
Investigating Focused Techniques for Understanding Frameworks

Victor Basili, Gianluigi Caldiera, Filippo Lanubile, and Forrest Shull
Department of Computer Science, University of Maryland

{basili | gcaldiera | lanubile | fshull}@cs.umd.edu

1. Introduction

An object-oriented framework is an OO class hierarchy augmented with a built-in
model which defines how the objects derived from the hierarchy interact with one
another. Thus, a framework is more than a class library: it is a generic solution within a
problem domain because the model of interaction is domain-specific. A framework is
tailored to solve a particular problem by customizing its abstract and concrete classes.
The framework architecture is reused by all specific solutions in that problem domain. By
providing both design and infrastructure for developing applications, the framework
approach promises to develop applications faster [Lew95]. The most popular frameworks
are in the GUI application domain (e.g., MacApp, ET++, CommonPoint) and in the
drawing domain (e.g., HotDraw, UniDraw), but frameworks have also been developed in
other domains such as multimedia, manufacturing, financial trade, and data access.

Developing an application by using a framework is closer to maintaining an existing
application than to developing a new application from scratch. In framework-based
development, the static and dynamic structures must first be understood and then adapted
to the specific requirements of the application. The main difference between maintenance
and framework-based development is that traditional maintenance is often performed on
legacy systems with a decayed design, while frameworks are the result of many iterations
and much effort aimed at improving the design. Most existing design patterns [Gam95]
have been derived from experience in developing frameworks.

 It is assumed that the effort to learn the framework and develop code within the system
is less than the effort required to develop a similar system from scratch. Although it is
recognized that the effort required to learn enough about the framework to begin coding is
high, especially for novices [Tal95, Pree95], little work has been done in the way of
minimizing this learning curve.

We have planned a study aimed at understanding the process of learning such a
framework (or more generally, any unfamiliar system) and developing techniques that
may minimize the effort expended on program understanding in particular situations. We
have experimented before with focused reading techniques aimed at uncovering defects in
software requirements documents [Bas96]. We are currently in the process of developing
focused techniques that are aimed at providing programmers with a level of knowledge of
a framework that would enable the use of the framework in developing a given
application. We are performing a controlled experiment in which we test two focused
reading techniques in a development context. We intend to study the characteristics of the
context and the application task that make each technique more or less applicable to a
given situation.

2. The Reading Techniques

Our approach is to generate families of reading techniques which depend on how an
application is created using the framework. Each technique within the family is:

• tailored to the specific framework available
• detailed in that it provides specific steps to be performed
• focused on a particular coverage of the framework design and implementation

As a first step, we are considering two reading techniques for using a white-box
framework [Sch96] to build new applications: a system-wide reading technique and a
task-oriented technique. The main difference is the focus of the learning process: the
system-wide technique focuses more on the “big picture” than on the detailed task to be
accomplished (which is the focus of the task-oriented technique).

Programmers using a system-wide reading technique attempt to gain a broad knowledge
of the framework design before adapting it to deliver the functionality required by the
new application. They mainly read the framework documentation to learn about the
abstract classes that form the basis of the framework, and the collaborative model that
drives the behavior of the framework. Since many design patterns come from experience
in designing frameworks [Gam95], they can be used as abstractions of the design
characteristics of the framework. Example applications are used to better understand how
the collaborative model works and how the design patterns are implemented.
Programmers develop new applications mainly by specializing the abstract classes of the
framework.

Programmers using a task-oriented reading technique attempt to locate the area of a
framework directly relevant to the required change (task), and then gain a specialized
knowledge of that part. They mainly use framework-based applications (examples) which
show functionalities analogous to those of the application to be developed. Examples are
interactively explored, with help of tools, to discover the specific features which
characterize their functionality. The exploration of an example is driven by scenarios that
can be thought of as use cases of the proposed application. The framework documentation
is used to better understand the objects and interactions that are encountered during the
exploration.

Both techniques look at the static structure and the run-time behavior of the framework,
and both have access to the same sources of information. However, while the system-
wide technique starts looking at the existing documentation, the task-oriented technique
looks at the existing examples which are relevant for the required system.

3. A Controlled Experiment

To compare these two techniques with respect to their effect on framework learning and
usage, we are undertaking a controlled experiment at the University of Maryland. We
present graduate students and upper-level undergraduates, working in teams of three
people, with an application task to be developed (an OMT object diagram editor) using a

framework. One half of the class has been taught the system-wide reading technique and
the other half the task-oriented reading technique.

The primary hypotheses for the experiment involve the different focus between the two
techniques. We can expect that the novice users of the system can make changes faster
using the task-oriented technique. The flip side of this hypothesis is that the system-wide
technique requires more time per change for novice users, because of the overhead
involved in gaining a broad understanding. However, experienced users of this technique
have accumulated enough knowledge that they can make changes better than their
experienced, task-oriented colleagues. In addition, it would be useful to look at the types
of errors and the final systems that result from the use of each technique. We will also use
the midterm and final exams to directly test the degree of framework comprehension
which students have elicited after having been lectured on (midterm exam) and having
applied (final exam) the different techniques.

We have chosen the GUI application framework ET++ [Lew95, Wei89] for the
experiment. ET++ allows programmers to develop applications with consistent and
highly interactive user interfaces that adhere to the desktop metaphor. ET++ has been
implemented in C++ and runs on common UNIX platforms in different window
environments such as X11. A programming environment is provided which includes code
browsing and object inspection tools. A comprehensive set of example applications is
also available, including both simple entry-level applications and more complex ones.
The ET++ source code, the tools, and the sample applications are available for free via
anonymous ftp. Furthermore, the design of ET++ has been thoroughly tested and
improved from the initial version and incorporates seventeen of the design patterns in
[Gam95]. ET++ is a sophisticated white-box framework that poses learning problems
which can be major inhibitors against its use.

We already have provided the students with a general set of requirements of the
application to be developed using the framework. First, students have been asked to
develop object and dynamic models for the application requirements. Then, they have
been asked to deliver the required system as incremental prototypes. The rationale for an
iterative development process comes from the risk of project failures due to a
combination of unknown development infrastructure and restricted schedule for delivery.
The prototypes developed give us a good confidence that developers will deliver at least a
part of the required functionality.

The controlled experiment contains two nested experimental designs. The first design
can be synthesized as a randomized two-group design [Judd91] having the team as a unit
of analysis. Using the notation for experiment design in [Cam63], the design takes the
following form:

R X1 O1

R X2 O2

where each row represents a treatment group, R indicates random assignment, X
represents the exposure of a group to a treatment (system wide or task-oriented), and O
refers to observing and measuring the team performance in terms of both process and

product (productivity, amount of functionality delivered and accepted, degree of
framework reuse, and quality of delivered application). This design can be seen as a
variation of the Posttest-Only Control Group Design [Cam63] where the comparison is
made between a group given a treatment and a control group.

The second experimental design is a before-after two-group design [Judd91], having the
individual as a unit of analysis. Using the same notation as before, the design takes the
following form:

R O1 X1 O2

R O3 X2 O4

where each row represents a treatment group, R indicates random assignment, X
represents the exposure of a group to a treatment (system wide or task-oriented), and O
refers to observing and measuring the individual performance in terms of answers to
comprehension tests. This design can be seen as a variation of the Pretest-Posttest Control
Group Design [Cam63] where the comparison is made between a group given a treatment
and a control group.

By comparing comprehension on the midterm exam (pretest) and final exam (posttest),
we can test whether each technique has a significant short and long-term impact on
program comprehension. Short-term impact will be measured during the midterm exam to
verify that the training of the techniques was done effectively. Long-term impact will be
measured during the final exam to understand if they have developed different skills in
synthesis tasks. Writing or modifying a program are synthesis tasks, which require
comprehension skills. It may be, however, that no difference is detected at the final exam
between the techniques because students become adept over the semester at developing
their own way of discovering necessary information not covered by their technique.

The analysis of quantitative data will be complemented by the qualitative analysis of
the following information collected at different times of the project: (1) questions asked
by students to project coordinators during the project, (2) feedback at the midterm and
final exams; (3) comments in the weekly project forms; and (4) structured interviews at
the final delivery of the required system.

4. Conclusions

We have described an empirical study aimed at increasing our knowledge of the
relationship between techniques for understanding frameworks, or more generally any
existing system, and the type of understanding achieved.

So far, we are halfway through the course of this semester-long experiment. At the end
of the course project, we will be able to compare the results of the two groups in order to
draw conclusions about whether the system-wide reading technique or task-oriented
reading technique was more effective at gaining an initial understanding of a system
suitable for developing an application.

5. References

[Bas96] V. R. Basili, S. Green , O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, and
M. Zelkowitz, "The empirical investigation of perspective-based reading",
Empirical Software Engineering - An International Journal, vol. 1, no. 2, 1996.

[Cam63] D. T. Campbell, and J. C. Stanley, Experimental and Quasi-Experimental
Designs for Research, Houghton Mifflin Co., 1963.

[Gam95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Publishing Co., 1995.

[Judd91] C. M. Judd, E. R. Smith, and L. H. Kidder, Research Methods in Social
Relations, 6th edition. Orlando: Holt Rinehart and Winston, Inc., 1991.

[Lew95] T. Lewis et al., Object-Oriented Application Frameworks, Manning Publications
Co., 1995.

[Pree95] W. Pree, Design Patterns for Object-Oriented Software Development, ACM
Press & Addison-Wesley Publishing Co., 1995.

[Sch96] H. A. Schmid, "Creating applications from components: a manufacturing
framework design", IEEE Software, vol. 13, no. 6, November 1996.

[Tal95] Taligent Inc., The Power of Frameworks, Addison-Wesley Publishing Co., 1995

[Wei89] A. Weinand, E.Gamma, R. Marty, "Design and implementation of ET++, a
seamless object-oriented application framework", Structured Programming,
vol.10, no.2, 1989.

