety engineers on describing software safety

risk, to improve NASA process documents and training materials,

and to provide tool support to the software safety process.

6. ACKNOWLEDGMENTS
This research was supported by NASA OSMA SARP grant

NNX08AZ60G to the Fraunhofer CESE. We would like to

acknowledge the help of Karen Fisher and Risha George at NASA

Goddard Space Flight Center for providing us support and access

to people and artifacts of the Constellation Program.

7. REFERENCE
[1] ARIANE 5 Flight 501 Failure, Report by the Inquiry Board, Paris,

July 19, 1996,. http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf.

[2] V. Basili, F. Marotta, K. Dangle, L. Esker, and I. Rus, Measures and
Risk Indicators for Early Insights Into Software Safety, Crosstalk,
pp. 4-8, October 2008.

[3] V. Basili and D. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software
Engineering, vol.10(3), Nov. 1984, pp. 728-738.

[4] P. E. Ceruzzi, Beyond the Limits: Flight Enters the Computer Age,
MIT Press: Cambridge, MA, 1989,

[5] L. Layman, V. R. Basili, M. V. Zelkowitz, The Role and Quality of
Software Safety in the NASA Constellation Program, Fraunhofer
Center – Maryland Technical Report #10-101: http://www.fc-
md.umd.edu/TR/Safety-metrics_TR_10-101.pdf, June 2010.

[6] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25
accidents,” IEEE Computer, 26(7), July 1993, pp.18-41,
doi:10.1109/MC.1993.274940.

[7] R. R. Lutz and H-Y Shaw, “Applying Adaptive Safety Analysis
Techniques,” Proceedings of the 10th Int'l Symposium on Software
Reliability Engineering (ISSRE ’99), Boca Raton FL, pp. 42-49,
November 1999.

[8] T. Maier, FMEA and FTA to Support Safe Design of Embedded
Software in Safety-Critical Systems, CSR 12th Annual Workshop on
Safety and Reliability of Software Based Systems, Bruges, Belgium,
1995.

http://www.fc-md.umd.edu/TR/Safety-metrics_TR_10-101.pdf
http://www.fc-md.umd.edu/TR/Safety-metrics_TR_10-101.pdf

