Technical Report TR-1519 July 19085

Quantltative Evaluation of Software Methodology

Victor R. Basil

Department of Computer Sclence
Unlverslty of Maryland
at College Park

Abstract

This paper presented a paradigm for evaluating software
development methods and tools. The basic idea is to generate a set of
goals which are refined into quantifiable questions which specify
metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize,
evaluate, predict and motivate. They can be used in an active as well
as passive way by learning from analyzing the data and improving the
methods and tools based upon what is learned from that analysis.
Several examples were given representing each of the different
approaches to evaluation.

’

This study is funded by NASA grant NSG-5123 and Alr Force Research Grant AFOSR F49620-80-C-001. This paper
will be presented at the First Pan Pacific Computer Conference, Melbourne, Australla, September 10-13, 1085,

Quantitative Evaluation of Software Methodology
Victor R. Bastill

Department of Computer Sclence
Untlverslty of Maryland

INTRODUCTION

One of the major problems In the development of software Is the lack of
management’s abllity to (1) find criterla for selectlng the appropriate methods and
tools to develop and malntaln software and (2) evaluate the goodness of the software
product or process. In a survey of the software development Industry, [Thayer and
Pyster 1980] listed the twenty major problems reported by software managers. Of
these twenty, over half (at least thirteen) dellneated the need for management to
find selection criterla for the cholce of technology or be able to judge the quality of
the exlisting software development process or product. In some sense this may have
been a surprise. Management's priority was not to ask for new technology but they
wanted to find out how to use the existing technology. This is In fact a major aspect
of the technology transfer problem.

For many cases, there does exist a falr amount of technology avallable for
software development. However, 1t Is not always apparent to the manager which of
these techniques or tools to invest In, and whether or not they are working as
predicted for the particular project. What Is needed In almost all cases Is a quantita-
tlve approach to software management and engineering that uses models and metrics
for the software development process and product. There are such models and
metrlcs avallable. They cover everything from resource estimation and planning to
the complexity of the product.

This quantitatlve methodology Is needed for understanding, comparing, evaluat-
Ing, predicting, motlvating, and good management practices. In many cases, it Is
stlll a primitive technology and should be used by management and engineering as a
tool to augment good judgement, not to replace it. Typlecally, we need to establish
the valldlty of the models and metrices in the Individual environments to be sure that
they capture the appropriate activities.

METHODOLOGY LEVELS

Before I discuss the avallable models and metrles for quantitative management
and englneering, I will begin with the Issue of methodology. There are varlous levels
at which the software development process can be viewed. At the top most level, we
often will think about a particular technlque, some approach to solving a specific
aspect of the software development problem. For example, structured coding Is a

~mechanlism for developing code In a particular programming language using a select
set of control structures. It Is a loglcally sound approach to code development since
It allows ease of testing, readabllity, and permits the use of a checkable standard.

1

Unfortunately, 1t was thought of as the solutlon to the software development
problem back in the 19680's. That now appears rather nalve glven what we know
about software development. Structured coding Is clearly only one part of the
software development process, attacking only one phase of the process and a single
product, the code. Taken In Isolatlon It can even cause a problem. Glven an
unstructured deslgn, 1t would be very difficult for the coder to redesign at the code
level. If the project Is not performing Inspections or dolng readlng or writing tests
based upon the structure of the code, then many of the beneflts of structured coding
are lost. Thus, the technique of structured coding, used In Isolation can be a draw-
back and even Increase the cost of a project.

The problem Is that one cannot take a method or tool and place 1t Into a
forelgn environment and expect it to work. What iIs needed, as we now understand,
Is an Integrated set of methods and tools that work together across the whole life
cycle. The use of structured coding In conjunction with structured deslign, a struc-
tured process deslgn language, and reading techniques, have been shown to pay off
well. What we want Is an Integrated set of technlques that provide a methodology
for software development across the entire life cycle. Tools should be provided,
whenever possible to support the methods.

Unfortunately, this is still not ‘the solution’. An Integrated set of methods must
by definitlon be an abstraction. These technlques must be engineered for a particu-
lar environment. In this sense, software engineering involves the appllcation of an
Integrated set of technlques to a speclfic proJect, with Its unique problems, con-
straints, and environment. This approach requlres an understanding of the project
and the environment in which it Is to be developed so that the right set of tech-
niques can be (1) chosen from the Integrated set and (2) refined for the environment.

The following are examples of both chooslng the appropriate techniques and
refinlng them. An Integrated set of technlques does not mean a standard fixed set.
An Integrated set should mean a set of t.echn]ques from which the manager may
choose the most appropriate glven the project characteristics, knowing that whatever
set Is chosen they wlll Interface well with one another. For example, suppose the
project 1s one In which the developer has very little experlence, and the requlrements
wlill be changing on a regular basls. Then one should choose a subset of technlques
that lend themselves to a changing environment. This calls for an evolutionary
approach, such as Iteratlve enhancement [Bas!ll and Turner 1975}, In which the
developer bullds subset versions of the product, evaluating each of the subsets as it
Is completed. Clearly, the standard waterfall model would not be eflective In this
environment. However, many technlques, such as structured design and coding
wlithin a verslon, are useful.

An example of the refinement of a technique might be based upon the history of
errors. Knowlng the error pattern in a partlcular environment, e.g. 40% of the
errors are errors of omission and 60% errors of commission, then reading the design
without having the requirements document avallable might mlss as much as 409 of
the errors. Thus the reading approach would require that consistency checks
between documents always be done. The error pattern always warns about total

rellance on a structural testing technique. If 1t were known that 109 of the errors
were due to fallure to Inltialize varlables, then the readers could be advised to check
for the Inltlalization of varlables in thelr reading.

In elther case, 1t Is apparent that the more we know about our environment, the
better we can choose and tallor the appropriate techniques for development and
malntenance.)

MODELS AND METRICS

In order to evaluate the methods belng used, we must first understand the
software development process and product. This requires hypothesizing models. A
model Is simply an abstraction of a real world process or product. It attempts to
explaln what Is golng on by making assumptions and simplifylng the environment.

It glves a viewpolnt of the software development process or product by classifying
varlous phenomena, abstracting from reality, and Isolating the aspects of Interest.
There may be many models of the same thing, each attempting to analyze a different
aspect. The thing belng modeled may then be described as the sum of all the models
or viewpolnts. There are models which take the viewpolnt of resource use, complex-
1ty, rellabllity, change, etc. Based upon the models, there are metrics which are slm-
ply quantitatlve measures of the extent or degree to which the software possesses
and exhlbits a certaln characteristle, quality, property, or attribute. These metrics
provide us with measurements: numbers with an assoclated unit of measure which
describe some aspect of the software.

Metrles can be viewed In many ways [Baslll 1981]. They can be thought of as
objective or subjective. Objective metrics are absolute measures taken on the
product or process, e.g. the time for development, the number of lines of code, the
number of errors or changes. Subjectlve metrics are an estimate of the extent or
degree 1n the application of some technique, or the classification or qualification of a
problem or experlence, usually done on a relative scale. Here there Is no exact meas-
urement but an oplnlon or consensus of oplnlons. Examples include a rating on the
use of a process deslign language (PDL) or a rating of the experlence of the program-
mers In an applicatlion.

Typleally a subjective metric iIs used when we do not know how to quantify an
objJectlve metric. For example, It is difficult to define an objJective metric for how
well a PDL was used In the development of a project. However, If we are to evalu-
ate the eflect of the PDL we need to know whether the technlque was used well or
not, so that Its effect can be judged appropriately. Even though we cannot come up
with an objective ratlng, we can ask two or three people to rate the use based upon
some rating scale, e.g.

0 - wasn’t used at all,

1 - used only partly and as a codlng specification

2 - used almost everywhere but as a coding speclfication

3 - used at a higher level than as a coding specification

4 - used at multiple levels of specification with llmited success
5 - used effectively at multiple levels of design

Although the rating will not be exact, 1t will provide reasonable subjective infor-
mation that could not be avallable otherwise. Sometimes there Is an objectlve
metric we can use, but It Is less accurate than the subjective Information. For exam-
ple, to evaluate the experlence of a programmer 1n an application, an objective
metric might be years of experlence. However, several studles have shown that years
of experlence Is not a rellable metric past two or three years. A subjective rating by
management and colleagues would probably be a more|accurate measure,

Metrics can be measures of the product or the process. A product metric would
be a measure of the actual product developed, e.g. sounce code, object code, docu-
mentatlon, etc. Sample metrics are lines of code (an objective metric) and readabil-
Ity of the source code (a subjective metric). A process metric would be a measure of
the process model used for developlng the product. Sample product metrics would
be the use of a methodology (a subjective metric) and the effort for development In
stafl months (an objective metric).

Metrics can be used to measure cost or quallity. cost measure Is some expen-
diture of resources In dollars Including capltal 1nvestmfjnt usually normallzed accord-
Ing to some value component. For example, stafl months, computer use, size per
time slice. A quallty measure represents some form of value of the product. For
example, rellability, ease of change, correctness, number of errors remalining, amount
of code reusable. Actually cost can be consldered a quallty metric slnce low cost
might be thought of as a valuable quality. However, we typlcally are trylng to max-
Imlize quallty and minimize cost so it Is Interesting to see them as separate types of
metrics useful In tradeoffs. 1 ' ‘

can be used to characterize and understand. A characterizing metric Is one that
helps distingulsh the process or product or environment. For example, the use of a
methodology, the number of externally generated changes, or the size. Each of these
tell us somethlng about the prolect so that we can bettier understand 1t. Character-
1zing metrics can be used for schedule tracking, providing information on where the
1th respect to calendar time,
rocess or the product.

projJect stands with respect to percent of resource use,

There are several general uses of metrics. First a ‘d most Important, metrics
etc. They can be used to help define the model of thel

It correlates with or shows directly the quality of the process or product, e.g. the
number of errors reported durlng acceptance testing orwork productlvity. Where
almost all metrics can be used for characterization, only a subset can be used for
evaluation. The schedule tracking metrics mentioned jbove can be used for evalua-

Metrlcs can be used for evaluation. The metric 1SE good evaluative measure If

tlon, only If we know the planned schedule Is reasonable. If it Is, we can use confor-
mance to schedule as a means of evaluating the effect of the methods used.

Metrlcs can be used for prediction and est,lmatlon.‘ A predictive metric 1s one
that 1s estimable or calculable at some polint In time and can be used to predict some
information at a later polnt in time. For example, estimating size as a predictor of
eflort Is a standard predictive relatlonship. It becomes|interesting to try to establish
metrlcs such as the use of a particular methodology as ja metrlc that predicts (corre-
lates) with varlous aspects of quallty, e.g. ease of modl#catlon.

|
\
\
|
|
\
|

Metrlcs can be used for motlvation. Letting the developers know what s impor-
tant 1n a quantitative way defines what 1t Is we are looking for. For example, one of
the major Issues In software productivity Is the need for reusabllity. However,
management does not motlvate reusabllity, it actually unknowlngly discourages It.
By uslng schedule and cost as the primary motivators for success, 1t discourages a
manager from using extra tlme or money that might make parts of the product reus-
able. If reusabllity were listed as one of the prime motlvators, to be traded off with
cost and schedule, we might see more reusabllity. For example, we can motivate a
project manager to try to develop reusable design or code by rewarding him/her for
all code that gets used In another project. This would help encourage the manager
to conslder tradeoflfs of reuse with time and cost. Another manager might be
motlvated to reuse someone else's code by rewarding him/her by counting any
reused code as part of thelr total source code count or even adding extra rewards for
reuse. Motlivational metrics need to be carefully thought out, l.e. we need to be sure
we want what we are asking for. But even the generation of such metrics helps us
better understand what we are telllng managers versus what we should be telling
managers, l.e. what are the actual goals of the company and the project.

MEASUREMENT AND EVALUATION PARADIGM

The measurement and evaluation process requires a mechanism for determining
what data Is to be collected; why It Is to be collected; and how the collected data is
to be Interpreted [Baslll & Welss 1984]. The process requires an organized mechan-
Ism for determining the purpose of the measurement; defining that purpose in a
traceable way Into a quantitatlve set of questions that define a specific set of data for
collection. The purpose of the measurement and evaluation flows from the needs of
the organization. These may Include: the need to evaluate some particular technol-
ogy; the need to better understand resource utilization in order to Improve cost esti-
mation; the need to evaluate the quality of the product In order to determine when
to release 1t; or the need to evaluate the benefits and drawbacks of a research pro-
Ject.

The goals tend to be vague and amblguous, often expressed at an imprecise
level of abstraction. For example, the words understand, evaluate, quality, benefits,
and drawbacks carry different meanings to different people or vary with different
environments. The need to better understand resource utilizatlon in order to
Improve the cost estimatlon process explalns what I want to do but leaves many
questions about what kind of data needs to be collected. The need to evaluate the
use of a technology, l1ke design Inspectlons, requires the perspective of the expecta-
tlons from the methodology as does the evaluation of a research project. The goals
need to be carefully articulated but also refined in a quantitatlve way In order to
glve preclsion and to clarify thelr meaning with respect to the particular environ-
ment.

The data collectlon process itself requires a basic paradigm that traces the goals
of the collection process, l.e. the reasons the data are belng collected, to the actual
data. It Is Important to make clear at least In general terms the organlzation’s needs
and concerns, the focus of the current project and what Is expected from it. The

5

formulatlon of these expectations can go a long way towards focusing the work on
the project and evaluating whether the project has achleved those expectations. The
need for Information must be quantified whenever possible and the quantification
analyzed as to whether or not 1t satisfies the needs. This quantificatlon of the goals
should then be mapped Into a set of data that can be collected on the product and
the process. The data should then be valldated Wwith respect to how accurate 1t Is
and then analyzed and the results Interpreted with respect to the goals.

The actual data collectlon paradlgm can be visualized by a diagram:

Goall ' Goal?2 Goaln

.
.

.

Questionl . Question3 Question4 . Questions

Questions

. Question2 . ‘ . Questions . Questlion?
d1r . . . mo d2 I 1 11
ml m2 m3 md m2 d3 m8 ml m6 m7

Here there are n goals shown and each goal generates a set of questions that attempt
to define and quantify the specific goal which is at the root of 1ts goal tree. The goal
Is only as well defined as the questlons that It generates. Each question generates a
set of metrics (m!) or distributions of data (dl). Agaln, the question can only be
answered relative to and as completely as the avallable metrlcs and distributions
allow. As Is shown In the above diagram, the same questions can be used to define
different goals (e.g. Question8) and metrics and distributions can be used to answer
more that one question. Thus questlons and metrics are used In several contexts.

The paradigm Is Important not Just for focusing management, engineering, and
quallty assurance Interests but also for Interpreting the questions and the metrics.
For example, m8 is collected In two contexts and posslibly for two different reasons.
Questlon8 may ask for the slze of the product (m8) as part of the goal to model pro-
ductivity (Goal2). But m8 (slze of the product) may also be used as part of a ques-
tlon about the complexity of the product (e.g. Question?) related to a goal on ease of
modification (e.g. Goaln).

If 2 measure cannot be taken but Is part of the definitlon of the question, 1t Is
Important that 1t be Included 1n the goal/questlon/metric paradigm. This Is so that
the other metries that answer the question can be viewed in the proper context and
the question Interpreted with the appropriate llmltations. The same Is true for ques-
tlons being asked that may not be answerable with the data avallable. For example,
to determine the effectiveness of a method In reducing errors, I need to know the
total number of faults over the system life time. . I cannot know this number durlng
the development phase. I should still Include the metric in the paradigm so that I
know the Information Is Incomplete.

It could then be assumed that although there may be many goals and even
many questions, the metrics do not grow as the same rate as the goals and questlons.
Thus a set of metrics could be collected for characterizing the software process and
product that will allow many questlons generated by different goals to be answered.

Glven the above paradigm, the data collectlon process conslists of six steps:
1. Generate a set of goals based upon the needs of the organlzation.

The first step of the process is to determine what 1t Is you want to know. This
focuses the work to be done and allows a framework for .determlnlng whether or not

It 1s difficult to provide an organlzation with a set of guldellnes for generating
goals. These should be based upon the particular needs and concerns of the organi-
zation and 1ts purpose for beginning a data collection activity. The goals can be
management orlented, engineering orlented, quality assurance orlented or even
research orlented. As Stated above, many of the questions or metrics may be the
Same for the different orientations but they may be comblned In different ways and
the Interpretation Wil have a different focus and !mpact.

Management orlented goals wil] typlecally deal with resource allocation and mon-
Itoring for the purpose of prediction and estimation. For €Xample managers may
Wish to estimate cost, track resource expendltures, and predict the quality of the
project. An englneering orlentation may be to evaluate the technology belng used in
the development of the project, discover the problems in terms of €rrors and resource
use In order to Improve the quallty of the process or the product. A quallty
assurance orlentation may be to characterize the product or even the process to
Judge adherence to standards, Isolate parts of the product that requlre rework, or

The goals to characterlze, evaluate and predict aspects of the software process
and product cover g large area. We can set goals to characterize the effort expended,
the changes generated, the errors commltted, the dimensions of the products such as
slze and complexity at varlous polnts In tlme, the methods and tools, the documenta-
tlon, the appllcatlon, the experlence of the developers, the computer and the con-
stralnts set on the project, and the varlous execution time Issues such as perfor-
mance, space utllizatlon, and test cdverage. We can set goals to evaluate the

effectlveness of the tools and methods used, the environment In which the product is
developed, and even the models for the process and product. We can set goals to
predlct the cost, rellabliity or quallty of the product.

2. Derlve a set of questlons of interest or hypotheses which quantify those
goals.

The goals must now be formailzed by making them quantifiable. This Is the
most difficult step In the process because it often requlres the interpretation of fuzzy
terms like quallity or productivity within the context of the development environ-

above goal of characterizlng resource usage across the project, questions of Interest
might be: How much time (In minutes, hours, weeks, months Or years) was spent by
all personne] of interest (programmer, librarian, support stafl, managers, reviewers,
etc.) In total and across subcategorles, In each phase (requirements, specification,
deslgn, code, test, and operation) or actlvity (tralning, reviewing, making changes,
etc.) for each product part (module, subsystem, full system)? How much computer
time was spent by all personnel of Interest 1n total and across all subcategorles, for
each phase or actlvity, for each product part? These questions actually generate sets
of questlons barameterized by each of the subcategorles above,

After all possible resource usages have been defined and transposed Into ques-
tlons, the questions posed must be evaluated as to whether they provide a complete
definition of the goal. This process Is a heurlstic one and the Judgement of whether

answer these questlons because It was collected to answer another question. However
before applying the data directly, the question/metric paradligm should be developed
to assure proper Interpretation of the question.

It will often be the case that the set of questions do not fully satlsfy the goal.
Thils may be because we do not know how to phrase a question in a quantlfiable way

3. Develop a set of data metrics and distributions which provide the informa-
tlon needed to answer the questions of Interest.

In this step, the actual data needed to answer the questlons are ldentified and
assoclated with each of the questlons. In the above example this Is a slmple count of
beople and computer tlme by the varlous subcategories. However, the Identification
of the data categorles Is not always so easy. Sometimes new metrics or data distri-

8

thought should be glven to how valid the data Item will be with respect to accuracy
and how well 1t captures the speclfic questlon.

These data Items may be objectlve or subjectlve. If they are subjectlve, some
mechanism must be defined for quantifylng the evaluation, e.g. an Integer scale of 0
to 5, and ellmlnating varlations In Judgement, e.g. a consensus of three people.

4. Deflne a mechanlsm for collecting the data as accurately as possible

The data can be collected vla forms, Interviews, or automatlically by the com-
puter. If the data Is to be collected via forms, they must be carefully defined for
ease of understanding by the person filling out the form and clear Interpretation by
the analyst. An Instruction sheet and glossary of terms should ‘accompany the
forms. Care should be glven to characterlzlng the accuracy of the data and defining
the allowable error bounds.

5. Perform a valldation of the data

The data should always be checked for accuracy. Forms should be reviewed as
they are handed in. They should be read by a data analyst and checked with the
person fllllng out the form when questions arlse. Sample sets should be set to deter-
mine acéuracy the data as a whole. As data Is entered Into the data base, validity
checks should be made by the entering program. Redundant data should be col-
lected so checks can be made.

The valldity of the data is a critlcal Issue. Interpretations will be made that
will effect the entire organization. One should not assume accuracy without
Justification.

6. Analyze the data collected to answer the questions posed

The data should be analyzed In the context of the questlons and goals with
which they are assoclated. Missing data and missing questions should be accounted
for In the Interpretation.

The process Is top down, l.e before we know what data to collect we must first
define the reason for the data collection process and make sure the right data is
belng collected, and it can be Interpreted in the right context. To start with a set of
metrles Is working bottom up and does not provide the collector with the right con-
text for analysls or Interpretation.

EXAMPLE TECHNIQUE EVALUATION

As an example conslder the goal of evaluating the effectlveness of a method such
as design Inspections. This appears to be a clearly stated goal at first but the goal
does not say with respect to what are we to evaluate the technology. Let us help
define this better by asking a set of questions.

Question 1: How well were the Inspections performed? Use a subjective rating O
to 5.

This question provides us with a basls for evaluation. We would not like to
evaluate the technlcal beneflts of the method If it was not applled well. We may
even wish to rate how well different aspects of the technlque were applled. This

rating might be done by the moderator, a project person and the instructor of the
technique.

Question 2: How many errors were uncovered? Characterize the errors by
different classification categorles.

This might tell us whether the technlque Is better at finding certaln kinds of
errors and If we have any history of other projects as a basls, 1t can tell us whether
Wwe are dolng better or worse than the norm.

Question 3: How much calendar time was spent?

This questlon addresses the cost of applylng the technique. For example we
might wish to analyze the effect on the schedule.

Question 4: How many stafl hours were spent?

This questlon addresses the cost and resources spent. We can compare the
number of hours spent finding errors In this way to the varlous testing techniques
used.

Question 5: What percent of the errors were found?

We will not fully be able to answer thls question until the product has been In
the fleld for several years but at each mllestone, e.g. acceptance test, one year In the
fleld, etc. We wlll be better able to understand the effectlveness of the technlque.

Question 8: What was the cost of error isolation? error fix?

This quéstlon allows us to analyze the cost of discovering and fixing errors dur-
Ing Inspectlons as opposed to durlng testing.

ete.

There are many more questlons we might ask based upon what 1t Is we want to
know. As stated above, these questions permlit us to better define the goals, help us
to speclfy what data needs to be collected (e.g. subjectlve ratings on how well the
method was applled, error counts and distributlons, eflort in Inspection by person by
actlvity), and how the data should be Interpreted (e.g. we may not be able to judge
the total effectiveness until the project has been out In the fleld for a while).

METHODOLOGY IMPROVEMENT PARADIGM

All this leads us to the following basie paradlgm for evaluating and Improving
the methodology used In the software development and malntenance process.

1. Characterlize the approach/environment.

This step requires an understanding of the varlous factors that will Influence the
project development. This Includes the problem factors, e.g. the type of problem,
the newness to the state of the art, the susceptibllity to change, the people factors,
e.g. the number of people working on the project, thelr level of expertlse, experl-
ence, the product factors, e.g. the slze, the dellverables, the rellability requirements,
portability requirements, reusabllity requirements, the resource factors, e.g. target
and development machine systems, avallabllity, budget, deadllines, the process and
tool factors, e.g. what technlques and tools are avallable, tralning in them,

10

pbrogramming languages, code analyzers.

2. Set up the goals, questions, data for successful proJect development and
Improvement over previous project developments.

It 1s at this point the organlzation and the projecti manager must determine
what the goals are for the project development. Some of these may be specified from
step 1. Others may be chosen based upon the needs of the organizatlon, e.g. reusa-
blllty of the code on another project, Improvement of he quallty, lower cost.

3. ‘Choose the approprlate methods and tools for he project.

Once 1t Is clear what Is required and avallable, methods and tools should be
chosen and refined that will maximize the chances of s tisfylng the goals laid out for
the project. Tools may be chosen because they facilitate the collection of the data
necessary for evaluatlon, e.g. configuration managemen tools not only help project
control but also help with the collectlon and valldation of error and change data.

4. Perform the software development and malnte ance, collecting the
prescribed data and valldating 1t.

This step Involves the collectlon of data by forms,
collectlon mechanisms. The advantages of using forms
set of data can be gathered which glves detalled Insight
record keeping. The drawback to forms Is that they ca
because people fill them out. Interview can be used to
forms and gather Informatlon that s not easlly obtalnable In a form format,.
Automated data collection Is rellable and unobtrusive and can be gathered from pro-
gram development lIbraries, program analyzers, etec. H wever, the type of data that
can be collected In this way Is typlcally not very Insightful and one level removed
from the Issue belng studled. :

ntervlews, and automated
o collect data Is that a full
and provides for good

be expenslve and unreliable
alldate Information from

5. Analyze the data to evaluate the current practices, determine problems,
record the findings and make recommendations for Improvement.

This Is the key to the mechanism. It requires a DOSt mortem on the project.
Project data should be analyzed to determine how well he project satisfled its goals,
where the methods were eflective, where they were not e ectlve, whether they should
be modified and refined for better application, whether more tralning or different
tralning Is needed, whether tools or standards are needed to help in the application
of the methods, or whether the methods or tools should be discarded and new
methods or tools applled on the next project.

8. Proceed to step 1 to start the next project, armed with the knowledge galned
from this and the previous projects.

Thls procedure for developing software has a corporate learning curve bullt In.
The knowledge Is not hidden in the intultion of first level managers but is stored In a
corporate data base avallable to new and old managers t help with project manage-
ment, method and tool evaluation, and technology transfer.

11

CASE STUDIES OF METHODOLOGY EVALUATION

WIth all the different methods and tools avallable, we need to better quantita-
tlvely understand and evaluate the benefits and drawbacks of each of them. There
are several different approaches to quantitatlvely evaluating methods and tools:
blocked subJect-project, replicated project, multl-project variation, and single project
case study [Baslll & Selby 84]. The approaches can be characterized by the number
of teams replicating each project and number of different prolects analyzed as shown
In Table 1.

* # of projects *

* one more than *

* one *
**
* * *

of * one * single project multl-project x
teams * * varlatlon *
* * *

per ¥ mmore than « repllicated blocked *
brojJect «x one * project subJect-project x
* L 3 *
**

TABLE 1

The approaches vary In cost and the leve] of confidence one can have In the result of
the study. Clearly, an analysls of several replicated projects costs more money but
wlll generate stronger confidence In the concluslon. Unfortunately, since a blocked
subject-project experlment Is so expensive, the projects studled tend to be small.

Research (LASER) at the Unlversity of Maryland.

METHODOLOGY EVALUATION USING BLOCKED SUBJECT-
PROJECT ANALYSIS

The sample study discussed here Is g testing strategles comparison [Baslll &
Selby 85]. The goal was to compare the eflects of code readlng, functlonal and struc-
tural testing with respect to 1) fault detection eflectiveness, 2) fault detectlon cost,

12

and 3) classes of faults detected. A secondary goal was to compare the performance
of software type and expertlse level but only the first goal will be discussed here.

The experimental approach Involved three replications of the €xperlment using
74 subjects on four different projects. The projects were a text formatter, a plotter,
an abstract data type, and a database brogram varying In length between 145 and
365 Ilnes of code. The programs each contalned software faults (9, 8,7, 12 respec-
tively) that were elther made durlng the actual develo ment of the program or were
seeded based upon characteristic faults found In the local environment. The experi-
mental deslgn was a fractional factorial design blocked accordlng to experlence level
and the program tested. Each subject used each technlque and tested each program.

Two of the questions generated from this study were:

Question 1: Which of the validation technlques detects the greatest number of
faults in the programs?

faults on the average, functional testing found 4.5 faults on the average and struc-
tural testing found 3.3 faults on the average,

Question 2: Which of the technlques has the highest fauit detection rate
(number of faults detected per hour)? :

The data collected to answer thils questlon was the umber of faults found and
the time spent by the subject in detecting faults. The r sults were that code reading
was more cost effective than functional and structural te ting. Code readlng found
3.3 faults per hour on the average while each of the testlng technlques found 1.8
faults on the average.

Because of the experlmental deslgn of this type of analysis there were many
other questlons that were posed and answered by this ex erlment, e.g. Is the fault
detectlon rate dependent on the type of software? Is the number of faults observed
dependent on the type of software? Do the methods tend to capture dlifferent classes
of faults? ‘What classes of faults are observable but €0 unreported?

The experimental deslgn for this study permlts a great amount of statlstical
analysls and provide the experimenter with a falr amount of latitude In studylng the

cost of replication Is too expensive,

METHODOLOGY EVALUATION USING REPLI ATED PROJECT
ANALYSIS : v

13

evaluate the effect of g dis-
clplined approach to software development [Basili & Relter 81). The disclplined
approach Included the use of an Integrated set of techn ques that Included top down
deslgn, a process deslign language, walk-throughs, chief programmer teams, and the
use of a llbrarlan,

The experimental approach involved the replication of the same project by 19
teams, Includlng 7 three person diselplined teams (DT),|6 three-person ad hoc teams
(AT), and 8 ad hoe Individuals (AI). The project was to bulld a compller for a small
language, antlcipating about 1200 source llnes of code In a high leve] language. All
the data was collected automatically so that the sublects did not know what was
belng measured. The drawback to this Is that the Information was typlecally one
level removed from what we really wanted to know. The statistical analysis per-
formed were the non-parametric Mann-Whitney U and

Speclific questions included:

of the process?

The data collected was a count of the (1) number of job steps, l.e. any aspect of
computer access such as module compllations and program executlons, and (2) pro-
gram changes, l.e. the number of changes to a program that Indlcated an error or
omlssion. Job steps were used to represent effort and program changes were used to
represent errors. '

The results of the study showed that for all categorles of Job steps and program
changes, the disciplined teams had Statistically less of both than elther the ad hoc
teams or the ad hoc Individuals.

Questlon 2: Does a disciplined team behave more llke an Indlvidual programmer
than a team In terms of the resulting product? This was|an attempt to measure con-
ceptual Integrity.

The data collected here was varlous product measures such as slze (number of
Segments, number of lines of code, number of declslons) and complexlty, e.g. a com-
parison of cyclomatic complexity [McCabe] for the top quartlles of modules.

The results of this study showed that the ad hoc Indlviduals had a Smaller
number of segments than elther the disciplined teams or the ad hoc teams. The ad
hoc Individuals had less lines of code than the disciplined teams which had less Iines
of code than the ad hoe teams, and the ad hoc Indlviduals and disclplined teams had
less declslon than the ad hoc teams. Comparing the cyclomatic complexity of the
modules In the upper quartlles, the results were that the disclplined teams created
the least complex projects and the ad hoc Indlviduals the most complex project with
the ad hoc teams lying in between, depending upon the m chanism for counting
decisions.

14

The beneflt of the study Is that the results were soundl supported statistlcally
ere of a more reasonable slze

METHODOLOGY EVALUATION USING MUL I-PROJECT VARIA-
TION ANALYSIS

Multi-project varlation analysls Involves the measurement of several projects
where controlled factors such as methodology can be va led across simllar projects.
This Is not a controlled experiment as the prevlous two pproaches were, but allows
the experlmenter to study the effect of varlous methods and tools to the extent that
the organlzation allows them to vary on different projects.

The goal of this sample study was to examlne the r latlonshlp between metho-
dology and varlous factors such as productlvity and quality. [Balley & Basil 1981],
[Baslll & Balley 1980}, [Basllt 1981]. The study was con ucted In the Software
Engineering Laboratory, at JoInt project between NASA Goddard Space Flight
Center, the Unlversity of Maryland, and Computer Sclences Corporation.

The approach was to study a serles of projects that lnvolve ground support
software for satellites. Each project was rated with respect to g large set of factors,
covering environment, methodology, experlence, perform nce, etc. When the metrics
were subjJectlve they were glven on a slx polnt scale, e.g. rating on the basis of the
use of a methodology. »

see If the methods could work on larger projects than In the controlled study. This
has been a common mechanism in the Laboratory for Sof ware Englneering
Research. We run both controlled experiments on small

environments,
The three major questlons asked In thils study were:

Questlon 1: DId the projects with a high methodology use come from a different
population than those projects with a low or medium met odology use?

Questlon 2: Do any other factors or sets of factors show a slgnificant effect on
productivity?

Data used to answer these questions were lines of source code per staff month
for productivity and such factors as customer Interface co plexity; customer orl-
glnated program deslign changes; the complexity of such t} Ings as the application, -
the program flow, the Internal communlcation, the external communlcation, the data

15

base; constralnts such as I/O capabllity, timing, maln #torage; programming group
experlence such as machine famlillarity, language ramllliarlty, application €Xperience;
hardware changes durlng development. ‘

The approach to answerlng these first two questions was based upon a similar
type of study at IBM/FSD [Brooks 1981]. A statistlical test was performed to see if
projects with high methodology came from a different énvlronment WwIith respect.to
productlvity than proJects with a low methodology use.f The data used was based
upon a relative ranking rather than an absolute ratlng. The approach was to dlvide
the ratings for each technlque Into 3 categorles: low (-1), medlum (0), high (1). This
was done to offset differences in scales. The ratings weffe added to get a cumulative
methodology rating. The projects were then divided lnto groups based upon thelr
rating and analyzed using the Mann-Whitney U test. '

In analyzing the relatlonshlp between productlvlty?and varlous factors, no
significant relationshlp was found between productlvltygand slze. However there
were statlstlcally significant results in demonstrating th}at those projects with high
methodology use came from a different (and much hlghér) productlvity population
than those projects Wwlith low or even medlum methodology use. So the answer to the
first question was yes. The answer to this question was no.

Question 3: What are the factors that predict quallty?

The metries were compressed into three factors: qujal!ty, methodology and com-
plexity. Methodology and complexity were not, slgnlficantly correlated. Quallty was
signlficantly correlated with methodology (r = .87) and complexity (r = -.84) at less
than quality, we got an R*x*2 of .45. Using the methodojlogy and complexity metrics
to predict quality we got an Rx*2 of .65. Based upon this study, 1t was clear that
quallty can be predlcted from the use of methodology. '

The beneflt to this approach Is that it does not req@lre speclal experimental pro-
Jects but allows for the evaluation of methodology in thd normal development
environment. The Improvement algorithm discussed earller can be applied to the
environment in order to Improve both the productivity and the quallty of the
software, |

However, there are several drawbacks to the approabh. First, 1t requires that
there Is enough differences In the projects use of methodology and there are enough
projects using each of the methods, l.e. there must be enough of a sampling to gen-
erate a statistlcal result. Second, slnce the experiment lsfnot controlled, there Is
always the possibllity of making mistakes In the lnterpretatlon, l.e. other factors that
have not been controlled for may be causlng the differences In productivity or qual-
ity. Third, If the methodology Improvement paradigm lsibelng used, we are losing
our control group of projects where little or no methodology Is belng used.

METHODOLOGY EVALUATION USING SINGﬂE PROJECT/CASE
STUDY ANALYSIS i

Unfortunately, this is where most methodology eva]datlon begins. There Is a
project and the management has declded to make use of some new method or set of
methods and wants to know whether or not the method g}enerates any lmprovement

16

In the productivity or quallty. A great deal depends ubon the Indlvidual factors
Involved in the project and the methods applied. ‘

This sample study had a set of goals that dealt wlh,h the eflectlveness of certaln
development technlques; information hiding, abstract lrjlterraces, and formal
speclficatlons, as well as the eflectlveness of the data cdllectlon process [Baslll &
Welss 1981]. The project lnvolved"was the redevelopmjent of the on-board opera-
tlonal flight program for the A-7 alrcraft. The development was done at the Naval
Research Laboratorles In Washington D.C. The analysls reported here was done
after the requirements document was baselined with the subgoal of trylng to Judge
the effectiveness of the requirements document which was developed using a formal
speclfication technlque, a state machine model and abstx;ract Interfaces.

One of the subgoals was that the requirements dodument should be easy to
change. Based upon that goal the following questions were generated.

Questlon 1: Is the document easy to change?

Question 2: Is It clear where a change has to be méde?

Qu_estlon 3: Are the changes that are likely to occujr, predicted correctly?
Questlon 4: Are changes confined to a single sectloh?

The data collected to answer these questlons conslsted of varlous distributlons
of data such as the types of changes, eflort to change, confinement of changes and
changes by sectlon. Glven the data distributions: : ’

Types of Changes:

85% were original error corrections

8% were to complete or correct a previous change

2% were to reorganize ;
7% were other changes (none of which were more than 1%)

Effort to Change:

88% were trivial (less than 1 hour)

26% were easy (1 hour to 1 day)

5% were medium (1 day to 1 week)

0% were hard (1 week to 1 month)

1% were formldable (more than 1 month)

Confinement of Changes:
85% were to one section
15% were to more than one section

The following concluslons were drawn:

The document was not very hard to change since mbst of the changes were
trivial or easy. The only formidable change Involved the change of a coordlnate sys-
tem that the developers did not know and the time for tbe change included the
learning of that coordinate system. It should be noted that that change was
confined to one sectlon. :

Since most of the changes were confined to a single iéectlon of the report one
might argue that the document was organlzed In a way tﬁhat the likely changes were

17

predicted correctly, that 1t was clear where a change h]ad to be made, and that the

changes were confined to a single section.

So the concluslon was drawn that the document
that conclusion Is based on comparing the data with e
experlenced people who have seen the data agree that
was a successful development but there Is no statistica
basls for comparison. If similar data had been collectes
and we were able to do a comparison, as we did with t]
confildence level In the results might have been higher.

SUMMARY AND CONCLUSION

This paper has presented a set of

software development methods and tools. The basic |

vas easy to change. However,
perience and Intultion. Most
he requirements document
evidence and there Is no solld

from other simllar projects,

e multl-project analysls, our

i
quantitative ap;ﬂ‘roaches to evaluating
a Is 1o generate a set of goals

d
which are refined into quantifiable questlons which speflry metrlics to be collected on

the software development and malntenance proeess an
be used to characterize, evaluate, predlict and motlvate
actlve as well as passive way by learning from analyzin
methods and tools based upon what Is learned from th
were glven representing each of the different approache$
the approaches varied Inversely with the level of confi
the results. !

:

product. These metrics can
They can be used In an
the data and Improving the

at analysls. Several examples

to evaluation. The cost of

dénce In the Interpretation of

It 1s hoped that this Paper has demonstrated that ﬂhere are quantlitative

mechanisms for evaluating methodologles. These mech
try and in the research laboratorles to provide better |
weaknesses of technology.

|
ACKN OWLEDGEMENT ‘

This research was supported In
Administration Grant NSG-5123 an
under Contract AFOSR-F49620-80-C-001 to the Unlvers

REFERENCES
[Balley & Baslll 1981}

John W. Balley and Victor R. Baslll, A Meta-Model
Resource Expendltures, Proceedings of the Fifth Int
Software Englneering, San Dlego, California, PDp 107

[Bastll 1981]
Victor R. Basll, Evaluating Software Development

of Software Measures In the Software Engineering L,

t

nisms can be used In Indus-
lghts into the benefits and

part by the Natlonil Aeronautlcs and Space
d by the Alr Force Qffice of Sclentific Research

Ity of Maryland.

for Software Development
ernational ‘Conference on
-116, 1981.

Characteristics: Assessment
aboratory, Proceedings of

the Sixth Annual Software Englneering Workshop, December 1981.

[Basill & Balley 1980] '

Vlctor R. Baslll and John W. Balley, The Software Engineering Laboratory:

Measuring the Effects of Software Methodologles wit
Ing Laboratory, Proceedings of the Fifth Annual Sof

18

hln the Software Engineer-
tware Englneering

Workshop, November 1980.

[Baslll & Relter 1981) .
Victor R. Basill and Robert W. Retlter, Jr., A Controlled Experiment Quantita-
tively Comparing Software Development Approaches, IEEE Transactlons on
Software Englneerlng, Vol. SE-7, No. 3, pp 299-320, May 1981.

[Basill & Selby 1984]
Victor R. Baslll and Richard wW. Selby, Jr., Data Collection and Analysis In
Software Research and Management, Proceedings of the Amerlcan Statistical
Assoclation, pp 21-30, 1984.

[Baslll & Selby 1985] :
Victor R. Basill and Richard W. Selby, Jr., Comparing the Effectiveness of
Software Testing Strategles, Unlversity of Maryland Technlcal Report TR-1501,
May 1985,

[Basill & Turner 1975]
Victor R. Baslll and Albert J. Turner, Iterative Enhancement: A Practical Tech-
nique for Software Development, IEEE Transactlons on Software Engineering,
pp 390-396, December, 1975. s

[Baslll & Welss 1981]
Vlictor R. Basill and David M. Welss, Evaluation of a Software Requirements
Document by Analysls of Change Data, Proceedings of the Fifth Internatlonal
Conference on Software Englneering, San Dilego California, pp 314-323, March
9-12, 1981.

[Basill & Welss 1984]
Victor R. Baslli and David M. Welss, A Methodology for Collecting Valid
Software Englneering Data, IEEE Transactlons on Software Engineering, Vol.
SE-10, No. 3, pp 728-738, November 1984.

[Brooks 1981]
W. Douglas Brooks, Software Technology Payofl: Some Statlstical Evidence,
Journal of Systems and Software, Volume 2, Number 1, pp 3-10, February 1981.
[McCabe 1978)
Thomas J. McCabe, A Complexity Measure, IEEE Transactions on Software
Englneering, pp 308-320, December 1978.
[Thayer & Pyster 1980]
Richard H. Thayer, Arthur Pyster, and Roger C. Wood, The Challenge of
Software Engineering Project Management, IEEE Computer Magazine, pp 51-
59, August 1980.

19

