
This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

Detecting Defects in Object Oriented Designs:
Using Reading Techniques to Increase Software Quality

Guilherme H. Travassos1,o Forrest Shull Michael Fredericks Victor R. Basiliw

Experimental Software Engineering Group and Institute for Advanced Computer Studies
University of Maryland at College Park

A. V. Williams Building, Bldg#115
College Park , MD, 20742

Fax 301 405 3691

{travassos, fshull, fred, basili}@cs.umd.edu
oCOPPE/UFRJ

C.P. 68511 - Ilha do Fundão
Rio de Janeiro – RJ – 21945-180

Brazil

wFraunhofer Center --Maryland
3115 AgLife Science Surge Bldg

College Park, MD 20742

ABSTRACT
Inspections can be used to identify defects in software artifacts. In
this way, inspection methods help to improve software quality,
especially when used early in software development. Inspections
of software design may be especially crucial since design defects
(problems of correctness and completeness with respect to the
requirements, internal consistency, or other quality attributes) can
directly affect the quality of, and effort required for, the
implementation.
We have created a set of “reading techniques” (so called because
they help a reviewer to “read” a design artifact for the purpose of
finding relevant information) that gives specific and practical
guidance for identifying defects in Object-Oriented designs. Each
reading technique in the family focuses the reviewer on some
aspect of the design, with the goal that an inspection team
applying the entire family should achieve a high degree of
coverage of the design defects.
In this paper, we present an overview of this new set of reading
techniques. We discuss how some elements of these techniques
are based on empirical results concerning an analogous set of
reading techniques that supports defect detection in requirements
documents. We present an initial empirical study that was run to
assess the feasibility of these new techniques, and discuss the
changes made to the latest version of the techniques based on the
results of this study.

Keywords: Software Engineering Practices, Object Testing and
Metrics, Object Oriented Software Quality, Software Inspection.

1. INTRODUCTION

Software inspections have been shown to be a practical method of
ensuring that software artifacts, created during the software
lifecycle, possess the required quality characteristics. For instance,
inspections have been used to improve design and code quality by
increasing defect removal during development [4]. In this way,
inspections help reduce defects in a software system by ensuring
that the software artifacts which are necessary for its construction
correctly reflect the needs of stakeholders.

Software inspections aim to guarantee that developers deal with
complete, consistent, unambiguous, and correct artifacts.
Although most commonly applied to code documents, software
inspections have also been used at earlier stages of the software
lifecycle (e.g. in the requirements phase [1,14]) to detect potential
problems as early as possible. Most publications concerning
software inspections have concentrated on the best number and
organization of inspection meetings while assuming that
individual reviewers are able to effectively detect defects in
software documents on their own (e.g. [5, 8]). However, there has
been empirical evidence that team meetings do not contribute to
finding a significant number of new defects that were not already
found by individual reviewers [14,17].

“Software reading techniques” attempt to increase the
effectiveness of individual reviewers by providing guidelines that
can be used to examine (or “read”) a given software artifact and
identify defects. There is empirical evidence that software reading
is a promising technique for increasing software quality for
different situations and documents types, not just limited to source
code [15]. It can be performed on all documents associated with
the software process, and is an especially useful method for
detecting defects since it can be applied as soon as the documents
are written. In general, defects in software artifacts can be
classified as omitted, ambiguous, inconsistent, incorrect, or
extraneous information. However, such a list and the definitions

 1 partially supported by CAPES – Brazil
This work was partially supported by UMIACS and by NSF grant
CCR9706151

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

class parts
inherit from Stock_items;
attributes …
services …..
relationships ...

High and Low Level Design Coding and Testing

Requirements
Description and
Use Cases

…
3 – The gas station owner
can use the system to
control inventory. The
system will either warn of
low inventory or
automatically order new
parts and gas.

...
Fixed_Rate Loan

risk()
principal_remaining()

Variable_Rate Loan
principal_remaining : number

risk()
principal_remaing()

Lender
name : text
id : text
contact : text
phone_number : number

Borrower
name : text
id : number
risk : number
status : text

risk()
set_sta tus_good()
set_sta tus_late()
set_sta tus_default()
borrower_status()
set_sta tus()

Bundle
active time period : date
profit : number
estimated risk : number
total : number
loan analyst : id_number
discount_rate : number
investor_name : text
date_sold : date

risk()
calculate_profit()
cost()

Loan Arranger

rec_monthly_report()
inv_request()
generate reports()
identify_report_format()
verify_report()
look_for_a_lender()
look_for_a_loan()
identify_loan_by_criteria()
manually_select_loans()
optimize_bundle()
calculate_new_bundle()
identify_asked_report()
aggregate_bundles()
aggregate_loans()
aggregate_borrowers()
aggregate_lenders()
format_report()
show_report()

Loan
amount : number
interest rate : number
settlement data : date
term : date
status : text
original_value : number
principal_original : number

risk()
set_status_default()
set_status_late()
set_status_good()
discount_rate()
borrowers()
principal_remaining()

1

1..*

1

1..*

1..*
1..*

1..*
1..*

1..*

0..1

1..*

0..1

Good

Late

monthly report informing payment on time
[payment time <= due time]

receive a monthly report

Default

monthly report informing late payment
[payment time > due time + 10]

monthly report informing late payment
[due time < payment time < due time + 10]

monthly report informing late payment
[payment time > due time + 10]

monthly report informing payment on time
[payment time <= due time]

Loan State
Diagram

Fanny May :
Loan Arranger

Borrower :
BorrowerA Lende r :

Specified Lender

Loan : Loan

verify_report()

new_loan(lender, bo rrowers)

new_

look_fo r_a_ lender(lender)

look_for_a_loan(loan)

look_ fo r_a_

update_ loan(lender, borrower)

update_

lende
r :

new_ lende r(name,contact, phone_number)

update(lende r)

monthly_ repo rt(lende r, loans, bo rrowers)

identify_repo rt_format()

Receive Monthly
Report

Loan Arranger Classes Description

Class name: Fixed_Rate Loan
 Category: Logical View
 Documentation:
 A fixed rate loan has the same interest rate over the entire term of the mortgage

 External Documents:
 Export Control: Public
 Cardinality: n
 Hierarchy:
 Superclasses: Loan
 Public Interface:
 Operations:
 risk
 principal_remaining

 State machine: No
 Concurrency: Sequential
 Persistence: Persistent

 Operation name: risk
 Public member of: Fixed_Rate Loan
 Return Class: float
 Documentation:
 take the average of the risks’ sum of all borrowers related to this loan
 if the average risk is less than 1 round up to 1
 else if the average risk is less than 100 round up to the nearest integer
 otherwise round down to 100
 Concurrency: Sequential

Figure 1 – A simplified view of an OO software process

of each of its items obviously need to be tailored to the specific
artifact being inspected.

In this paper, we restrict our focus to inspections of high-level
Object-Oriented (OO) designs. A high-level OO design is a set of
diagrams concerned with the representation of real world concepts
as a collection of discrete objects that incorporates both data
structure and behavior. High-level designs do not attempt to
represent details of either the eventual implementation of the
system or the “computational world” in which the system exists.
Normally, high-level design activities start after the software
product requirements are captured and represented by a textual
description and/or use-cases [9]. So, concepts must be extracted
from the requirements and described using the OO constructs,
such as class, object, inheritance, polymorphism, aggregation,
composition, and messaging. This means that requirements and
design documents are built at different times and describe the
system from different viewpoints and levels of abstraction. When
high-level design activities are finished, the documents, basically
a set of well-related diagrams, should be read in order to verify
both whether they are consistent among themselves and whether
they adequately capture the requirements. A design defect occurs
if either of these conditions are not met.

This paper discusses some issues regarding the definition and
application of reading techniques for high-level object-oriented
design documents. The techniques are designed to be used to read
requirements, use-cases and design artifacts within a domain in
order to identify defects among them. To achieve this goal, our
study has been organized as follows:

1. Understand and model relevant aspects of the process for
creating OO designs,

2. Define reading techniques that are tailored to OO design,

3. Run an experiment to investigate the feasibility of the
reading techniques when used in the inspection of an actual
OO design.

In the next sections, we present an overview of our work at each
of these steps.

2. BASIC MODELS OF OO DESIGN
Requirements documents generally consist of a textual description
of the functional and non-functional requirements for the software
product and the related scenario definitions (i.e. use-cases). The
goal of well-described requirements is to represent the problem to
be solved by the software system, not to specify a particular
solution [13]. In fact, a particular set of requirements could
conceivably support multiple solutions for the problem.

In contrast, software design activities are concerned with the
description of real world concepts that will be part of the future
computational solution of the problem. (This is true regardless of
the software lifecycle model used.) High-level design activities
deal with the problem description but do not consider the
constraints regarding it. That is, these activities are concerned
with taking the functional requirements and mapping them to a
new notation or form, using the paradigm constructs to represent
the system via design diagrams instead of just a textual
description (illustrated in Figure 1). Such an approach allows
developers to understand the problem rather than to try to solve it.
Low-level design activities deal with the possible solutions for the
problem; they depend on the results from the high-level activities
and nonfunctional requirements, and they serve as a model for the
code. Our interest is to define reading techniques that could be
applied on high-level design documents. We feel that reviews of
high-level designs may be especially valuable since they help to
ensure that developers have adequately understood the problem
before defining the solution. (That is, our emphasis is on high-
level comprehension rather than low-level details of the
architecture.) Since low-level designs use the same basic diagram
set as the high-level design, but using more detail, reviews of this
kind can help ensure that low-level design starts from a high-
quality base.

To support the construction of the design diagrams we chose
UML [6] as the basic notation. UML is considered a notational
approach and does not define how to organize development tasks.
Therefore, it can be tailored to different development situations.
We wanted to focus our reading techniques on the following high-

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

Figure 2 – Interdependencies among high-level design artifacts

Requirements
Description

Class diagram

(1st version)

Step 1 Step 2 Step 3

Class diagram

(2nd version)

Interaction:
sequence and
collaboration
diagrams

State Machine
diagrams

Class diagram

(Final version)

Step 4

Package
diagram

Use-cases

Class Descriptions

level design diagrams: class, interaction (sequence and
collaboration), state machine and package. Usually, these are the
main UML diagrams that developers build for high-level OO
design. They capture the static and dynamic views of the problem,
and even allow the teamwork to be organized, based on packaging
information. A class description template was defined to allow
developers to write down all the definitions that they used to build
the models. This description is basically the data dictionary of the
whole design and can be used to support the reading activities. As
high-level activities do not deal with the low-level issues
regarding the solution, deployment and activities diagrams were
not used at this time. The organization of the activities is pictured
in Figure 2. The picture does not try to show a sequential process
view but illustrates the interdependencies among the design
activities; arrows show how some diagrams are used as input to
build new ones.

In summary, we make the following assumptions for this work:

• The high-level OO design of a system is composed of a
number of separate but related diagrams: class diagrams,
class descriptions, interaction diagrams, and state diagrams.

• Separate artifacts also represent the functional view of a
system: requirements, use cases, and interaction diagrams.

• Interaction diagrams (e.g. sequence diagrams) contain both
functional and design information about a system, and thus
can be a useful mechanism for providing traceability between
functional and design views. 2

• Requirements and use-cases are essentially correct at the
time of design inspection. Thus we can use the requirements
as a reliable basis for the system description. (This
assumption is necessary so that we need not compare the
design to all possible domain knowledge; we assume that the
relevant knowledge has already been correctly captured in
the requirements.)

• Requirements are written with no reference to Object-
Orientation. (This does not imply that we are faced with a
chaotic development process; just that the requirements and
design are organized along different principles, as shown in
Figure 1.)

2 The sequence diagrams are a component of the design that
reflects information about the functional view of the system; we
assume that each sequence diagram reflects the system’s behavior
during the execution of some functionality.

3. TAILORING READING
TECHNIQUES TO OO DESIGN
As discussed before, reading techniques have been shown
to be effective for increasing the quality of software
artifacts. Artifacts from different stages of the software
lifecycle still share a few common characteristics: They
must all accurately and completely reflect the system
specified in the requirements. They must not contain
unnecessary constraints from other domains that influence
the solution. They should not contain inconsistencies or
ambiguities, so that downstream users of the artifact (i.e.
developers at later stages of the lifecycle) can implement
the system correctly.

Reading techniques often have the goal of “reading for
analysis.” While applying reading for analysis a reader

attempts to answer the following question: “Given a document,
how do I assess its various qualities and characteristics?” Reading
for analysis is important for product quality; it can help us to
understand both the types of defects we make and the nature and
structure of the product [2]. Several families of techniques have
applied reading to the analysis of different problem domains, such
as:

• Defect-Based Reading (DBR) focused on defect
detection in requirements, where the requirements were
expressed using a state machine notation called SCR
[7,14].

• Perspective-Based Reading (PBR) also focused on
defect detection in requirements, but for requirements
expressed in natural language [1].

• Use-Based Reading (UBR) focused on anomaly
detection in user interfaces [18].

The work presented in this paper deals with further tailoring
reading to detect defects in an OO design described by UML
diagrams. Specifically, our main interest is to understand the way
such documents should be read and describe reading techniques
that support these ideas.

In creating a family of reading techniques, a set of models must be
defined; the two most important of these are the models of
abstraction and use [15]. The models of abstraction are the
models of the important information in an artifact, and how it is
organized. For an OO design, the models of abstractions are easy
to identify at a high level: the information has already been
described in a number of separate models or diagrams (e.g. state
machines, class diagrams) as discussed at the end of the previous
section. The models of use describe how the information in the
artifact is used to detect defects. Before we can describe how to
detect OO defects, we need to have some knowledge of the
different kinds of defects to be sought. For this purpose, we
borrow a defect taxonomy that had proven effective for
requirements defects [1], as defined in Table 1 and illustrated in
Figure 3. This taxonomy classifies defects by identifying related
sources of information, which are relevant for the system being
built. For example, the information in the artifact must be
compared to the general requirements in order to ensure that the
system described by the artifact matches the system that is
supposed to be built. Similarly, a reviewer of the artifact must also
use general domain knowledge to make sure that the artifact
describes a system that is meaningful and can be built. At the
same time, irrelevant information from other domains should

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

Domain Knowledge

Software
Artifacts

Knowledge from
Other DomainGeneral

Requirements

ambiguity

extraneous
information

incorrect
fact

omission

inconsistency Multiple

Interpretations

Figure 3 – Types of software defects, and the relevant
information sources

typically be prevented from appearing in the artifact, since it can
only hurt clarity. Any artifact should also analyzed to make sure
that it is self-consistent and clear enough to support only one
interpretation of the final system. Table 1 shows how the
definitions of [1] can be tailored to OO designs.

The previous work on reading techniques for requirements [1, 14]
created techniques that were concerned mainly with checking the
correctness of the document itself (making sure the document was
internally consistent and clearly expressed, and whether the
contents did not contradict any domain knowledge). A major
difference in the current study is that for checking the correctness
of a design, the reading process must be twofold. As in
requirements inspection, the correctness and consistency of the
design diagrams themselves must of course be verified (through
“horizontal reading”3) to ensure a consistent document. But a
frame of reference is necessary in order to assess design
correctness. Thus it is also necessary to verify the consistency
between design artifacts and the system requirements (through

3 Horizontal reading refers to reading techniques that are used to
read documents built in the same software lifecycle phase. (See
Figure 4.) Consistency among documents is the most important
feature here.

“vertical reading”4), to ensure that the system design is correct
with respect to the functional requirements. Thus we define a new
family of reading techniques, which we call Traceability-Based
Reading (TBR), due to the fact that the central feature appears to
be tracing information between design documents (to ensure
consistency) and between design and requirements (to ensure
correctness and completeness).

The first version of the reading techniques was strongly
influenced by this need for traceability among the diagrams. One
reading technique was defined for each pair of diagrams that
could usefully be compared against each other. For example,
sequence diagrams needed to be compared to state machines to
detect whether, for a specific object, there are events, constraints
or data (described in the state machine) that could change the way
that messages are sent to it (as specified in the sequence diagram).
Table 2 shows the resulting reading technique for this comparison,
including the marking mechanisms used to assist the reading in
detecting defects. The full set of horizontal and vertical reading
techniques is defined as illustrated in Figure 4. The lines between
the artifacts indicate that there is a reading technique to be used to
read one against the other. The lines marked with a (*) represent
the techniques that were evaluated in the feasibility study.

4. AN EMPIRICAL STUDY
4.1. Description of the study
This study was carried out in the context of an undergraduate
software engineering course at UMCP during the Fall 1998
semester. The course aimed to teach software engineering
principles, which were required to be applied to the development
of an application over the course of the semester. The 44 students
had a mix of previous experience: 32% had some previous
industry experience in software design from requirements and/or
use cases, 9% had no prior experience at all in software design,
and the remaining majority of the class (59%) had classroom
experience with design but had not used it on a real system.

4 Vertical reading refers to reading techniques that are used to read
documents built in different software lifecycle phases. (See Figure
4.) Traceability between the phases is the most important feature
here.

Defect General Description Applied to design
Omission Necessary information about the system

has been omitted from the software
artifact.

One or more design diagrams that should contain some concept
from the general requirements or from the requirements
document do not contain a representation for that concept.

Incorrect
Fact

Some information in the software artifact
contradicts information in the
requirements document or the general
domain knowledge.

A design diagram contains a misrepresentation of a concept
described in the general requirements or requirements
document.

Inconsistency Information within one part of the
software artifact is inconsistent with
other information in the software artifact.

A representation of a concept in one design diagram disagrees
with a representation of the same concept in either the same or
another design diagram.

Ambiguity Information within the software artifact
is ambiguous, i.e. any of a number of
interpretations may be derived that
should not be the prerogative of the
developer doing the implementation.

A representation of a concept in the design is unclear, and
could cause a user of the document (developer, low-level
designer, etc.) to misinterpret or misunderstand the meaning of
the concept.

Extraneous
Information

Information is provided that is not
needed or used.

The design includes information that, while perhaps true, does
not apply to this domain and should not be included in the
design

Table 1 – Types of software defects, and their specific definitions for OO designs.

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

3) Reading Sequence x State diagrams
For each sequence diagram do:
1. Read the sequence diagram to identify all the actions

(messages) that an object is receiving and that change
the values of its attributes.
Underline and number the identified actions (messages)
on the sequence diagram with a green pen.

2. Read the state diagram of each object to verify if there
is a description of the state and an associated event
description.
Underline and number the identified description of the
state and the associated event description on the state
diagram with a blue pen and a green pen, respectively.

3. Read the sequence diagram to identify the conditions
associated with the events.
Circle them if they are found. Use the same number
given to the associated events on the state diagram. Use
a yellow pen.

4. Read the state diagram for each object to look for the
description of the conditions.
Circle them and write in the same number assigned to
the condition on the sequence diagram if they are found.
Use a yellow pen.

Table 2. Horizontal Reading: Verifying Sequence with
respect to State Machine Diagrams (first version)

However, all students were trained in OO development, UML and
OO software design activities as a part of the course. The students
were organized in 15 teams (14 teams with 3 students each and 1
team with 2 students) to develop the application, a “Loan
Arranger” system responsible for organizing the loans held by a
financial consolidating organization, and for bundling them for
resale to investors. It was a small system, but contained some
design complexity due to non-functional performance
requirements.

At the beginning of the project, each team received the
requirements for the Loan Arranger application and was asked to
undertake a requirements inspection; this inspection helped to
improve each team’s understanding of the system. From the
requirements and a set of use-cases of the system, students were
then asked to create an OO design of the system. At the end of the
design process, we selected two of the best submissions and asked
the teams to inspect one of these designs using the reading
techniques. (Two designs were used so that we could ensure that
no team inspected a design they had created. However, in order to
keep results comparable, all but one team reviewed the same
design. Table 3 summarizes the size of this design by reporting for
each class the number of attributes, Weighted Methods/Class
(WMC), Depth of Inheritance (DIT), Number of Children (NOC),
and Coupling Between Objects (CBO). Additionally, there were 3
state diagrams and 5 sequence diagrams; the classes participating
in each are marked.) In order to motivate the students to do a good
job on the inspection, we gave the students the option of basing
their eventual implementation of the system on the design they
were inspecting, emphasizing that an effective inspection should
lead to fewer problems in the implementation phase.

It should be noted that we had no control group; that is, we could
not compare the subjects’ effectiveness with the reading
techniques to their own (or another segment of the class’)
effectiveness with another method for inspecting the OO design.
This situation was necessary both because we were not aware of

any other published methods for reviewing OO designs, and
because we were in a classroom environment in which it was not
possible to not teach a portion of the class in order to use them as
a control group. Thus, we emphasize that this study was only
meant to explore the feasibility of the reading techniques, not to
evaluate their effectiveness.

Although all the reading techniques shown in Figure 4 could be
applied, we identified a subset that was sufficient to guarantee
coverage of the whole design and simplified the teams’ work.
Therefore, the teams used the following set of reading techniques:

• Horizontal Review
1. Class Diagrams with respect to Class Descriptions
2. Class Diagrams with respect to State Machine Diagrams
3. Interaction (Sequence) Diagrams with respect to State

Diagrams
4. Interaction (Sequence) Diagrams with respect to Class

Diagrams

• Vertical Review
1. Class Descriptions with respect to Textual

Requirements Description
2. Interaction (Sequence) Diagrams with respect to Use-

cases
3. State Machines Diagrams with respect to Textual

Requirements Description and Use-cases

Each team applied the whole set of techniques, but responsibilities
were divided in such a way that each subject needed to deal only
with a small number of techniques. So, one subject dealt with the
vertical reading, while the second and third divided the horizontal
reading techniques between them. After individual review, the
students met as teams in order to review their individual lists and
to create a final list that reflected a group consensus of the defects
in the document.

In order to evaluate the feasibility of the techniques, we collected

a number of metrics. The subset relevant to our conclusions here
are listed in Table 4. To get accurate answers to the subjective
questions, we stressed that the students would not be graded on
their responses; grades were based only on the degree of process
conformance we saw reflected in the students’ submissions. In a
further effort to produce unbiased answers we made use of post-
hoc interviews after the grades for the project had already been
returned to the students.

Horizontal reading

Vertical

reading

Design Artifacts

Class
Diagrams

State Machine
Diagrams

Interaction
Diagrams

Class
Descriptions

Package
Diagrams

Requirements
Description

Use-Case Diagrams/
Scenarios Description

*
* *

Requirements Artifacts

*
*

 (Sequence)*

*

Figure 4 – Reading Techniques

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

Class Name Attrs. WMC DIT NOC CBO State
Dgm.
Exists?

Seq1
Cont-
ains?

Seq2
Cont-
ains?

Seq3
Con-
tains?

Seq4
Con-
tains?

Seq5
Con-
tains?

Property 5 0 0 0 1

Borrower 2 2 0 0 1

Lender 3 1 0 0 2 yes

Loan 3 3 0 2 4 yes yes

Fixed
Rate Loan

0 1 1 0 4

Adjustable
Rate Loan

0 1 1 0 4

Bundle 5 2 0 0 2 yes yes

Investment
Request

4 1 0 0 1 yes

Loan Arranger 0 15 0 0 4 yes yes yes yes yes

Financial Org. 1 0 0 0 2 yes yes yes yes yes yes

Loan Analyst 1 12 0 0 3 yes yes yes yes yes

Table 3 – Size measures for the inspected design.

4.2. Partial Results
The primary result of our initial evaluation has provided some
evidence that the concept of OO design reading techniques is
feasible. Feasibility was assessed both quantitatively, by the
number and type of defects reported, and qualitatively, by
assessing reviewer satisfaction:

• The techniques did lead to defects being detected: subjects
reported on average 11 defects (11.7 for horizontal readers;
10.4 for vertical), although the average time required was
approximately 3 hours.

• Real and useful distinctions between horizontal and vertical
reading were detected. Subjects using vertical reading
tended, on average, to report slightly more defects of

omission and incorrect fact (i.e. of types of defects uncovered
by comparisons against the requirements) than those using
horizontal reading (6.8 versus 5.4 defects). Likewise,
subjects using horizontal reading tended to report more
defects of ambiguity and inconsistency (i.e. of types of
defects uncovered by examination of the design diagrams
themselves) than subjects using vertical reading (5.3 versus
2.9). The difference for ambiguities/inconsistencies was
statistically significant (t=2.05, p=0.047) although the
difference for omissions/incorrect facts was not (t=0.88,
p=0.382). These differences do match what we would expect
to see if vertical readers were more focused on checking
traceability with requirements while horizontal readers
focused more on defects within the design diagrams.
Additionally, about half of our subjects found the different
types of reading to be worthwhile because reviewers came to
the inspection meetings prepared with different defect lists
and with expertise in different areas of the document.

• Subjectively, students agreed that using OO reading is
worthwhile: the majority of subjects (84%) indicated that if
they had to inspect a design document in the future, they
would use the techniques they had learned (if only because
they knew of no other techniques). There were some
difficulties with the techniques, but these did not prevent
them from being used: about 80% of respondents reported
they had followed the techniques “very closely.” There is
very little guidance available on how to inspect designs, and
any direction we could give students seemed to help them.

• As a secondary measure of user satisfaction, we asked
subjects for a subjective evaluation of how well they thought
they performed using the techniques. On average, they felt
they had found over half (56%) of all defects in the document
from individual inspection, and over two-thirds (69%) when
they combined to work as teams. (That is, they believed only
a minority of all defects in the design still remained after they
had performed the inspection.) We do not present these
descriptive statistics as measures of effectiveness: our
experience from work with requirements inspection has
indicated that reviewers often over-estimate their success
rate, and our subjects were moreover inexperienced
reviewers. However, we do present these numbers as
subjective indicators of user satisfaction: our subjects seemed
to think the techniques were helpful in finding defects.

When
Collected

Metrics

Before the
study

a) Details on subjects’ amount of
experience with requirements, design,
and code

After
individual
review

b) Time spent on review (in minutes)
c) Opinion of effectiveness of technique

(measured by what percentage of the
defects in the document they thought
they had found)

d) How closely they followed the
techniques (measured on a 3-point
scale)

e) Number and type of defects reported
After team
meeting

f) Time spent (in minutes)
g) Usefulness of different perspectives

(open-ended question)
In post-hoc
interviews

h) How closely they followed technique
(open-ended question, to corroborate
d)

i) Were the techniques practical, would
they use some or all of them again
(open-ended question)

Table 4 – Subset of metrics collected in the feasibility study

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

This study also uncovered specific needs for improvement in the
techniques:

• One problem that was consistently reported was that the
students had a difficult time determining the appropriate
level of specificity for reporting faults. For example, the
design that most teams reviewed contained a relatively weak
state diagram. Subjects consistently asked whether they
should report this weakness as a single defect or whether
they should report every individual case where the state
diagram conflicted with another diagram as a defect. If they
reported the weakness of the state diagram as a single defect,
it would not give the designer much insight as to the
problem, but if every conflict between the state diagram and
other diagrams were reported, the fault list (and time required
to produce it) would be excessive. This particular situation is
extreme, but students had similar problems with other defects
in the design document. An analogous problem was
experienced by subjects in earlier studies of requirements
defects [15]; the effects due to requirements defects reported
at different levels of detail were investigated in [11].

• Another important area identified for improvement was that
the techniques should concentrate more on semantic
information. We hypothesize that one major reason for the
success of the Perspective Based Reading for requirements
[15] is that the reading techniques require significant
semantic processing by the reader. The reader must
understand the requirements document enough to produce an
additional artifact (use cases, test plan, data flow diagram).
During the course of the semantic analysis, the reader
discovers defects. Our first draft of OO design reading
techniques involved verifying that certain words and
attributes appearing in one diagram also appeared in the
proper places in other sections. These techniques are largely
syntactic in nature and do not require that the reader do the
same level of semantic processing done in the requirements
reading. However, the OO reading techniques might be
augmented to ask readers to expand their semantic
understanding by creating some other artifact. For example,
testing scenarios (using an idea similar to use-cases) as well
as actors, actions and constraints regarding a specific
functionality can be extracted from the design artifacts [16].

5. ONGOING WORK
As discussed in the previous sections, some areas for
improvement have been suggested from our initial study.
Additionally, changes are being made to make the techniques
more practical. Table 5 illustrates an example of the new version
of the technique that addresses some of the concepts discussed in
this section.

5.1. Semantic vs. Syntactic Focus
As discussed in section IV.2, this study identified some
differences between reading to analyze different types of
consistency. The complexity inherent in OO designs requires that
both syntactic consistency (e.g. does the same class have the same
attributes in different diagrams) and semantic consistency (e.g. do

the multiple representations of the same class mean the same
thing) must be considered. At the same time, based on the
qualitative feedback from the subjects, it is obvious to us that
reading techniques that emphasize the syntactic focus are tedious
for the reader. Although syntactic consistency is necessary, the
results of the feasibility study have motivated us to automate as
much of it as possible, on the assumption that human cognitive
skills are better applied to the verification of semantic
information.

Aside from tool support, we are looking into other strategies for
focusing readers’ attention on semantic issues. The perspective-
based techniques for requirements reading aided analysis of the
document by asking the reader to generate a secondary artifact
(use case, data flow diagram, etc.) that contained the same
semantic information but using a different syntax [1]. During the
process of generating this secondary artifact, the reader discovers
defects. Active Design Reviews are a different approach to
software inspections that focus readers on semantic issues through
the use of open-ended questions [10]. Further feasibility studies
are necessary to investigate whether these strategies can be
effectively adapted to OO inspections.

5.2. Improving the Mechanism for Identifying
Defects
Although this study demonstrated that reading techniques could
feasibly be applied to detect defects in OO designs, the subjects
reported that the specific steps of the techniques turned out to be a
bit confusing when applied by hand. All the techniques we had
defined guided the reader to use a certain marking system to
highlight important concepts in the diagrams, then detect defects
by identifying discrepancies among the markings. However, as the
amount of defects increased, the markings became too confusing
to help readers find specific problems. We hypothesize that this
problem might be avoided if we asked readers to construct new
artifacts (as was used in the techniques for requirements reading
and as was discussed briefly in section V.1) rather than mark up
existing artifacts.

5.3. Improving the Traceability Back to the
Requirements
A strong result of the feasibility study was that subjects reported
many difficulties when tracing design concepts back to the
relevant requirements. This was true despite the fact that we used
a relatively small requirements document and asked the subjects
to apply reading techniques (which had elsewhere proven
effective [15]) to analyze the requirements before beginning the
experiment. We observed the following specific issues:

1. Reviewers in our study did have not strong experience in
organized development. That is, most reviewers had built
systems before but not using an organized software process.
Usually, these reviewers built software using a short
description of requirements and trying to code immediately,
avoiding a more formal design process. As they didn’t have
source code in hand in this study, it was a bit more
complicated for them to associate design solutions to the
requirements.

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

6) Reading 6 – Sequence Diagrams x Use-cases

1) Take a use-case and read it to identify the functionality and the nouns that it includes. For each noun identify actions (behaviors)
and possible information (data) exchanged with the other nouns. Mark the order (sequence) of the actions. Look for the condition
that activates behaviors or actions.

� Underline and number the nouns with a blue pen as they are found

� Underline and number the identified actions (behaviors) in the order of actions with a green pen

� Label the information (data) in yellow as “Dij” where subscripts i and j are the numbers given to the nouns between which
the information is exchanged.

2) Read the sequence diagram to identify if the corresponding functionality is represented and whether behaviors and data were
represented in the right order. Number the actors and classes you have found using the same order you used in the use-case. Apply
the same approach you used to mark the behaviors and data exchanges.

Could you find the same nouns in this sequence diagram? Are they showing up in the same order you had marked on the use
case? Does this sequence diagram completely represent the use-case? Are some of the nouns identified in the use-case missing
from this sequence diagram? How were these nouns represented (actors, classes, or attributes)?

� Mark the nouns on the use-case that are represented in the sequence diagram with a blue symbol (*).

� Mark the nouns in the sequence diagram with a blue symbol (*) if they are represented in a different order than on the use-
case or if they appear only on the sequence diagram.

Can you identify the specified behaviors in this sequence diagram? Are the classes/objects exchanging messages in the same
order that you observed on the use-case? Were the data that messages are carrying forward described by the use-case? Are the
appropriate constraints being observed in this sequence diagram? Can you understand the expected functionality just by
reading the sequence diagram? Are some details from the use-case missing here?

� On the sequence diagram, mark the behaviors with a green symbol (*) and data with a blue symbol (*)if they are not
represented in the same order as in the use-case.

� Mark the constraints on the use-case with a yellow symbol (*) if they are not represented in the sequence diagram.

3) Read the use-case and sequence diagram to look for what is wrong between the two documents.
Is there an unmarked noun in the use case? If yes, it means that a concept was used to describe functionality but not
represented on the sequence diagram. You have probably found an omission in the sequence diagram. Fill in a record to
describe the problem.
Is there any noun on the sequence diagram that is marked? Does it not appear in the use-case? If yes, it means that a concept
was used to describe functionality but not in the same way that was used on the use-case. You have probably found an
incorrect fact. Otherwise, you have found an extraneous noun on the sequence diagram. Fill in a defect record describing the
problem.
Has some behavior or data in the use-case been marked? Do the classes exchange messages in the same specified order? Are
all data being sent in the right message? Were the constraints observed? Could you find some behavior or data in the sequence
diagram that was not relevant to the use-case? If yes, it means that the sequence diagram is using information incorrectly. Fill
in a defect record describing the problem.

Table 5 – Vertical Reading: Verifying Sequence Diagrams with respect to Use-Cases

2. These difficulties seem to contradict the expectation
expressed in some work (e.g. [3, 12]) that the use of OO
would help reduce the semantic gap between these phases of
the software lifecycle. It appears instead that more effective
strategies for uncovering the traceability between
requirements and design must be developed before effective
OO inspections can take place, at least by reviewers as
inexperienced as our subjects. Moreover, this issue is also
relevant if reviewers have experience with the problem
domain and software development but little experience with
the way in which requirements are captured by the design
and potentially distributed among multiple classes.

5.4. Scaling Up to Larger Systems
 The goal of any inspection is to check whether the entire system
fulfills the required quality properties. Achieving this goal
becomes more difficult as the system becomes larger. This stems
from the fact that the entire system cannot be checked in one
inspection because of its size and inherent complexity. Hence,

several inspections need to be performed and each inspection
needs to focus on some subset of the entire system.5

 There are multiple ways of subdividing a system into units of
inspection. We identified the following options for performing the
subdivision for OO design reading:

A. Each inspection is focused on some subset of the system

functionality (i.e. the system is divided up according to

5 We assume that ultimately the entire design will be inspected. In
practice, that may not be a realistic assumption since an
organization may choose to invest in inspections for only portions
of the system where the payoff is expected to be greater.
However, for now we address only the question of what are useful
subdivisions in an OO system, without recommending which
subdivisions should be inspected.

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

concepts appearing in the requirements, use cases, or
interaction diagrams).

B. Each inspection is focused on some subset of the
“conceptual entities” found in the design (i.e. the system
is divided up according to concepts appearing in the
class diagrams, class descriptions, interaction diagrams,
or state diagrams).

The similarities and differences between options A and B are
important to understand. In both cases, the goal is to produce a
unit of inspection that is self-contained and conceptually whole. In
both cases, it is recognized that the mapping between
requirements and design is nontrivial. This is because of our
earlier assumption (in section II) that the requirements present a
functional view of the system while the design presents an Object-
Oriented view. Mapping from OO to a functional description is
hard because it is rare that a set of functional requirements will
describe entirely and only the functionality of a class. Rather,
classes have to be designed by thinking about a reasonable design
for the system as a whole, and so usually involve parts of many
different types of functionality that may not be obviously related.
Mapping from functionality (expressed as use cases) to OO is
hard because one use case typically involves the interaction of
multiple classes and behaviors in the OO design; it is not typical
for the set of operations in one use case to be encapsulated in one
class.

By inspecting only a subset of the components of a system in any
inspection, we have the risk of missing some high-level
functionality. Options A and B suffer from this risk in different
ways. When the inspection is based on the functional description
(Option A), it is relatively easy to assess whether all the relevant
higher-level functionality has been represented correctly, but
harder to detect whether a particular class contains enough
behaviors concerned with that functionality. When the inspection
is based on design concepts (Option B), the situation is reversed.
Saying that Option A or Option B is appropriate for every type of
system makes as little sense as saying that every system
architecture should be “pipe-and-filter”. Different options are
suitable for different types of systems. The objective should be to
apply either Option A or Option B to organize the inspections for
a particular system, minimizing the more important type of defect
for that system.

These issues highlight for us the necessity of developers using
some mechanism to capture the evolution of system requirements
from requirements descriptions to source code. Therefore we are
now addressing how to represent requirements (both functional
and non-functional) and their associated use-cases in order to
improve the traceability to OO.

6. CONCLUSIONS
In this paper, we have described a set of techniques for reviewing
OO designs. We have applied them in an initial study that has
demonstrated their feasibility and provided specific indications for
future improvement.

Where possible, we tried to base the OO reading techniques on
lessons learned from analogous techniques applied to
requirements documents. Some similarities between the two
techniques were by design; for example, we adapted a taxonomy
of defects that had been useful for requirements reading to focus
the design reading on important areas. As a result of the study,

however, we noted other similarities between the two reading
techniques. For example, we found that reviewers had difficulty
finding the “right” level of detail for expressing design defects
usefully. This result mirrors difficulties that subjects had
encountered while inspecting English-language requirements but
which, due to the well-defined notation in which the entire design
was expressed, we had not expected to be relevant. Results from
this study also may indicate that an effective strategy for focusing
reviewers on semantic aspects of a design is the construction of
new artifacts containing some of the same information as the
document being reviewed. If this indication is confirmed in
further studies it would represent another similarity with the
results of requirements reading.

However, we did discover crucial differences in design reading
that will have to be accounted for in future versions. For example,
in requirements reading, syntactic verification is much less
important than semantic; the real focus of the inspection is on
verifying the content. When applied to OO designs, however,
syntactic reading becomes much more important, due to the
number of separate but inter-related diagrams that must be kept
consistent. At the same time, this study has confirmed that
syntactic reading can be tedious and should be automated where
possible.

A second important result is concerned with the definition of
vertical and horizontal reading. The feasibility study has provided
evidence that the use of each type can influence the types of
defects found, and moreover, that both types are necessary to
effectively find all defects in the design.

At this time, we are working on incorporating all of these findings
into an improved version of the techniques for further study. We
have designed and are putting together a lab package so interested
researchers can review the techniques and our other experimental
artifacts in more detail. Interested readers can find an initial lab
package and the current set of techniques at
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/tbr
_package/.

7. ACKNOWLEDGMENTS

Our thanks to Dr. Yong Rae Kwon for his invaluable assistance
designing and running this experiment as a part of the course
CMSC 435 (Fall 1998) at University of Maryland, College Park.
Our thanks also go to the students of CMSC 435 for their
cooperation and hard work.

8. REFERENCES
[1] Basili, V. R., Green S., Laitenberger, O., Lanubile,

F., Shull, F., Sorumgard, S., Zelkowitz, M. V.. The
Empirical Investigation of Perspective-Based
Reading, Empirical Software Engineering Journal, I,
133-164, 1996

[2] Basili, V., Caldiera, G., Lanubile, F., and Shull, F..
Studies on reading techniques. In Proc. of the Twenty-
First Annual Software Engineering Workshop, SEL-
96-002, pages 59-65, Greenbelt, MD, December
1996.

This paper was accepted at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999.

[3] Coad, P. and Yourdon, E.. Object-Oriented Analysis,
2nd ed. Englewood Cliffs, NJ. Prentice Hall. 1991.

[4] Fagan, M., 1976. Design and code inspections to
reduce errors in program development. IBM Systems
Journal, 15(3):182-211

[5] Fagan, M.. “Advances in Software Inspections.”
IEEE Transactions on Software Engineering, 12(7):
744-751, July 1986.

[6] Fowller, M., Scott, K.. UML Distilled: Applying the
Standard Object Modeling Language, Addison-
Wesley, 1997

[7] Fusaro, P., Lanubile, F., and Visaggio, G.. A
replicated experiment to assess requirements
inspections techniques, Empirical Software
Engineering Journal, vol.2, no.1, pp.39-57, 1997.

[8] Gilb, T., Graham, D.. Software Inspection. Addison-
Wesley, Reading, MA, 1993.

[9] Jacobson, I., Christerson, M., Jonsson, P., Overgaard,
G.. Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, revised
printing, 1995

[10] Knight, J., E. Myers, A.. An Improved Inspection
Technique. Communications of the ACM, 36(11): 51-
61, November 1993.

[11] Lanubile, F., Shull, F., and Basili, V.. Experimenting
with Error Abstraction in Requirements Documents.

In Proc. of the Fifth International Symposium on
Software Metrics, Bethesda, MD, November 1998.

[12] Meyer, B.. Object Oriented Software Construction,
Second Edition, Prentice Hall Inc., 1997.

[13] Pfleeger, S. L.. Software Engineering: Theory and
Practice, Prentice Hall Inc., 1998.

[14] Porter, A., Votta Jr., L., Basili, V.. Comparing
Detection Methods for Software Requirements
Inspections: A Replicated Experiment. IEEE
Transactions on Software Engineering, 21(6): 563-
575, June 1995.

[15] Shull, F.. Developing Techniques for Using Software
Documents: A Series of Empirical Studies. Ph.D.
thesis, University of Maryland, College Park,
December 1998.

[16] Vieira, M. E. R., Travassos, G. H.. An Approach to
Perform Behavior Testing in Object-Oriented
Systems. In Proceedings of TOOLS Asia'98, Beijing,
China, September 98

[17] Votta Jr., L. G. Does Every Inspection Need a
Meeting?. ACM SIGSOFT Software Engineering
Notes, 18(5): 107-114, December 1993.

[18] Zhang, Z., Basili, V., and Shneiderman, B., An
empirical study of perspective-based usability
inspection. Human Factors and Ergonomics Society
Annual Meeting, Chicago, Oct. 1998.

