

A Light-Weight Process for Capturing and

Evolving Defect Reduction Experience

Victor R. Basili Mikael Lindvall Forrest Shull
Fraunhofer Center for
Experimental Software
Engineering, Maryland

Fraunhofer Center for
Experimental Software
Engineering, Maryland

Fraunhofer Center for
Experimental Software
Engineering, Maryland

vbasili@fc-md.umd.edu mlindvall@fc-md.umd.edu fshull@fc-md.umd.edu

Abstract
Selecting technologies for developing software is a
crucial activity in software projects. Defect reduction is
an example of an area in which software developers have
to decide what technologies to use. CeBASE is a NSF
funded project that has the role of improving software
development by providing decision support on the
selection of techniques and tools. The decision support is
based on empirical data organized in experience bases
and refined into high-level models. Empirical data is
collected through various activities, for example through
eWorkshops in which experts discuss important issues,
and formalized using the lightweight knowledge dust to
knowledge pearl process.

1. The Need for Capturing and Evolving
Defect Reduction Data and Experience

When software defects (i.e. faults in the requirements,
design, or code of a software system) are allowed to
propagate to subsequent development phases, the effort
necessary for detecting and correcting them tends to
increase. In the worst case, the defects are never caught
and result in faults in the delivered product. At the very
least, uncaught defects increase the cost of software by
causing wasted effort in development, or just through the
time required for tracking down the bug and removing it.
Thus, an effective approach to software defect
management is needed to produce software of desired
quality, within time and budget constraints.

To create a coherent defect management approach,
software developers have a plethora of development tools,
techniques, and methods from which to choose. In order
to develop software on-time and within-budget, meeting
the correct functional and non-functional requirements,
they need to make informed decisions about which of
these technologies to select. Such decisions should be

based on an understanding of the effects of those
technologies on software quality (both alone and in
combination with other development technologies) and
their associated cost. Example questions are:

• What types of inspections are best for catching
defects of omission in the requirements analysis
phase?

• For reviewers at an average level of experience,
is a procedural or non-procedural approach to
code reviewing more effective?

Too often, such decisions are based on anecdote, hearsay,
and hype. Many software developers are still surprised to
learn that 25 years of empirical research activities in
software engineering have not yielded answers to such
questions. One problem is that the results of such
activities are hard to summarize in an actionable way.
Results come from different environments; often introduce
subtle differences in the way the same technology is used;
are reported in different ways, in different publications.

Abstracting a coherent and useful story from so many
independent data points is not easy, but it is necessary if
our understanding of the essential phenomena of the field
are to progress and are to be continuously tested against
common, real-world experience. This is necessary for
ensuring the continued relevance of research results, and
for getting the fruits of this research in a form where they
can be useful for the people developing software.

For this reason, the United States’ National Science
Foundation funded the Center for Empirically Based
Software Engineering (CeBASE) starting in 2000.
CeBASE has, as part of its mandate, the role of improving
software development by communicating to developers
what heuristics and models exist to support decision-
making based on empirical results; that is, on observation,
experience, and measurement, not belief, theory, or hype.
To support these goals, CeBASE has been experimenting
with processes for abstracting practical lessons learned

across multiple sources of information about a technology,
ranging from rigorously-controlled empirical data to
results obtained under the vicissitudes of a live
development project to time-tested, expert experience.
CeBASE has researched methods for abstracting and
modeling the needed information for decision support
across multiple studies, and collaborates on further
empirical studies where necessary to support that research.

2. The Need for a Lightweight Process

One of the cornerstones of CeBASE has been the
building of experience bases in the various areas that are
covered by the project. Experience bases are based on
repository technologies in which experience and
knowledge is stored, organized, and disseminated to users.
Building an experience base faces the challenge of where
to start and how to build and support its user community
while there is a limited amount of content in the
experience base. The general approach to building
experience bases is to build and provide an infrastructure
for sharing of information without emphasizing enough
the question of what will drive people to use the
experience base.

Experience bases are based on the contribution of experts.
They are built on the fact that knowledgeable individuals
capture and share their knowledge with other individuals.
When the concept of sharing experience is presented to
experts, the message is often interpreted as invest now,
and someone else might harvest later. This is often not
satisfactory enough to motivate these experts to share their
knowledge. Experts need immediate gratification or return
on their efforts in order to value experience sharing.

Another aspect is that because it takes time to receive the
benefits from sharing experiences and because it is hard to
measure these benefits, experience management can be
seen as a risky activity. Experience management requires
a relatively large investment and a fundamental
commitment to change the organizational culture to a
sharing one. The risk lies in the fact that it takes a long
time to notice if the wrong approach was selected or to
find out that another direction would have been more
successful.

We have been experimenting with a lightweight process to
building experience bases called the Knowledge Dust to
Pearls [1] approach that addresses these problems and
has shown promising results.

Based on our experience we set out to define a lighter
and less risky approach that would be more appealing to
both experts and novices. The new approach is influenced

by the ideas of the Quality Improvement Paradigm (QIP)
[2]-- a model for process improvement in software
organizations. QIP uses the notions of continuous
improvement and iterations as the main vehicle for
planning, executing, evaluating, and improving processes.
These concepts led us to define an approach that lets
organizations, including CeBASE, define and grow
experience bases gradually and improve step by step. It
allows organizations to invest less now and also harvest
some now. It enables the organization to evaluate the
approach, and improve based on the results. When the
organization is ready to advance, it can invest more and
harvest more. This leads to a situation where experts see
benefits much sooner and allows the overall direction of
the initiative to be adjusted quicker.

Our main approach is the Experience Factory (EF) [3],

which establishes a learning organization. The EF
approach is beneficial for software organizations that need
to learn from their past experience. The EF is a
sophisticated approach that satisfies an organization's
long-term needs of sharing experience. We searched the
literature for a complementary approach that would satisfy
the short-term needs of an organization. The
complementary approach we selected to base our new
approach on was the AnswerGarden [4].

The AnswerGarden (AG) addresses two challenges; the

first challenge is how to capture and share the experience
so that known answers can be quickly dispatched to the
ones who need them. The second challenge is to establish
a process that allows experts to share their knowledge
with each other and with novices in an efficient way.

Our approach, the Knowledge Dust to Pearls, combines

and makes use of benefits both from the AnswerGarden
(which represents Knowledge Dust) and the Experience
Factory (which represents Knowledge Pearls). First, it
serves short-term needs as it uses an ad-hoc methodology;
and, it enables the collection of fine-granular items that
lead to organic growth. Organic growth is a desirable
property of an experience base as it lets the experience
base grow in areas where employees search for
experience. Second, it serves the long-term needs as it is
based on a sophisticated analysis and synthesis
methodology; it uses feedback loops; and recognizes the
need of a separate organization that is responsible for the
analysis and synthesis.

The new approach captures knowledge dust that

experts use and exchange on a daily basis and
immediately, with minimal modifications, makes it
available throughout the organization. This process is
accomplished by creating a system that supports peer-to-
peer activities; i.e., the employees of the organization help

each other and fulfill the short-term return goals of a
knowledge capturing and sharing approach. In parallel,
the knowledge dust is analyzed and synthesized and
transformed into knowledge pearls, which represent more
sophisticated, refined and valuable knowledge items that
take longer time to produce. This work is often complex
and needs to be done by a separate organization: the EF
group.

3. One Application: eWorkshops

An application of the concept of knowledge dust
developed by CeBASE relies on electronic workshops or
“eWorkshops” to gather, analyze, package and further test
such information in a time-efficient manner [5].
EWorkshops are run over a standard web interface,
allowing experts in geographically diverse locations to
interact with one another for a common purpose in a
relatively short time period. Actually, the name
“eWorkshops” may be a bit misleading because although
the online workshop is the centerpiece of experience
collection, and the activity most visible to participants,
there are associated processes and support roles in place
“behind the scenes” regarding preparation, conducting,
running, and analysis of the meeting. These processes and
roles provide valuable focus and make sure the specific
goals of the activity are addressed. This is an application
of our approach in the following way: The experts find
value in discussing important issues with their peers while
at the same time their statements are automatically
captured. These statements are the knowledge dust and are
immediately useful for the participants of the eWorkshop
as well as other people. Furthermore, the statements are
analyzed in real-time resulting in a real-time summary of
the meeting. A more extensive post-analysis is conducted
after the meeting in order to turn the baby-pearls into real
knowledge pearls. All of this material now constitutes the
experience base with references to other published
material as well as to experts in the field. The experience
base is thus quickly populated with high-quality
experience packages that attract experts to both share
more experience and to use and learn from other peoples’
experience.

In order to achieve desirable results, the organization of
the workshop follows a strict protocol:
1. Choose a topic of discussion. The topic under

discussion is first determined.
2. Invite participants. Participants are invited and

instructed to log into the eWorkshop using a Web
browser at the appointed time.

3. Distribute Pre-meeting information sheet. To direct
the discussion, preliminary information about the
topic is presented to the participants, who send in pre-

meeting information. This is used to guide the
discussion during the meeting. For the eWorkshops
on defect reduction, for example, we used a “top 10”
list describing 10 common beliefs about how defects
behave, where they are found, and what works for
removing them, to seed the discussion.

4. Establish meeting codes – for meeting analysis. The
workshop organizers analyze the information sheets
to develop a taxonomy of issues to be discussed.

5. Publish synthesized info from pre-meeting sheets. An
analysis of the information sheets are given by the
eWorkshop team and distributed to each participant
before the meeting.

6. Schedule pre-meeting training on tools. A
preliminary work session is scheduled to give meeting
participants a chance to try out the software so that
the meeting can proceed smoothly.

7. Set up control room. Several individuals (described
later) actually run the meeting. While most
participants are in their own offices looking at a
computer screen, the meeting organizers need to
coordinate their activities among several roles.

8. Conduct meeting. At the appointed time, the
participants use their Web browser to log into the
chat tool and the meeting is underway.

9. Post-meeting analysis and synthesis. A script of the
meeting is kept and analyzed to extract knowledge for
the knowledge base.

Roles for effectively achieving the above process include:
• Lead discussants interact with the international group

of invited participant experts, to help direct the
conversation.

• A moderator is responsible for focusing the
discussion and maintaining the agenda.

• A director is responsible for assessing and setting the
pace of the discussion.

• As the discussion evolve, a scribe capture and
organize the results displayed on the whiteboard area
of the screen. When participants reach a consensus
on a particular item, the scribe updates the
whiteboard to reflect the outcome.

• An analyst codes the responses according to a pre-
defined taxonomy. The analyst enters one or more
codes to categorize responses as they are entered.

• Tech support is responsible for handling any
technical problems that might occur.

4. Results so far

Three eWorkshops have been run on defect reduction,
specifically focused on heuristics for:
• Describing the cost and effort due to software defects;
• Describing the impact of defects on software;

• Evaluating effective methods for removing defects.

The general consensus has been that they have been not
only enjoyable for participants, but also an effective way
of quickly describing the state of knowledge of a field.
For example, there were some mature technologies
discussed that were clearly effective. Several participants
described confirmatory evidence in the pre-meeting
feedback and during the discussion concerning the
effectiveness of software inspections. Although numbers
varied, most sources reported that reviews caught more
than half of a product’s defects regardless of the project
domain, level of maturity of the organization, or lifecycle
phase during which they were applied. Several factors that
could raise the defect detection rate even higher were
mentioned. Given the consensus about review
effectiveness, the discussion focused more on defining
measures and refining the heuristic. Finally, some reasons
were proposed to help understand why, in the face of so
much data showing their effectiveness, peer reviews are
not a more common practice in industrial software
development. This collected information may be helpful
for facilitating the dissemination of an effective practice.

For other, newer technologies, their degree of practical
dissemination could be judged by the number of
experiences cited for their use. Few participants could
submit data to describe the effects of using disciplined
personal practices, such as the Personal Software Process
(PSP). Participants felt that the effectiveness of
disciplined practices was related to a number of issues –
defect introduction, removal, and cost-to-fix rates – across
multiple stages of the lifecycle, and that without a
framework to relate such numbers no global estimate of
effectiveness could be reached.

Finally, the eWorkshops were perhaps most useful for
describing heuristics about defect behavior that seem to
hold across development domains. For example, several
participants contributed data supporting the rule-of-thumb
that about 80% of the defects come from 20% of a
system’s modules, although the exact relationship varies
based on environmental characteristics such as
development processes and quality goals. The implication
this supports is that attempts to target the high-defect class
of modules can have a very worthwhile payoff.

Full results of the eWorkshops, including the summarized
expert discussion, are available online at
http://www.cebase.org/www/researchActivities/defectRed
uction/index.htm as well as in [6]. (The process has since
been applied to other areas, such as COTS-based
development1 and agile development methods2, see [7].)

1 http://www.cebase.org/www/researchActivities/COTS/index.html

References
 [1] Basili, V. R., Costa, P., Lindvall, M., de Mendonca

Neto, M. G., Seaman, C., Tesoriero, R., and Zelkowitz,
M. V. An Experience Management System for a
Software Engineering Research Organization. The 26th
Annual NASA Goddard Software Engineering
Workshop. 2001.

 [2] McGarry, F., Pajerski, R., Page, G., Waligora, S., Basili,
V. R., and Zelkowitz, M. V. Software Process
Improvement in the NASA Software Engineering
Laboratory. CMU/SEI-95-TR-22. Department of
Computer Science, University of Maryland, College
Park, MD 20742. 1994.

 [3] Basili, V. R., Caldiera, G., and Rombach, D. H., "The
Experience Factory," Encyclopedia of Software
Engineering - 2 Volume Set, pp. 469-476. 1994

 [4] Ackerman, M. S. Answer Garden: A tool for Growing
Organisational Memory. Conference on Office
Information Systems, COIS90, Cambridge, Mass. 1990.

 [5] Basili, V. R., Tesoriero, R., Costa, P., Lindvall, M., Rus,
I., Shull, F., and Zelkowitz, M. V. Building an
Experience Base for Software Engineering: A report on
the first CeBASE eWorkshop. Bomarius, Frank and
Komi-Sirviö, Seija. 110-125. Proceedings of PROFES
2001

 [6] Shull, F., Basili, V. R., Zelkowitz, M. V., Boehm, B.,
Brown, A. W., Costa, P., Lindvall, M., Port, D., Rus, I.,
and Tesoriero, R. What We Have Learned About
Fighting Defects. International Software Metrics
Symposium, Ottawa Canada. 2002.

 [7] Lindvall, M., Basili, V. R., Boehm, B., Costa, P.,
Dangle, K., Shull, F., Tesoriero, R., Williams, L.,
and Zelkowitz, M. V. Empirical Findings in Agile
Methods. 197-207. Springer. Extreme
Programming and Agile Methods - XP/Agile
Universe 2002.

2 http://fc-md.umd.edu/projects/agile/

http://www.cebase.org/researchActivities/defectReduction/index.htm
http://www.cebase.org/researchActivities/defectReduction/index.htm

	Abstract
	References

