
A Case Study of Measuring Process Risk

for Early Insights into Software Safety
Lucas Layman
Fraunhofer CESE
College Park, MD

llayman@fc-md.umd.edu

Victor R. Basili
 Marvin V. Zelkowitz

U. of Maryland and Fraunhofer CESE
College Park, MD

{basili,mvz}@cs.umd.edu

Karen L. Fisher
NASA Goddard Spaceflight Center

Greenbelt, MD
karen.l.fisher@nasa.gov

ABSTRACT

In this case study, we examine software safety risk in three flight

hardware systems in NASA’s Constellation spaceflight program.

We applied our Technical and Process Risk Measurement (TPRM)

methodology to the Constellation hazard analysis process to

quantify the technical and process risks involving software safety

in the early design phase of these projects. We analyzed 154

hazard reports and collected metrics to measure the prevalence of

software in hazards and the specificity of descriptions of software

causes of hazardous conditions. We found that 49-70% of 154

hazardous conditions could be caused by software or software was

involved in the prevention of the hazardous condition. We also

found that 12-17% of the 2013 hazard causes involved software,

and that 23-29% of all causes had a software control. The

application of the TRPM methodology identified process risks in

the application of the hazard analysis process itself that may lead

to software safety risk.

Categories and Subject Descriptors

D.2.8 Process Metrics;

General Terms

Management, Measurement, Verification.

Keywords

Constellation program; hazard reports; measurement; safety;

empirical software engineering

1. INTRODUCTION
Development of large complex systems in the aerospace, defense,

energy and transportation industries requires constant attention to

safety risks. A safety risk is a risk whose effect can be injury or

the loss of life either directly or through a chain of events.

Software safety risk has become a greater concern in systems

development as many traditionally hardware-centric systems

become more reliant on software.

In this paper, we present a case study measuring software safety

risk in the multi-year, multi-billion dollar Constellation spaceflight

program at NASA. Software safety risk is a form of technical risk,

where flaws in the design and implementation can lead to system

failure, loss of the mission or loss of life. Quantifying technical

risk in software often relies on testing and simulation, which

require either working code or a concrete design. In the

Constellation program, however, program and project managers

need insight into the state of software safety in order to guide the

design process. The challenge becomes: how can we gain early

insight into the state of software safety?

To discover and prevent technical risks, Constellation uses a

number of established Reliability, Safety and Mission assurance

(RSMA) processes for managing development, uncovering risks,

and mitigating their effects, such as peer review, fault-tree

analysis, testing, failure-modes and effects analysis, and more. In

the context of software safety, RSMA processes are meant to

create a more robust and fault-tolerant system design and verify the

correct implementation of the design. These RSMA processes,

however, can be the source of process risk, which emerge when

the processes are not performed appropriately, are not appropriate

for the situation and/or they are not well-defined. Process risk

leads to technical risks, which has been demonstrated by a number

of notorious software safety failures that are at least partly

attributable to the development process [6,7].

In this case study, we apply the six-step Technical and Process

Risk Measurement (TPRM) methodology that leverages the

relationship between process and technical risk to gain early

insight into software safety risk on the Constellation program. We

apply the TPRM methodology using the artifacts of one RSMA

process, hazard analysis, to provide NASA quality assurance

managers with metrics on the state of software safety risk during

the early design phases of the Constellation program. The

application of the TPRM methodology also uncovered a number of

process risks in the definition and application of the hazard

analysis process.

The remainder of this paper is organized as follows: Section 2

provides an overview of the TPRM methodology; Section 3

describes the development context of the Constellation program;

Section 4 describes the application of the TPRM methodology to

create measures of software safety risk and the technical and

process risks uncovered in this study; and Section 5 concludes with

a discussion and future work.

2. THE TECHNICAL AND PROCESS RISK

MEASUREMENT METHODOLOGY
The purpose of RSMA processes is to improve safety, reliability

and mission assurance in a product. Thus, we assume that RSMA

process artifacts should contain information pertaining to the

© 2011 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,

contractor or affiliate of the United States government. As such, the

Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government

purposes only.

ICSE’11, May 21-28, 2011, Honolulu, HI, U.S.A.

Copyright © 2011 ACM 978-1-4503-0445-0/11/05... $10.00

ongoing state of reliability, safety, and mission assurance in the

product while it is being developed. The process artifacts form the

basis of our measurement. By leveraging processes and process

artifacts, the approach provides early insight throughout the

development process because it does not depend solely on the

incremental or final product. The purpose of the TPRM

methodology is to assist organizations in measuring technical and

process risk throughout development.

The TPRM methodology [3] starts at a high-level to investigate

risk measurement possibilities and then is iteratively tailored down

to develop specific measurements and responses to specific risks.

The methodology is composed of the following six-steps:

1 Identify insight areas from the RSMA process that provide

insight into risk areas. What process artifacts can potentially

be sources of risk information?

Examples: test results, design documents, hazard reports

2 Identify the measurement opportunities that provide

insight into each risk area. What information contained in

the process artifacts is useful for identifying areas of risk?

Example: lists of single points of failure in design documents

3 Develop readiness assessment questions to provide a quick

status of the risk and to identify if it is possible to delve

deeper into the area. Is sufficient information being

collected to measure potential risk using this artifact?

Examples: Is the “software component” column of the test

result report always filled out? Are the design documents

detailed enough to get an adequate picture of the critical

software components?

4 Define goals and questions for each risk area to expose

risks associated with RSMA process artifacts. What specific

risk questions do we want to answer using the insight areas?

Example: Have we mitigated all hazard causes? Have we

fixed all severe criticality bugs discovered during test?

5 Develop and enumerate measures and models of how the

metrics will be interpreted via threshold values. What are

specific measures and what do they mean?

Example: Count the number of test failures identified for

Component X; one or more test failures is unacceptable.

Count the number of software causes of hazardous conditions

for each subsystem; subsystems where more than 25% of

causes are software-related have high software safety risk.

6 Propose responses to identified risks. What are the

decisions and actions to be taken for each risk?

Examples: Extend testing on Component X for one week.

Revise the design process to account for software interaction

with hardware components.

In the remainder of this paper, we apply these six steps to the

hazard analysis process on the Constellation program.

3. CONTEXT OF THE CONSTELLATION

PROGRAM
The Constellation program is a complex system of systems (see

Figure 1). Each system contains multiple elements with numerous,

complex hardware and software subsystems. Our research focuses

on three spaceflight hardware projects: A, B, C – one at the system

level and two at the element level. . Project A is developed by

NASA while Projects B and C are being developed by contractor

organizations. Software is a critical element in controlling the

function of these systems, and the amount of software varies

significantly in each project. The names of the projects are kept

anonymous for confidentiality purposes. At the time of this case

study, the projects were in the preliminary design phases: an

extensive requirements phase had been completed for all projects,

and an initial design was under development.

Analyzing and designing to mitigate software risk is supported by

NASA Software, Reliability and Quality Assurance (SR&QA)

personnel. SR&QA is a division within the Constellation program

that provides guidance to safety engineers on the specific projects

and participates in CSERP safety reviews. This division is

comprised of NASA employees and contractors with expertise in

hardware, software and mission assurance. Their challenge was to

gauge the ongoing state of software safety during preliminary

design to help guide safety and reliability design efforts.

The multitude of systems that comprise the Constellation program

are developed by contracting organizations using a form of

concurrent engineering [8] wherein multiple development activities

(i.e. design, implementation, testing) occur in parallel. For

SR&QA personnel, obtaining an accurate, program-wide picture of

software safety risk is difficult across these multiple,

independently-developing systems for a number of reasons:

 There are many development groups, each with their own

reporting style for safety risks. Even though program-wide

standards exist, each group has their own interpretation of

how to address those standards.

 The NASA panel charged with overseeing system safety has

limited resources and technical knowledge to fully understand

all the implications of software safety. Although these experts

have significant experience managing the development of

rockets and spacecraft at NASA, applying NASA safety

processes to software is relatively new.

 The safety engineers responsible for the systems sometimes

have limited understanding of how to describe software safety

risk to meet the requirements of NASA safety reviews.

 The rules for recording software risk in the safety tracking

systems were only recently developed, resulting in no clear

delineation between software-based risks and non-software-

based risks.

At various times, checkpoint meetings are held by the

Constellation Safety & Engineering Review Panel (CSERP), which

acts as gatekeeper for development milestones. There are several

milestones in the development process (e.g. system requirements

review, preliminary design review, critical design review) with

different requirements for the type of system and software safety

analysis that must be performed. At each milestone, the

development groups identify safety risks in system operation and

design and create strategies (controls) for mitigating those risks.

The CSERP reviews the risks and the operational or design

strategies for mitigating these risks. The CSERP panel then

approves the current design or requests changes to provide for

better risk mitigation. As development progresses and the system

matures, the analyses and designs become more specific and

concrete. The primary responsibility of the CSERP is to ensure

that all safety risks which could result in loss of life, loss of the

vehicle, or loss of mission are identified and handled properly.

Figure 1. Constellation program hierarchy

4. APPLYING THE TPRM

METHODOLOGY TO CONSTELLATION
In this section, we describe the application of the TPRM

methodology to the Constellation program in order to support

SR&QA personnel in managing software safety risk during the

early design phases of the program.

4.1 Step 1: Insight Areas – The Hazard

Analysis Process and Hazard Reports
Safety analysis in Constellation is vested in CSERP and its use of

hazard analysis to drive actions. Thus, our study focused on the

hazard analysis process used in the Constellation program. Hazard

analysis is a top-down approach to system safety analysis [4]. The

hazard analysis process for the Constellation program is mandatory

for all projects and is defined by the Constellation Hazard Analysis

Methodology process document (CxP 70038).

In hazard analysis, a hazard is any real or potential condition that

can cause: injury, illness, or death to personnel; damage to or loss

of a system, equipment, or property; or damage to the

environment. An example of a hazard might be “Avionics

hardware failure leads to loss of mission.” The hazard is

accompanied by a list of systems, elements and subsystems that

cause or are affected by the hazard, a detailed description of the

hazardous condition, and information regarding the likelihood of

the hazardous condition occurring. All Critical severity hazards

(severe injury, loss of mission, major damage) with a high or very

high likelihood and all Catastrophic severity hazards

(death/permanent injury, loss of vehicle) with moderate, high or

very high likelihood were subject to CSERP review.

Hazards are described with several important properties:

 Causes – The root or symptomatic reason for the

occurrence of a hazardous condition;

 Controls – An attribute of the design or operational

constraint of the hardware/software that prevents a

hazard or reduces the residual risk to an acceptable level;

 Verifications – A method for assuring that the hazard

control has been implemented and is adequate through

test, analysis, inspection, simulation or demonstration.

Figure 2 illustrates the conceptual organization of a hazard. Each

hazard (e.g., engine failure) has one or more causes (e.g., failure

with fuel line, software turns off the engine). Each cause has one

or more controls that reduce the likelihood that a cause will occur

or mitigates the impact should the cause be realized; controls often

represent new requirements for the system (e.g., backup computers

to account for software failures). Each control has one or more

verifications (e.g. test, inspection, simulation or demonstration) to

ensure that the control is appropriately implemented.

Figure 2. Hazard structure

Hazard

Cause

Cause

Cause

Control

Control

Control

Control

Control

Control

Control

Verification

Verification

Verification

Verification

Verification

Verification

Verification

Constellation

Orion

(Crew vehicle)

Mission

Operations

Ground

Operations

Ares I

(Crew launch vehicle)

First
Stage

Upper Stage
Engine

Upper
Stage

Avionics Propulsion Structures

Service
Module

… Mission
Control

Training
facility

…

…

…

Program
(Level 2)

System
(Level 3)

Element

(Level 4)

Subsystem

(Level 5)

It is important to note that, in this environment, software is never a

hazard; hazards all represent physical events that may harm the

mission. Component failure (e.g., degraded thruster performance)

or outside events (e.g., hitting space debris, impact of weather,

cosmic ray impact) may impact a mission, but software itself is not

a hazard. However, software, as well as human error or

component failure, can certainly cause a hazard (e.g., the software

shutting a fuel valve at the incorrect time).

In the Constellation program, all hazards and their associated

causes, controls and verifications are stored in a database called the

Hazard Tracking System (HTS). Each such hazard is stored as a

Hazard Report (HR) in the HTS. These process artifacts are rich

in safety information and provide insight into areas of technical

risk in the Constellation systems. They are also evidence of how

the hazard analysis process is applied on the different projects.

An important note: our evaluation focuses on software safety risk.

Safety, in the Constellation program, does not include software

security. Software security on the Constellation program is

handled a by separate organization charged with hardening the

software systems against malicious attack and assisting in secure

software design.

4.2 Step 2: Measurement Opportunities in

Hazard Reports
We next identify measurement opportunities to help quantify

software safety risk based on the rich safety information captured

in the hazard reports. One measurement opportunity for

quantifying technical risk is to measure the number of hazards,

causes, controls and verifications that involve software. This helps

to provide an overall picture of the prevalence of software

involvement in hazardous conditions. These measurements can be

sorted according to other hazard report data, such as the affected

subsystems and missions phases in which the hazard is relevant.

To quantify process risk, we can examine the content and

specificity of the software causes, controls and verifications to

determine if they adhere to the guidelines set forth in the

Constellation Hazard Analysis Process document (CxP 70038).

Specificity in hazard causes is important for developing concrete,

verifiable controls. A lack of specificity in the definition of causes

indicates a risk that the cause has not been adequately identified

and evaluated for control strategies.

Another measurement opportunity involved so-called “generic”

software hazard reports. Each of the projects had 1-2 “generic”

software hazard reports, which describe only the procedures for

how software should be developed, but do not describe specific

design or behavior. Some software causes had a single control

referring only to these “generic” reports rather than a specific

design attribute. These controls represent risk in that there is no

objective verification that a software cause has been controlled by

adhering to the software process.

Another measurement opportunity involves counting the number

of transferred causes, controls and verifications. Transfers are a

reference to a cause, control or verification in another hazard

report. Transfers imply that the cause, control or verification is

fully described in the other hazard report and does not need to be

repeated. For example, a structural collapse will impact nearly

every system in a hazard. Rather than list causes and controls for

structural collapse in every hazard report, it is handled in its own

report that is referred to by the other hazards. During system

implementation and test, all transfers must be verified for a hazard

reports to be considered “closed.” Verifying transfers is a manual,

labor intensive process and is at risk when transfer references are

not kept up to date. Thus, transfers themselves are a measurement

opportunity as they can represent both technical and a process risk.

4.3 Step 3: Readiness Assessment Questions
We developed a number of readiness assessment questions while

exploring the measurement opportunities and offer a sample

below. It is important to note that answering these questions is an

iterative process, as answering one question may lead to others.

Can we access the hazard tracking system and hazard reports?

The HTS was made available to us by NASA personnel. Access to

the process artifacts was a necessary precondition to any

measurement.

Is the content of the hazard tracking system up to date?

The hazard tracking system only contained up-to-date hazard

reports for one project (Project A). The hazard reports from other

projects were obtained from a database containing materials from

CSERP review meetings. Project B’s hazard reports were in the

HTS but not visible as the development company did not want to

release “intermediate” versions of the hazard reports. Project C’s

hazard reports were created prior to the development of the hazard

tracking system itself. Since Project B and C’s hazard report were

not in the HTS, we could not leverage the querying capabilities of

the HTS and had to spend additional effort collecting all of the

hazard reports for the two systems.

Are the cause, control and verification data complete enough for

analysis?

For the NASA engineers writing the hazard reports, the goal of

hazard analysis in the preliminary design phase was to identify and

describe all causes and to develop preliminary controls.

Verifications were not yet specified nor required. As such, we

could not measure software verifications. Most causes and controls

were specified and thus could be analyzed, though some were still

works in progress and had a “To Be Determined” placeholder.

4.4 Step 4: Define Goals and Questions
To describe our goals for evaluating software safety risk, we use

the Goals Questions Metrics (GQM) model [2]:

1. Analyze a sample of the hazards reported for Projects A, B

and C in order to characterize them with respect to the

prevalence of software in hazards, causes, and controls from

the point of view of NASA quality assurance personnel in the

context of the Constellation program.

2. Analyze the software causes in a sample set of hazard reports

for Projects A, B and C in order to evaluate them with respect

to the specificity of those software causes and hazards from

the point of view of NASA quality assurance personnel in the

context of the Constellation program.

Goal 1: Quantify the prevalence of software in hazards,

causes and controls

Goal 1 is useful to SR&QA personnel in the early design phases to

understanding the risk analysis effort required to adequately

control software safety risk and also to identify systems and

subsystems that involved more software risk than others.

We first define what it means for software to be involved in a

hazard, cause or control. We define a software hazard as a hazard

that contains one or more software causes. A software-related

hazard is a hazard where software is either one of the causes or

software is in one or more of the controls. We are interested in

software-related hazards because, even though software may not

be a direct cause of a hazard, software that is part of the control

can be faulty and cause a subsequent hazard (as in the Therac-25

disasters [6]). Software hazards are a proper subset of software-

related hazards. Both software hazards and software-related

hazards may include hardware causes and controls as well. A

software cause or control contains one or more of the following in

its description: FCSW (flight computer software), FC (flight

computer), specific CSCIs, or used the word “software.” CSCIs

(Computer Software Configuration Items) are software programs

(e.g. Guidance Navigation & Control, Vehicle Management) that

are involved in the commanding of sub-systems (e.g. avionics,

propulsion) and would represent Level 6 in Figure 1.

These definitions help us formulate the following questions

regarding the role of software in system safety:

1. What percentage of hazard causes are software causes?

2. What percentage of the hazards is software–related?

3. What percentage of hazard causes are non-software causes

(e.g., hardware, operational error, procedural error) with

software controls? These causes represent potentially

“hidden” software risks. For example, if a software control is

monitoring a hardware condition, then if the monitoring

software fails there is a risk that the monitor will fail to detect

an actual subsequent problem or the software may send

erroneous status messages. Thus, the software can again be

the cause of a hazardous condition.

4. What percentage of all non-software causes contains software

controls?

5. What percentage of all causes contains software controls?

6. What percentage of causes is transferred?

7. What percentage of controls is transferred?

8. What percentage of the non-transferred hazard controls is

specific software controls, i.e. describe software behavior or

design?
9. What percentage of non-transferred controls are references to

“generic” software controls?

Goal 2: Evaluate the specificity of software causes

Goal 2 assists SR&QA personnel in the early design phases by

identifying software hazards and software causes that require

additional work on the part of the safety engineers. Furthermore,

hazard reports mature over time, and the evaluation of Goal 2

enables SR&QA personnel to track the maturation of software

causes as the systems approach their quality milestones.

It is important to remember that this analysis was conducted as the

projects entered their preliminary design reviews. The

Constellation hazard analysis process only required that hazard

causes meet certain detail and specificity criteria. Goal 2 is in

some respects a proxy for SR&QA and CSERP personnel, who

must understand the cause of a hazardous condition as described in

the hazard reports. Software causes are evaluated according to

their specificity, which is prescribed by the hazard analysis

process. We do not evaluate the quality of the causes, as this

requires significant domain knowledge and is one of the core

purposes of CSERP review.

1. What percentage of software causes is well-specified

according to the Constellation hazard analysis methodology

requirements?

2. What percentage of software causes is partially-specified?

These causes lack certain pieces of information needed to

evaluate their quality.

3. What percentage of software causes is generically-defined?

A “generic” cause (e.g. “the software fails”) is not specific

enough to identify any control strategy.

We define metrics for evaluating the specificity of causes based on

the hazard analysis process documentation in Section 4.5.2.

4.5 Step 5: Develop Measures, Models and

Interpretations
In this subsection, we describe the measures and models created

for each of the goals in the previous section and describe our

procedures for collecting the data.

Goal 1: Quantify the prevalence of software in hazards,

causes and controls

By obtaining basic counts of software hazards, software causes and

software controls, we were able to answer the questions posed in

the previous section.

Measures and models

The measures were based on the counting of software-related

hazards, software causes, software controls and transferred causes

and controls. The following basic metrics were collected:

 The total number of hazards, causes and controls

 The number and percentage of software-related hazards

 The number and percentage of software causes

 The number and percentage of software controls

 The number and percentage of transferred causes

 The number and percentage of transferred controls

While no specific thresholds were set by NASA personnel

regarding these counts (i.e. “what percentage amount of software

controls is too high?”), the information can be used to identify

subsystems with the most software risk that may require more

software verification effort. Similarly, there are no pre-defined

thresholds for acceptable or unacceptable amounts of transferred

causes and controls. Part of this research effort is to establish a

baseline for these measures to inform future projects.

Analysis procedure

A total of 154 hazard reports were analyzed for the three

Constellation systems: 77 in the Project A, 57 in the Project B, and

20 in Project C. We first identified software and non-software

causes and controls in the hazards reports. The analysis was

performed manually by the first and third authors. The researchers

performed the analysis on approximately 30% of the hazards then

compared notes to refine the procedure. The remaining 70% were

evenly distributed for analysis. The first author then verified the

analysis data in a second iteration through all of the hazard reports.

The analysis of each hazard report was performed manually by

reading the text of the causes and controls with the following steps:

1) Each cause from a hazard report was entered in a separate row

of an Excel spreadsheet (see Table 1).

2) Each control in the hazard report was listed in a column in the

spreadsheet. The controls for each cause were marked as a

software control (green), a non-software control (blue), a

control that transferred to another hazard report (orange), or a

transfer to a “generic” software hazard report (yellow).

3) The causes were marked as either a software cause (green) or

a non-software cause (white). Causes for which all controls

were transferred were marked red and excluded from further

analysis under the assumption that the cause was controlled

by the transferred hazard report(s).

The classifications of causes and controls were then counted for
each hazard report and recorded in a separate worksheet (see Table
2 for an example). These data were used to compute summary
statistics across all hazard reports and to answer the questions posed
in Section 4.5. The “causes” column is the total number of causes
listed in the hazard report, and the “active causes” column is the
number of non-red causes in the cause-control matrix.

Table 1. Cause-control matrix example

Hazard

Report
Cause

Controls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

HR1 1

 2

 3

 4

 5

 6

 7

 8

 9

Table 2. Example tabulation of causes and controls

Hazard

Report Causes

Active

causes

Transferred

causes

SW

causes

Non-SW

causes with

SW controls Controls

SW

controls

Transferred

controls

Generic

SW

transfer

HR1 9 5 4 4 1 12 4 3 1

HR2 14 10 4 0 6 33 7 12 3

Table 3. Summary metrics: Measuring the prevalence of software in hazards, causes and controls

 Question Project A Project B Project C

1 What percentage of the hazard causes are software causes? 15% 12% 17%

2 What percentage of the hazards is software-related? 49% 67% 70%

3 What percentage of hazard causes are hardware causes with software controls? 14% 11% -

4 What percentage of hardware causes has software controls? 16% 13% -

5 What percentage of the causes has software controls? 29% 23% -

6 What percentage of causes is transferred? 31% 23% 36%

7 What percentage of controls is transferred? 22% 11% -

8 What percentage of the non-transferred hazard controls are specific software controls? 12% 14%

9
What percentage of the non-transferred hazard controls are references to “generic” software

controls?
5% 2% -

Interpretation

From these data, we calculate the metrics necessary to answer

the questions from Section 4.5 that help quantify the importance

of software with respect to system safety. Table 3 presents the

metrics data corresponding to the questions from Section 4.5

(the raw metrics used to compute these data are provided in the

Appendix). These data demonstrate that although a small

percentage (12-17%) of hazard causes are software causes, the

percentage of hazards that are either caused by software or are

controlled by software in much higher (49-70%). This indicates

that software is a safety-critical aspect of the overall system and

over half of all hazard reports are software-related.

Note that while 49% of Project A’s hazard reports are software-

related, 67% of Project B hazard reports and 70% of Project C

hazards are software related. This disparity can be a

consequence of the characteristics of the three systems, an

indication of how the three projects organize the subjects of the

hazard reports differently, or a combination of these. In all three

 SW Non-SW transferred Transferred to generic SW HR

systems, the importance of software clearly demonstrates the

need for a strong software development process with adequate

control and verification. Additional discussion and

interpretation of these metrics can be found in [5].

It is clear that software plays a significant role in the safety of

the Constellation program. However, there is variable precision

in the counting of software hazards, causes and controls; the

guidelines for reporting hazards are open to interpretation and

each group reported and scoped hazards differently. The lack of

a uniform structure for reporting software-related hazards

represents a risk in that the non-uniform structure inhibits a

consistent, general methodology for software risk assessment

based on the hazard reports. Furthermore, the number of

software and software-related hazards is likely greater than

shown as there may have been software causes and controls that

were not identified as such.

From the point of view of SR&QA personnel, it is difficult to

track each hazard cause and control to its source, and overall

traceability becomes more difficult. These traceability problems

are a form of process risk and are expanded upon in Section 4.6.

Goal 2: Evaluate the specificity of software causes

We derived an initial set of software cause metrics that can be

applied to measure the specificity of software causes. The

metrics are based on the requirements for describing software

causes set forth in the Constellation Hazard Analysis

Methodology process document (CxP 70038). Additional input

was drawn from the NASA Software Assurance Standard

(NASA-STD-8739.8), the NASA Software Safety Standard

(NASA-STD-8719.13B), and the NASA Software Safety

Guidebook (NASA-GB-8719.13). These metrics were

developed and approved with feedback from NASA SR&QA

responsible for software assurance on the Constellation program.

Metrics and models

For the preliminary design review milestone, the Constellation

hazard analysis methodology requires that software is defined to

the level of Computer Software Configuration Items (CSCIs).

CSCIs can be used in the analysis of relationships between

components and specifying the safety-critical events, commands

and data. Describing software causes at the CSCI level enables

the hazard analyst to identify specific design elements that

satisfy the requirement for controls.

We measure the minimal specificity of software causes based

upon the existence of three attributes in the cause description:

(1) which CSCI may fail its intended operation (origin), (2) the

erroneous behavior for this software component (erratum), and

(3) the impact of this erroneous behavior on the system (impact).

The metrics are defined as:

1. For each hazard report, what are the number and

percentages of L1, L2 and L3 causes where L1, L2 and L3

are defined as:

 L1: a specific software cause or sub-cause for a

hazard, where a specific software cause must include

all of the following:

o Origin – the CSCI that fails to perform its

operation correctly

o Erratum – a description of the erroneous

command, command sequence or failed

operation of the CSCI

o Impact – the effect of the erratum where

failure to control results in the hazardous

condition, and if known, the specific

CSCI(s) or hardware subsystem(s) affected

 L2: a partially-specified software cause or sub-cause

for a hazard, where a partially-specified software

cause specifies one or two of the origin, erratum or

receiver at the CSCI/hardware subsystem level.

 L3: a generically defined software cause or sub-cause

for a hazard, where a generically-defined software

cause does not specify the origin, erratum or receiver

at the CSCI/hardware subsystem level.
2. For each system, what are the number and percentages of

La, Lb, Lc, Ld and Le hazards where La-Le are defined as:

 La: All software causes and sub-causes in a hazard are
L1

 Lb: all software causes and sub-causes in a hazard are
L1 except for a single L3

 Lc: Software causes and sub-causes are a mix of L1,
L2 and L3 with at least one L1

 Ld: All software causes and sub-causes are either L2 or
L3 with at least one L2

 Le: All software causes are L3

A low hazard rating (e.g., Ld and Le) may indicate that there is a

risk of not being able to mitigate the software risk associated

with these hazards. A high rating (e.g., La and Lb) more likely

indicates that the development team fully understands the risk

and has addressed it appropriately. The overall hazard ratings

provide a top level view of the maturity of software cause

specificity in a subsystem or mission element.

We note that these ratings do not measure the quality or the

completeness of the software cause and control analysis; these

ratings only reflect the specificity of the information captured in

the hazard reports. We believe that these ratings likely indicate

risk where insufficient specificity has been provided to identify

the software-based cause of a hazardous condition within the

hazard report. Insufficient specificity probably indicates that the

problem is not well understood, unless further details are

included in supporting documentation. However, unless such

supporting information (and the necessary context and expertise

to interpret it) are maintained with the hazard report, there is risk

that information will be lost.

Analysis procedure

The above metrics were applied to 385 software causes and sub-

causes. Software causes were identified in the analysis for Goal

1. Many software causes contained a number of “sub-causes.”

Sub-causes were identifiable by either: 1) explicit enumeration

in the cause description by the hazard report author; or 2)

separate paragraphs describing errors by different CSCIs.

Because sub-causes described different software behaviors, each

was measured for its specificity. The first author and third

author applied the cause ratings to the 385 software causes and

sub-causes in an initial iteration, and the first author checked for

consistency in a second iteration of all the causes. The first

author then computed the software cause and hazard metrics.

Table 4. Project A software specificity metrics

Cause ratings Hazard ratings

L1 65 50% La 5 18%

L2 26 20% Lb 7 25%

L3 38 29% Lc 7 25%

 Ld 3 11%

 Le 6 21%

Table 5. Project B software specificity metrics

Cause ratings Hazard ratings

L1 64 38% La 3 8%

L2 68 40% Lb 1 3%

L3 37 22% Lc 14 38%

 Ld 13 35%

 Le 6 16%

Table 6. Project C software specificity metrics

Cause ratings Hazard ratings

L1 0 0% La 0 0%

L2 41 71% Lb 0 0%

L3 16 29% Lc 0 0%

 Ld 12 86%

 Le 2 14%

Interpretation

For all 3 projects, the causes were rated at least Level L2 for 70-

78% of all causes. There are also noticeable differences

between projects. Project A had a greater proportion of well-

specified software causes than Projects B and C at the time of

analysis. Project B had a large portion of software-causes that

could be considered “in work,” and thus one would expect the

distribution to shift to the higher end of the scale as work

progresses. Project C, however, was non-specific in terms of

software causes. In general, the software causes in Project C

had very specific descriptions of the impact of a software failure

on the non-software, but little was described in terms of what

caused the software to malfunction or how the software error

manifested beyond stating that “the software fails.” Although

this data is only from PDR, project C has significantly less

specificity that the other two.

Part of the CSERP review process is to further refine the

specificity of hazard reports over time, particularly in

subsequent development phases. These current figures provide

an important baseline for CSERP and SR&QA personnel to

monitor the progress of hazard report specificity over time.

Once again, we note that these ratings do not measure the

quality or the completeness of the software cause and control

analysis; these ratings only reflect the specificity of the

information captured in the hazard reports. We believe that

these ratings reflect risk where insufficient specificity has been

provided to identify the software-based cause of a hazardous

condition within the hazard report. Insufficient specificity may

indicate that the problem is not well understood.

4.6 Step 6: Responses to Identified Risks
In the process of developing this data, we uncovered a number

of potential process risks for the program with regard to how

software-related hazards are reported. Some of these risks were

interpreted from the metrics above, while others were

discovered during data analysis and vetted by SR&QA.

Risk 1 – Lack of consistency in structuring hazard report

content, causes and control descriptions impairs understanding.

All hazard reports in the Constellation program follow a standard

template, but the content of the hazard reports, cause

descriptions, and control descriptions differed substantially

between the three programs and between hazard report authors

within the same program. In some cases, the unstructured text

creates risk that the CSERP may not be able to fully understand

the risks detailed in the hazard even with supporting materials.

During preliminary design, safety engineers are still developing

first versions of hazard reports and becoming familiar with the

expectations of CSERP and the requirements of the software

safety process. This risk has abated over time as CSERP and

SR&QA personnel have worked closely with safety engineers to

form a uniform expectation for hazard report content. These

experiences are also being used to recommend improvements to

NASA process documentation and training materials.

Risk 2 – Lack of consistent scope in causes and controls impairs

risk assessment.

Related to Risk 1, there is a lack of uniformity in scoping

software causes and controls between programs or between

hazard reports within programs in some cases. A cause reading

“Generic avionics failure or software flaw causes improper

operation of control thruster” certainly involves software, but it is

not scoped to a particular software component as required by

NASA procedure.

Much of this risk can be attributed to unfamiliarity with

describing software risk in hazards and misunderstanding the

expectations of the CSERP board. This risk has also abated over

time, yet remains present in some hazard reports. SR&QA

personnel are conducting workshops with project safety

engineers to educate them further on describing software risk.

We have also provided a two-page “user guide” with examples of

how safety engineers can specify software causes of hazards that

has been well-received by SR&QA personnel. Furthermore,

NASA technicians are considering changes to the hazard tracking

system to enable safety engineers to mark software causes,

controls and verifications as involving software.

Risk 3 – “Lumped” software causes and controls impede

verification.

Many hazard reports placed all software causes and most

software controls under a single cause labeled “Software-based

error.” In many cases, this cause had a single control with

multiple pages of software design and operational information.

This large control then had a single verification. This single

control, while highly detailed, presents risk in that software

design and behaviors will not be individually verified.

As with the previous risk, CSERP and SR&QA personnel are

working closely with project safety engineers to “modularize” the

description of software causes controls instead of treating

software as a single black-box entity. A constant challenge faced

by CSERP, SR&QA and safety engineers is determining when

differentiating complex hardware and software functionalities

into multiple causes and controls is appropriate. Complex causes

and controls introduce risk that some individual risks may not be

well understood. However, creating controls also entails

significant additional verification effort that may yield little

return if the cause/control was largely covered elsewhere.

Risk 4 – Incorrect references to hazard reports, causes and

controls impair traceability.

A number of references to missing or incorrect hazard reports,

causes or controls were observed. The most substantial risk is

that a cause may not be adequately controlled when one or more

of its controls are transferred to an incorrect or missing hazard

report, cause, or control. NASA is currently deploying improved

functionality in the HTS to allow safety engineers to create

explicit references to other hazards, causes, controls and

verifications in the hazard reports. This functionality will be

backed by automated verification and bookkeeping.

Risk 5 – Sub-controls dissuade independent verification and add

overhead.

Many HRs have controls that contain enumerated “sub-controls.”

Greater confidence in the control may be gained by verifying the

sub-controls independently. Furthermore, additional risk is

introduced in that references to sub-controls may become lost or

incorrect as these references must necessarily be manual instead

of taking advantage of the technology available in the hazard

tracking system. As in Risk 3, CSERP and SR&QA personnel are

working closely with safety engineers to determine the best

methods for separating out and managing the overhead associated

with complex controls.

Risk 6 – Ubiquity of transferred causes and controls may mask

software risk.

Across the projects, 23-31% of causes and 11-22% of controls

were transferred. While necessary and appropriate in

documenting hazards, transferred causes and controls represent

added risk. The applicability of transferred causes and the

adequacy of transferred controls must be re-evaluated in their

original context whenever any changes are made to the causes or

controls. Furthermore, additional bookkeeping is necessary to

ensure that the references to hazard reports, causes and controls

are up to date (see Risk 4). Transferred causes and controls also

make it difficult to understand the impact of software.

Stronger tool support (as described in Risk 4) enables better

traceability and bookkeeping, but also enables analysis that can

be used to quantify software risk. Coupled with marking causes

and controls as software (as described in Risk 2), the HTS tool

could then report the number of software causes and controls by

automatically resolving dependencies between hazards.

5. SUMMARY AND FUTURE WORK
By applying the TPRM methodology, we assisted NASA

SR&QA personnel in identifying areas of software safety risk in

the early design phases on the Constellation program using

hazard analysis artifacts. Furthermore, as Section 4.6

demonstrates, we were able to identify six specific process risks

in the application of the hazard analysis process that may result

in developing unreliable software. We are working with NASA

SR&QA personnel in an ongoing effort to educate NASA safety

engineers on describing software safety risk, to improve NASA

process documents and training materials, and to provide tool

support to the software safety process.

These results were similar to a previous case study of the TPRM

methodology applied to the safety analysis process on a large

Department of Defense system development [3]. In that case

study we identified a similar series of risks:

 Software Hazard Identification. Safety-related

requirements were not identified as such and many hazard

controls were not properly identified as software-related

safety requirements.

 Hazard Traceability. The HTS does not provide sufficient

linkages among the requirements documentation system,

the test plan, or to the defect tracking system.

 Data Integrity. Hazards, causes, and controls may not be

described in sufficient detail to be understood and verified.

 Level of Rigor (LoR). There was difficulty in

differentiating among different levels of rigor for the

various software safety requirements and identifying,

assigning, and tracking the appropriate LoR to specific

software components that implement the safety-related

requirement. Lack of proper LoR differentiation can lead to

inadequate attention on high-risk hazards or too much

attention on low-risk hazards.

These risks are very similar to the risks we found in the NASA

case study, and may be indicative of process risks experienced

by many large software engineering projects being developed by

many organizations. This indicates that simply defining a

development process is not sufficient to identify safety (or any

other kind of) risk. Management, measurement, and feedback of

the process being used is as important as defining a proper

process in the first place.

The major risk in systems development is the assumption that

good development practices will result in good software. The

value of the TRPM methodology is contingent on the studied

process being the right process to achieve the desired product

characteristic. We are assuming that adherence to the defined

process, be it waterfall, agile, or whatever is appropriate in a

given situation, will result in lower risk of safety problems. We

do not say that adherence will guarantee a quality product, but

do assume that non-adherence will increase the risk of failure.

This means that we have to apply the TPRM methodology to a

larger number of case studies, environments and organizations

to both show that the methodology does find safety risks, and to

understand how prevalent these risks seem to be across the

industry. To date the process works, but two anecdotes do not a

theory make. We plan on continuing this in other environments.

6. ACKNOWLEDGMENTS
This research was supported by NASA OSMA SARP grant

NNX08AZ60G to the Fraunhofer CESE. We would like to

acknowledge the help of Karen Fisher and Risha George at

NASA Goddard Space Flight Center for providing us support

and access to people and artifacts of the Constellation Program.

7. REFERENCES
[1] D. Ahern, A. Clouse, and R. Turner,Cmmi® distilled: a

practical introduction to integrated process improvement,

third edition, Third edition, Addison-Wesley Professional,
2008.

[2] V. Basili and D. Weiss, “A Methodology for Collecting
Valid Software Engineering Data,” IEEE Transactions on
Software Engineering, 10(3):728-738, Nov. 1984.

[3] V. Basili, F. Marotta, K. Dangle, L. Esker, and I. Rus,
“Measures and Risk Indicators for Early Insights Into
Software Safety,” Crosstalk, 21(10):4-8, Oct. 2008,

[4] Federal Aviation Administration, “System Safety
Handbook”, accessed October 15, 2010,
http://www.faa.gov/library/manuals/aviation/risk_managem
ent/ss_handbook/, updated May 21, 2008.

[5] L. Layman, V. R. Basili, M. V. Zelkowitz, “The Role and
Quality of Software Safety in the NASA Constellation
Program”, Fraunhofer CESE Technical Report #10-101,
http://www.fc-md.umd.edu/Publications/TR/Safety-
metrics_TR_10-101.pdf, June 2010.

[6] N. G. Leveson and C. S. Turner, “An investigation of the
Therac-25 accidents,” IEEE Computer, 26(7):18-41,
doi:10.1109/MC.1993.274940, July 1993.

[7] B. Nuseibeh, “Ariane 5: Who Dunnit?”, IEEE
Software¸14(3):15-16, May/June 1997.

[8] B. Prasad, Concurrent Engineering Fundamentals –
Integrated Product and Process Organization, Prentice Hall,
Upper Saddle River NJ, 1996.

APPENDIX

Table 7. Project A - hazard table

 Non-software

cause

At least 1

software cause

no software control 39 (51%) 0 (0%)

at least 1 software

control
10 (13%) 28 (36%)

Total 77

Table 8. Project A - cause table

 Non-software

cause

Software

cause

no software control 393 (71%) 0 (0%)

at least 1 software

control
76 (14%) 85 (15%)

Transferred causes 252

Total 806

Table 9. Project A - control table

N % of

total

% of non-

transferred

Non-software 1603 64% 82%

Software 243 10% 12%

Generic software controls 105 4% 5%

Transferred controls 566 22% -

Total 2517 100%

Table 10. Project B - hazard table

 Non-software

cause

At least 1

software cause

no software control 19 (33%) 0 (0%)

at least 1 software

control
1 (2%) 37 (65%)

Total 57

Table 11. Project B - cause table

 Non-software

cause

Software

cause

no software control 398 (77%) 0 (0%)

at least 1 software

control
57 (11%) 62 (12%)

Transferred causes 155

Total causes 672

Table 12. Project B - control table

 N
% of

total

% of non-

transferred

Non-software 1799 75% 84%

Software 298 12% 14%

Generic software controls 37 2% 2%

Transferred controls 265 11% -

Total 2399 100%

Table 13. Project C - hazard table

 Non-software

cause

At least 1 software

cause

no software

control
6 (30%) 0 (0%)

at least 1 software

control
0 (0%) 14 (70%)

Total 20

Table 14. Project C - cause table

 Non-software

cause

Software

cause

no software control 275 (81%) 0 (0%)

at least 1 software

control
9 (3%) 57 (17%)

Transferred causes 194

Total 535

http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/
http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/
http://www.fc-md.umd.edu/Publications/TR/Safety-metrics_TR_10-101.pdf
http://www.fc-md.umd.edu/Publications/TR/Safety-metrics_TR_10-101.pdf

