
A Methodology for Exposing Process Risk in Emergent System
Properties

VICTOR R. BASILI, University of Maryland at College Park and the Fraunhofer

Center for Experimental Software Engineering

LUCAS LAYMAN, Fraunhofer Center for Experimental Software Engineering
MARVIN V. ZELKOWTIZ, University of Maryland at College Park and the

Fraunhofer Center for Experimental Software Engineering

Determining whether software and systems achieve desired emergent properties, such as safety,

reliability, or security, requires an analysis of the system as a whole. This requires the system to be in the

latter stages of development, when changes are difficult and costly to implement. In this paper, we propose

the Process Risk Assessment (PRA) methodology for analyzing and evaluating such emergent properties

earlier in the development cycle. Properties such as safety and reliability result from one or more

development processes put in place to help achieve those properties. The PRA method analyzes artifacts

from these processes (e.g., designs pertaining to reliability, or safety analysis reports) to determine: 1)

whether the process itself is appropriate for achieving the desired property; and 2) whether the process is

being followed appropriately. From PRA analysis, process risk can be quantified to indicate whether the

system will have the desired properties. We applied this method to evaluate one emergent property,

software safety, during the early stages of the development lifecycle for a network-centric, Department of

Defense system-of-systems and several NASA spaceflight projects. We analyzed the safety processes

implemented on these projects and their resulting artifacts. The PRA methodology identified potential

risks in the software safety process and provided feedback to the projects for reducing these risks.

Categories and Subject Descriptors: D.2.8 [Software-Software Engineering]: Process Metrics; D.2.9

[Software-Software Engineering]: Management

General Terms: Management, Measurement

Additional Key Words and Phrases: Process risk, software safety, risk measurement

ACM Reference Format:

Basili, V. R., Layman, L., Zelkowitz, M. V., 20XX. A Methodology for Exposing Process Risk in Emergent

System Properties. ACM Trans. on Soft. Eng. Method. X, X, XXXX.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Development of large systems in the aerospace, defense, energy, transportation and

related industries is an expensive venture in terms of both time and money. One

driver of the cost of these systems is that they often have challenging non-functional

requirements, such as safety, reliability, security and performance. These emergent

properties are particularly challenging to achieve because they evolve during

development and can only be fully tested when the system is complete. Corrective

actions based on the results of final tests or operations are often difficult and costly to

implement. Nonetheless, failure to achieve these properties is costly and may be life-

threatening at worst.

Achieving desired emergent properties is accomplished by applying specific

processes that incorporate techniques for achieve the property, such as threat

modeling for security or Failure Modes and Effects Analysis [Maier 1995, Lutz and

Shaw 1999] for reliability. These processes must meet three, often unstated,

assumptions:

Assumption 1. The process is capable of achieving the property and

mitigating the risk of not achieving the property;

Assumption 2. The process is appropriate for the development context;

Assumption 3. The process is followed correctly.

If a process fails to meet any of these three assumptions, then there is a risk that

the product will not achieve the desired property. The purpose of this paper is to

define a risk measurement methodology for emergent system properties that does not

focus simply on process conformance, but through its application enables the user to

identify risks with the development processes and to create responses to identified

risks throughout the lifecycle.

2. BACKGROUND

We define two types of risk with respect to emergent properties: product risk and

process risk. A product or technical risk is the risk that a system will not achieve a

desired property, such as functionality, reliability, performance, safety or security.

For example, an incorrect software implementation is a technical risk that causes a

rocket to prematurely activate its launch booster creates a safety risk. A process risk

is the risk created by the (correct or incorrect) application of a process that leads to a

product risk. For example, a software tester who writes poor performance tests

contributes to the risk that the system may not meet performance requirements. All

software development processes, including processes for mitigating product risk,

introduce additional risks that must also be controlled.

Managing product risks associated with emergent properties is particularly

challenging because these properties are a function of the system as a whole. It is

difficult, if not impossible, to test these properties with a high level of confidence

before the system is completed. Furthermore, methods for testing properties such as

security, safety and performance are often ill-defined, immature and non-repeatable.

Economically, it is much more advantageous to address risks early in the

development cycle when required changes are easier and less costly to make,

particularly in large, complex systems.

Mitigating process risks often takes the form of quality assurance, process

conformance evaluations, or the application of process improvement frameworks such

as CMMi [Chrissis et al. 2003]. Identifying the cause of process risk is where most

projects struggle. The first instinct is to say “you’re not following the process” or

“you’re not doing enough of the process” (see Assumption 3, Section 1), and, indeed,

research has shown that teams who follow process consistently tend to perform

better [Krishnan and Kellner 1999]. But research has also shown that “even

companies that use the same development process at the same level of maturity don’t

achieve the same levels of quality” [Pardo et al. 2011]. While not following a process

can lead to risk, there are often hidden reasons that correlate with process

nonconformance – the process is flawed or the context does not allow various steps to

be performed (see Assumptions 1 and 2). For example, there may be conflicting goals,

such as when developers abandon process when faced with an imminent deadline.

Perhaps an organization’s performance testing guidelines are simply ill-specified and

uninformative, and thus the performance testing process is ad-hoc and ineffective. In

practice, pressing a developer to apply more process may not be the solution; there is

often an underlying cause for process nonconformance.

2.1 Leveraging Process Artifacts to Identify Process Risk

Our approach to mitigating those risks associated with emergent properties focuses

on process risk management. In particular, we focus on the process artifacts that

capture information about emergent properties. For example, design documents can

provide insight into reliability, and fault tree analyses as part of hazard analysis

[Dehlinger and Lutz 2004] contains information relevant to system safety.

The artifacts of a development process contain two types of information that

provide insight into the process: syntactic information and semantic information. An

artifact’s syntactic information is the data elements and their expected compositional

format. For example, the syntactic information of a defect report may include the

description of the defect, the reproduction steps, and a criticality of the defect. An

artifact’s semantic information is the meaning or interpretation of the syntactic data

in the context of development. Interpreting semantic information almost always

requires human expertise. For example, a computer cannot automatically infer the

risks and necessary mitigating actions required based on the contents of a defect

report.

We assert that potential product risk increases when the ability of an artifact’s

consumer (e.g. developer, project manager, tester) to perform a semantic analysis

(e.g. to determine if the project is on schedule, to understand the bug) is compromised

by syntactic problems. The process artifacts are often the only evidence available

during development that provide evidence that steps have been take to mitigate

product risks and that these steps have been applied appropriately. Insufficient,

incorrect or missing syntactic information in process artifacts is a strong impediment

to accurate, useful semantic analysis and is the indicator that we leverage to identify

and measure potential risk during the development process.

Our process risk measurement methodology enables users to answer the first

three questions and provides insights into the fourth question about processes and

process artifacts:

1. Do we have any information in the process artifacts?

2. Do we have enough information to perform a syntactic analysis of the

data?

3. Do we have enough information to perform some form of semantic analysis

of the data?

4. Is the data semantically correct?

A positive answer to each successive question provides greater insights into the

development process, with a correspondingly deeper understanding of the risks that

may be present.

3. THE PROCESS RISK ASSESSMENT METHODOLOGY

In this section, we introduce our risk measurement approach, called the Process Risk

Assessment (PRA) methodology. The PRA method is comprised of six steps, which

are applied iteratively to form a risk measurement plan. We explain each step in

detail and provide an example of applying the methodology from the NASA

Constellation program to evaluate software safety risk. The six steps are grouped

into three stages, as follows:

I. Identifying measureable

insight opportunities

1. Identify insight areas (e.g., process artifacts) from the

development process that provide insight into risk areas.

2. Identify measurement opportunities that provide

insight into each insight area.

II. Evaluating the quality

of information

3. Develop readiness assessment questions to identify if

sufficient information exists to implement process risk

measures.

III. Measuring,

interpreting, and

providing advice

4. Define goals, questions, and measures for each risk area

to expose risks associated with process artifacts.

5. Develop and enumerate models of how the measures will

be interpreted via threshold values.

6. Propose responses to identified risks (e.g., decisions and

actions) in order to mitigate those risks.

The first three steps of PRA determine if process risk analysis has the potential to

yield meaningful information. If insight areas or measurement opportunities cannot

be identified (Steps 1-2) and the artifact’s syntactic and semantic information cannot

be readily assessed (Step 3), then the development process itself may be a source of

risk. The final three steps of PRA define process risk measurements, develop

interpretations of the measurement results, and establish mitigations for identified

risks. For the practitioner, we have defined “keys” to each of the six steps in a table

format (See Appendix B).

3.1 Constellation Case Study

To illustrate the PRA method, we provide examples from applying PRA to identify

potential software safety risks within the NASA Constellation program1. The

Constellation program was a complex system of systems to facilitate the next

generation of human spaceflight. We examined three large spaceflight systems in

the preliminary design stage that contained numerous hardware and software safety

features. Safety is an ideal example of an emergent product property that cannot be

fully tested until the system is operational. A safety risk is a hazard, which is any

real or potential condition that can cause: injury, illness, or death to personnel;

damage to or loss of a system, equipment, or property; or damage to the environment

[DoD 2000]. Hazards caused or contributed to by software have become a greater

concern in systems development as many traditionally hardware-centric systems

become highly reliant on software. Catastrophic safety failures due to software are

well-documented in the literature, e.g. [Nuseibeh 1997, Leveson and Turner 1993].

On Constellation, software was safety-critical in numerous areas from propulsion

and navigation to maintaining a livable environment inside the crew capsule.

We partnered with the software Safety, Reliability and Quality Assurance

(SR&QA) group for Constellation to gain insights into potential software safety risks

associated with the software safety process. In particular, we focused on the hazard

analysis process, which is an analysis conducted during the design phase to help

identify causes of hazardous safety conditions and to develop mechanisms to avoid,

control, or otherwise mitigate those causes2 [FAA 2008]. The official Constellation

hazard analysis process, CxP 70038 – Constellation Program Hazard Analyses

Methodology, prescribes the “methodologies and processes required […] to implement

a healthy and robust hazard analysis, hazard communication, and hazard approval

process” [NASA 2009]. CxP 70038 required that software be analyzed for safety-

critical procedures that could lead to a potential hazard. Our goals were to help

SR&QA evaluate software-related hazards, to help software quality engineers

implement software hazard analysis processes, and to demonstrate conformance to

the hazard analysis processes with respect to software.

Throughout the development of Constellation, project safety engineers identified

potential system hazards and created controls (i.e. strategies) for mitigating those

risks. Hazards were recorded in a program-wide Hazard Tracking System (HTS). At

each program milestone review, the development groups presented their hazard

analyses to the Constellation Safety & Engineering Review Panel (CSERP), who

reviewed the hazards and evaluated the control strategies, acting as gatekeeper for

development milestones.

SR&QA management wanted to understand where in the system software played

a role in possible hazards, either by causing a hazard or by controlling it. By

understanding the role of software in system hazards, SR&QA could identify systems

and subsystems with the greatest potential software safety risk and take appropriate

management actions. The results of the Constellation case study are more fully

documented elsewhere [Layman et al. 2011].

1 Although the Constellation program was cancelled, some of the projects are expected to be continued. Our

results are being applied to other NASA projects as well.

2 See Appendix A for an overview of hazard analysis.

3.2 Step 1: Identify Insight Areas from the Development Processes that Provide Insight into
Risk Areas

The first step of the PRA method is to identify intermediate outputs of processes.

These artifacts can provide insights into process conformance and effectiveness in

achieving the desired emergent properties. We ask, what potential syntactic and

semantic information can be gathered from process artifacts to provide risk insight?

If no artifacts exist that provide insight into risk, then it is likely that risk will be

present in the system because there is no process or artifact capturing that risk. The

first step identifies insight areas at a very high level as candidates for further

investigation.

Constellation example

The Constellation SR&QA manager identified the hazard analysis process as a

readily-accessible source of software safety information early in the development

process. Hazard reports are the intermediate output of the hazard analysis process.

All hazards, including software-related hazards, are stored as hazard reports in the

Constellation hazard tracking system (HTS). These hazard reports contained the

syntactic and semantic safety information that provided insight into potential

software safety risks. Based these reports, we identified the following potential

insight areas:

• The set of hazards, with its causes, controls, and verifications. The hazard

reports can provide insight whether the program is adequately identifying

and documenting the required software safety information;

• The relationship between hazard causes, controls, and verifications. These

relations provide insight into whether sufficient actions are taken over time,

i.e. that the hazard controls are being implemented and verified.

3.3 Step 2: Identify the Measurement Opportunities that Provide Insight into Each Risk Area

Second, each insight area is evaluated for measureable indicators of process risk. A

measurement opportunity can measure process conformance (e.g. are all of the fields

in the test results filled in?) or the software risk directly (the number of defects found

during test). A measurement opportunity is identified by creating a high-level,

informal metric based on the information available. This step identifies (and thereby

excludes) processes or process artifacts that do not have measureable information. A

process that does not have measureable output may represent a risk itself, and is an

indicator that the process or process artifacts do not contain meaningful information.

Constellation example

We identified measurement opportunities to help quantify software safety risk based

on information captured in the hazard reports. Because we were analyzing hazard

reports in preliminary design, only the hazard causes had to be well-described

according to CxP 70038. The hazard analysis process, together with other NASA

standards, described what constituted a “meaningful” description of a hazard cause.

Thus, we identified measurement opportunities that focused on syntactic information

to help evaluate conformance to the prescribed hazard analysis process, but which

were also related to the quality of the semantic information (i.e. “meaningful”

information). Other measurement opportunities were derived from additional

requirements in CxP 70038.

Those measurement opportunities were:

• Evaluate hazard causes, controls and verifications to determine if they

contain the required syntactic components that are prerequisite for a

“meaningful” hazard analysis.

• Count the number of hazards, causes, controls, and verifications that involve

software to quantify software involvement in hazardous conditions.

• Verify that each cause is addressed by at least one control and that each

control is addressed by at least one verification.

• Count the number of causes, controls and verifications that are “transfers”.

Transfers are a reference to a cause, control or verification in another hazard

report (e.g., another hazard report addresses appropriate mitigation of this

risk). All transfers must be traced and verified as completed for a hazard

report to be considered “closed.”

In these first two steps, we have not gathered any actual data; we are only looking

at the process outputs and their potential to be measured. The purpose of these steps

is to understand the development process we wish to measure (e.g. the software

safety process) and to understand the process artifacts. These steps may seem

superfluous, but are necessary. Too often we assume that a process is producing

meaningful, insightful information, but this information may not be, in fact, available

or useful.

3.4 Step 3: Develop Readiness Assessment Questions to Provide Risk Status and

Identify If the Insight Area Can Be Evaluated

In the third step, we determine whether the syntactic and semantic information in

the process artifacts contains sufficient information to investigate the risk further.

We propose a set of readiness assessment questions that allow us to gain additional

insight into the areas of interest, to get a quick and easy status report of the area,

and to identify whether it is possible to go deeper. What is learned from these

questions helps tailor the models, measures, and responses applied at a deeper level.

For example, we might ask “are software safety-related requirements specially noted

in the requirements repository?” If not, there may not be sufficient information to

evaluate software safety risks. Answering these readiness assessment questions is

an iterative process, as answering one question may lead to others. Processes and

process artifacts that do not pass a readiness assessment are indicators that the

process is not being followed, or that the processes is not well-defined for the current

context. In both cases, the project should take steps to correct the development

process.

Constellation examples

In the Constellation case study, we developed many readiness assessment questions

while exploring the measurement opportunities. Examples of these questions

include:

• Can we access the hazard tracking system and hazard reports? Access

to the process artifacts was a necessary precondition to any measurement.

The HTS was made available to us, but the HTS contained hazard reports for

only one of the three spaceflight hardware project on Constellation that we

examined (see next list item).

• Is the content of the hazard tracking system up to date? The hazard

tracking system only provided up-to-date hazard reports for one of the three

spaceflight systems (Project A). Project B’s hazard reports were in the HTS

but not visible as the development contractor did not want to release

“intermediate” versions of the hazard reports. Project C’s hazard reports

were created prior to the development of the hazard tracking system itself.

Since Project B and C’s hazard report were not in the HTS, we could not

leverage the querying capabilities of the HTS and had to spend additional

effort collecting all of the hazard reports for the two systems. However, we

were able to obtaining the hazard reports for Projects B and C from a Wiki

containing CSERP review meeting materials.

• Are the cause, control and verification data complete enough for

analysis? For the NASA engineers writing the hazard reports, the goal of

hazard analysis in the preliminary design phase was to identify and describe

all potential failure causes and to develop preliminary controls. As this was

still early in the Constellation program, verifications were not yet specified

nor required by CxP 70038. As such, we could not measure them. Most

causes and controls were specified and thus could be analyzed, though some

were still works-in-progress and had a “To Be Determined” placeholder.

In addressing the readiness assessment questions, our first observation, as stated

above, was that few of the hazards had been entered into the HTS by safety

engineers – we had to obtain the hazard reports from the CSERP review materials.

However, keeping the HTS up to date is an easy first step in mitigating hazard risks

and increasing the effectiveness of the hazard analysis process. The HTS has the

capability to track “transfers” in hazard reports automatically, making traceability

maintenance a much lower cost than the manual effort required of engineers working

only with word processor documents. Furthermore, the contractor withholding

intermediate hazard information from the HTS prevented SR&QA management from

easily assessing the progress of the hazard analysis process.

3.5 Step 4: Define Goals, Questions and Metrics for Each Risk Area to Expose Risks
Associated with Process Artifacts

Having determined in steps 1 to 3 that we have sufficient information to make

deeper risk assessments, in the fourth step we set goals for identifying specific

software risk based on the syntactic and semantic information available in the

development process artifacts. We develop a set of questions that will help determine

if those goals are being met, and we identify formally the metrics we will use. This

step is an application of deriving goals, questions, and metrics in the GQM approach

[Basili and Weiss 1984]. Goals and questions should focus on the application of the

development process and the expected information in the process artifacts. The

premise of our methodology is that information in process artifacts should meet the

expectations of the processes, and, if not, there is risk that the process is not

appropriate for achieving its goals or that the process is not being applied

appropriately.

GQM questions can be asked about process risk, such as “is all of the information

in a software safety requirement recorded?” We can also ask if the content of these

safety requirements is semantically meaningful. Goals and questions can be asked

from a more product-oriented perspective as well, such as “which parts of my system

have the most software safety risks?” By answering these questions with metrics, we

enable quantifiable comparison, measurement repeatability, a baseline for measuring

future changes, and well-defined targets for future efforts.

Constellation examples

SR&QA identified several goals for software safety risk analysis based on the hazard

reports. After applying PRA steps 1-3, we worked with SR&QA to specify two goals

for analysis.

By understanding the role of software in system hazards, SR&QA could identify

systems and subsystems with the greatest potential software safety risk. To this

end, we created the following GQM approach to characterize software’s prevalence in

hazards:

Table 1. Goal 1 - Prevalence of Software

Goal 1 - Prevalence of software

Analyze the available set of hazards reported for Projects A, B and C in order to characterize them with

respect to the prevalence of software in hazards, causes, and controls from the point of view of NASA

quality assurance personnel in the context of the Constellation program.

Questions

Q1-1. What percentage of hazard causes are software causes?

Q1-2. What percentage of the hazards is software-related? A software-related hazard has at least one

software cause or software control.

Q1-3. What percentage of hazard causes have software controls?

Q1-4. What percentage of hazard causes are non-software causes (e.g., hardware, operational error,

procedural error) with software controls? These causes represent potentially “hidden” software

risks. For example, if a software control is monitoring a hardware condition, then if the monitoring

software fails there is a risk that the monitor will fail to detect an actual subsequent problem.

Thus, this software control can again be the cause of a hazardous condition.

Metrics

M1-1. The total number of hazards, causes and controls

M1-2. The number and percentage of software hazards

M1-3. The number and percentage of software-related hazards

M1-4. The number and percentage of software causes

M1-5. The number and percentage of software controls.

Given SR&QA’s second goal of identifying the systems and subsystems with the

most risk, we identified several subgoals, one of which was to evaluate whether the

syntactic and semantic information in software causes of hazards adhered to

established NASA guidelines. If software cause descriptions do not syntactically

conform to the information required by process standards, then there is a risk that

not enough semantic information is captured to adequately describe the hazard

cause.
Table 2. Specificity of Software Causes

Goal 2 - Specificity of software causes:

Analyze the software causes in a sample set of hazard reports for Projects A, B and C in order to evaluate

them with respect to the specificity of those software causes and hazards from the point of view of NASA

quality assurance personnel in the context of the Constellation program.

Questions

Q2-1. What number and percentage of software causes is well-specified according to the Constellation

hazard analysis methodology requirements?

Q2-2. What number and percentage of software causes is partially-specified? These causes lack certain

pieces of information needed to evaluate their quality.

Q2-3. What is the number and percentage of software causes is generically-defined? A “generic” cause

(e.g. “the software fails”) is not specific enough to identify any control strategy.

Metrics

M2-1. For each hazard report, count the number of L1 causes

M2-2. For each hazard report, count the number of L2 causes

M2-3. For each hazard report, count the number of L3 causes

• L1: a specific software cause or sub-cause3 for a hazard, which must include all of the following:

o Origin – the CSCI (e.g., software component) that fails to perform its operation

correctly

o Erratum – a description of the erroneous command, command sequence or failed

operation of the CSCI

o Impact – the effect of the erratum which results in the hazardous condition, and if

known, the specific CSCI(s) or hardware subsystem(s) affected

• L2: a partially-specified software cause or sub-cause for a hazard, which specifies one or two of

the origin, erratum or receiver at the CSCI/hardware subsystem level.

• L3: a generically defined software cause or sub-cause for a hazard, which does not specify the

origin, erratum or receiver at the CSCI/hardware subsystem level.

3 Many software causes contained a number of “sub-causes.” Sub-causes were identifiable by either: 1)

explicit enumeration in the cause description by the hazard report author; or 2) separate paragraphs

describing errors by different CSCIs. Because sub-causes described different software behaviors, each was

measured for its specificity.

While Goal 1 and Goal 2 both deal with syntactic information in the hazard

reports, Goal 2 begins to bridge the gap between complete syntactic information and

meaningful semantic information. The syntax for a “well-specified” hazard cause (as

inferred from NASA standards) enables meaningful semantic information (though

does not guarantee it).

3.6 Step 5: Develop Interpretation Models and Threshold Values of Measures

Using the metrics developed in Step 4, we need to interpret the data. What are

good values and which values represent risk? For example, for Goal 2 above, what

percentage of “generically-defined” (L3) software causes is too high, and what are the

implications for the project? Ideally the interpretive models are based upon

thresholds established from prior projects. If no such data exists, experts can provide

proxies for the thresholds. One side effect of the PRA method is that the collected

data can be used to create baselines that can be used as thresholds in future projects.

Constellation examples

We analyzed a total of 154 hazard reports for the three Constellation systems: 77 in

Project A, 57 in Project B, and 20 in Project C. The analysis of each hazard report

was performed manually by reading the text of the causes and controls. In total, over

2000 causes containing nearly 5000 controls were examined.

Goal 1 did not have an interpretation model, per se, as it was meant to provide a

description of software’s role in hazards to provide stakeholders with an

understanding of the importance of software safety. Table 3 provides the statistics

that answer the questions in Goal 1.
Table 3. Measuring the prevalence of software

 Question Project A Project B Project C

Q1-1
What percentage of the hazard causes are

software causes?
15% 12% 17%

Q1-2
What percentage of the hazards is software-

related?
49% 67% 70%

Q1-3
What percentage of the causes has software

controls?
29% 23% -

Q1-4
What percentage of hazard causes are

hardware causes with software controls?
14% 11% -

The analysis began with finding syntactic keywords (e.g. “software”, “flight

computer”) that gave an indication that a cause or control was software-related. We

found that 49% of Project A’s hazard reports, 67% of Project B’s hazard reports, and

70% of Project C’s hazard reports were software-related. This indicates that software

is a safety-critical aspect of the overall system and over half of all hazard reports are

software-related. The importance of software clearly demonstrates the need for a

strong software development process with adequate control and verification.

Goal 2 provided insight into the execution of the hazard analysis process itself. In

this example, we create an interpretation model for the question “what percentage of

software causes is generically-defined? (Q2-3, M2-3).

Interpretation model: if L3 > 0 then additional work is required to

better specify those software causes and those causes must be-

revaluated for specificity at a later time; otherwise the causes are

ready to be evaluated for quality by domain experts.

A “generically-defined” cause is not specific enough to specify a design feature or

operational procedure that could function as a control strategy. Thus, all generically-

defined causes should be improved to be better specified. In the three Constellation

projects, Project A had 38 L3 causes (29%), Project B had 37 L3 causes (22%), and

Project C had 16 L3 causes (29%). None of the projects met the criteria of the

interpretation model.

At its core, Goal 2 examines process conformance by looking for syntactic

information in the cause description. Many causes did not follow the prescribed

syntax, and the resulting semantic information was insufficient for identifying

controls. As discussed early in the paper, the initial reaction may be to say “you’re

not following the process correctly.” However, SR&QA personnel acknowledge that

non-conformance in this case was not necessarily a failure on the part of the safety

engineers; the integration of software safety with traditionally hardware-centric

system safety processes (such as hazard analysis) was still a work in progress. The

guidelines for specifying software causes were scattered over five different standards

and process documents, and each project reported and scoped software causes

differently. In this case, the lack of process conformance was partially attributed to

needing process guidance for the current context.

3.7 Step 6: Propose Responses to Identified Risks

The goal of this step is to propose actions to be taken in response to any identified

risks. If the interpretation models indicate that the process is not being followed

and/or not producing the information expected, stakeholders must endeavor to

understand why the process is not being followed. Again, this may be more than a

compliance issue, and could result from inapplicability of the process to the current

context or an ill-defined or not sufficiently defined process. In such a case, additional

training may be necessary for the developers, the process may need to be refined with

input from the practitioners, or entirely new techniques may need to be applied that

are more suitable to the context. Responses to identified risks may also focus on the

product, such as increasing the amount of testing for high risk components or

requiring additional review of proposed architectures.

Not identifying any risks at this step does not mean that there are no software-

related risks. It only means that the development team seems to be following the

process in a reasonable manner. Specific risks may not have been identified because

measurable process artifacts were not present. Furthermore, technical risks (i.e. the

system may not operate as expected) may still be present in the details of the design

or implementation that is being worked on.

Constellation examples

SR&QA integrated the percentage of software-related hazards (along with other

measures related to Goal 1) into a risk scorecard of the systems and subsystems with

greatest potential software safety risk. This scorecard can help manage safety

support effort. The data related to Goal 1 were used to inform other members of

Constellation program management as to the importance of software in overall

system safety. These metrics results were surprising to many. The risk scorecard

was to be used to track the evolution and improvement of software safety risk over

the course of the project. Unfortunately, the program was canceled shortly after this

analysis, and thus we could not observe how the data would be used as part of

proactive program management. The following response is a notional example of

what project responses might look like:

• Allocate the available work hours for software safety assurance according to

the rank order of subsystems with the most software-related hazards.

The responses to risks evaluated in Goal 2 focused on improving the quality of the

software cause descriptions. As described in the previous section, the process risks

associated with Goal 2 were largely attributed to project safety personnel being

unfamiliar with the hazard analysis process and how to incorporate software safety

into that process. As such, the responses to these risks focused on process

improvement and providing better support in both training and in the HTS for

reporting software causes. Notional example responses to Goal 2 include:

• If the software cause does not specify a specific origin (i.e. “the software

fails”), then assist the project safety engineer to differentiate between the

architectural components of the software (e.g. the propulsion control system,

the avionics component).

• If a hazard report contains L2 or L3 software causes, have the project safety

engineer who authored those causes rewrite them using the “User Guide for

Specifying Software Causes” we produced with SR&QA as guidance and

reevaluate at the next Technical Interchange Meeting.

4. UNCOVERING PROCESS RISKS USING THE PRA METHOD – CASE STUDY RESULTS
AND LESSONS LEARNED

We have applied the PRA method to evaluate software safety on three projects to

date: 1) the Constellation study in the previous section; 2) a large, network-centric

US Department of Defense system-of-systems; and 3) a NASA-developed satellite.

Descriptions of the DoD and NASA satellite systems are provided in Appendix C. In

all three case studies, the programs relied on hazard analysis to describe, analyze,

and reduce software safety risks. By applying the PRA method, we uncovered a

number of process risks in each project with respect to the application of hazard

analysis to software safety4. In this section, we identify three process risk “themes”

that were common across the projects and thus provides guidance to other programs

implementing software safety analyses to help avoid these risks.

1. The inability to track software hazards and software safety requirements

against the backdrop of system hazards and system safety requirements. On

Constellation and in the DoD project, software safety risks were often not specifically

marked or headlined in the hazard reports. Identifying which hazard reports

described software was time-consuming: different hazard report authors had

different writing styles and sometimes different terminology, and the hazard reports

themselves could be significantly lengthy5. Software safety management personnel

were forced to manually collate and track this information, which became an

expensive, but necessary, requirement for proactive software safety management

across these large projects.

On all three programs, many hazard controls were not identified as software-

related even though the controlling mechanism included software, and the

corresponding software requirements for implementing the control were not marked

“safety-related” as required. The inability to easily identify software causes and

controls and the non-uniformity of the syntactic content in the hazard reports also

became apparent when applying Steps 4 of the PRA. As we mentioned, the PRA

method is iterative, and Goal 2 in the Constellation study was created in response to

this observation.

4 The specific process risks for the DoD and Constellation case studies are described in Basili et al. [2008]

and Layman et al. [2011] respectively.

5 The Constellation hazard reports, for example, had a median length of 36.5 pages (min: 8, max: 152,

mean: 43.2).

The safety analysis processes did not adequately distinguish between software

and non-software safety concerns. This forced software safety management to

manually collate and track this information, which became an expensive, but

necessary, requirement for proactive software safety management across these large

projects. Tracking software safety concerns would be easily enabled if safety

requirements, hazards, and other safety analysis artifacts contained meta-data (e.g.

a checkbox) indicating whether or not those items were software related.

The differences between software and software related hazards were not handled

adequately. In the hardware realm, if a hardware control was specified, then there

would be a control to ensure that the original hardware control did not introduce a

new hazard. This was evident in the hazard reports of the NASA satellite. But for

software controls to hardware causes, no such control was included to ensure that the

added software did not introduce new risk.

2. Inadequate traceability exists between safety requirements, hazards, causes

and controls. In all programs, bi-directional traceability is required between safety

requirements, associated hazards, causes, controls and verifications to ensure that

safety requirements have been implemented. In all programs, bi-directional

traceability was not present in the artifacts we examined. Retroactively inserting

this traceability as the project nears completion (as is the historical practice) is

expensive. In the Constellation and DoD programs, the hazard reports contained

sections for safety requirement references, though these sections were not filled in or

were marked as “To Be Determined” (TBD). The NASA satellite program contained

some references to safety requirements, but the hazards were not completely filled in

or were marked as “TBD”.

On Constellation, we observed a number of hazard reports where the internal

references to other hazard reports’ causes and controls (i.e. “transfers”) were missing

or incorrect. Even when the references were correct and up-to-date, significant

manual effort was required to build the dependencies between causes and controls

across hazard reports. Across the three Constellation systems, 23-31% of causes and

11-22% of controls were transferred. While necessary and appropriate in documenting

hazards, transferred causes and controls represent added risk because they inhibit

traceability and require more effort to understand and maintain. On the NASA

satellite program, an external document was used to keep track of software causes

and controls across hazard reports, somewhat lessening the traceability burden.

3. Inconsistent scope and unstructured details when describing hazards, causes

and controls. In both programs, safety engineers wrote their hazards, causes and

controls in unique ways. This made consistent evaluation on the part of safety

management difficult. For example, on Constellation, the content of the hazard

reports differed substantially between the three spaceflight systems and among

hazard report authors within the same program. All three of the spaceflight systems

approached software hazard analysis differently – some hazard reports described all

software issues under one large cause and control, while others spread software issues

throughout multiple causes.

For example, a cause reading “Generic avionics failure or software flaw causes

improper operation of control thruster” certainly involves software, but it is not

scoped to a particular software component as required by NASA procedure.

Furthermore, inconsistent structure and vocabulary precluded an automated

syntactic analysis of the safety artifacts. This was not simply a matter of non-

conformance to the safety analysis processes, but was the result of different

interpretations of processes that were not concretely defined. Many hazard reports

placed all software causes and most software controls under a single cause labeled

“Software-based error.” In many cases, this cause had a single control with multiple

pages of software design and operational information. This large control then had a

single verification. This single control, while highly detailed, presents risk in that

software design and behaviors will not be individually verified. A constant challenge

faced by safety engineers is appropriately separating complex hardware and software

functionalities into multiple causes and controls. Complex causes and controls

introduce risk that some individual risks may not be well understood. However,

creating controls also entails significant additional verification effort that may yield

little return if the cause/control was largely covered elsewhere

These themes may be indicative of large engineering projects being developed by

many organizations. Our observations indicate that simply defining a development

process is not sufficient to identify safety (or any other kind of) emergent risk.

Management, measurement, and feedback of the process actually being used is as

important as defining a proper process in the first place.

4.1 Lessons Learned for Implementing Software Safety Analysis Processes on Future
Programs

All of these programs were attempting to integrate software safety with traditional

safety processes that originated in hardware and system reliability. For all

programs, elevating software safety to a level of importance equivalent to hardware

and system safety was challenging. Defining how software should be incorporated

into traditionally hardware-oriented analyses (such as hazard analysis) is still very

much a work in progress. In these traditional hardware-oriented environments,

software is often viewed as just another black box hardware component. However,

many high-profile system safety disasters (e.g. Ariane 5 [Nuseibeh 1997], THERAC-

25 [Leveson and Turner 1993]) can be attributed to defects in the software and

software processes that propagated throughout the system. The analysis, detection,

and mitigation of software risks are not isolated to the software, but involve the

entire system engineering process.

Software risk analysis is not the same as hardware risk analysis. Software failure

rates are difficult to predict, and mitigation strategies for hardware failures (e.g.

redundancy) often do not apply to software. Furthermore, software controls are

difficult to specify because software properties and constraints are not well

understood early on. The Ariane 5 disaster [Nusebeih 1997] is an example where a

runtime control (e.g. testing for overflow) was intentionally disabled to meet

performance requirements. Software safety risk management should not be isolated,

however. The interaction of hardware and software is a source of risk, and software

failures will almost always manifest in some loss of system function. Software safety

risk management must be integrated in the overarching system safety process in

such a way to account for the unique ways that software risk must be managed,

while recognizing that software safety risk is of equal importance in the overarching

system safety process.

From our results of applying the PRA method on the three programs, we have

identified the following lessons learned for future software safety-critical programs.

1. Provide explicit guidance for applying safety analyses to software.

Assuring software safety is not as simple as saying “apply the hazard analysis

process to software”. As we observed in the Constellation case study in particular, a

lack of consistent understanding of how to apply hazard analysis to software led to

both over specified and underspecified software cause descriptions. The CSERP

review was not interested in reading about state-transitions in software that would

undoubtedly change, nor was a description of “the software fails” good enough. The

safety engineers often spent several iterations simply getting the description of the

cause to be acceptable before an analysis of the actual design features (i.e. the

controls) could even begin. Providing guidance to the safety engineers on how to

specify software causes saves time and effort on the part of the engineers because it

reduces the number of iterations required to get the syntax correct and the semantics

meaningful. For the Constellation program, we developed a two-page guideline for

the various development teams to use in filling out hazard reports. Although current

NASA guidelines give the contents expected in hazard reports, they do not give a

clear indication of the level of detail or the format of this information. Our guideline,

when followed, provides consistency across development teams, which allows CSERP

to more readily monitor process risks across multiple developments.

2. Plan for automated analysis and traceability and promote usage of the

HTS capabilities. In our studies, we observed inadequate planning in the use of

the hazard tracking systems, which impaired the ability to track and measure

software safety risks. Ostensibly, the hazard tracking systems were designed: 1) to

capture the hazards in a consistent format; 2) to house the syntactic data of the

hazards to enable rudimentary searching, filtering and analysis. The value of the

HTS as a management tracking system is further increased by providing automatic

support for traceability between hazards and hazard attributes. In the NASA

satellite program, no hazard tracking system was used. In the Constellation and

DoD programs, it was clear that goals for searching, filtering and analyzing hazard

reports to support risk management were not considered. For example, there was no

way to identify software-related hazards among the set of system hazards, despite

the fact that software safety management was handled by special groups in each

program. Several hundred person-hours were spent by us to analyze the

Constellation hazard causes and controls to identify merely if software was involved.

However, as we were able to demonstrate in a prototype HTS, adding a checkbox

next to each cause or control denoting “this is software-related” enabled an

automated search for software causes and controls that took mere seconds instead of

hundreds of hours. And even though there was such a box in the DoD system for

hazards in general, software-related hazards were not identified properly even when

it was clear that software was the cause or control of the hazard.

In Constellation and DoD, the traceability features of the HTS were not used by

the safety engineers, who preferred to author the hazard reports in a word processor

and then copy and paste in the HTS. The HTS could provide a number of useful

features regarding traceability, such as verifying that references and links are still

valid, automatically updating traceability links, and detecting dependencies.

Leveraging these capabilities would avoid process risk and unnecessary effort.

3. Require software safety management and measurement in the acquisition

process. The vendor acquisition process must promote the importance and iterative

measurement of software safety. On programs as large as Constellation and the DoD

system, the development effort can include dozens of vendors over several years. The

sources of information that can be used to measure software safety are limited to the

process artifacts that are provided by these vendors. In the Constellation program,

for example, the hazard reports were only required to be available for milestone

reviews. Such milestones could occur months or even years apart, and were not

necessarily available on demand per the contract. As such, NASA’s oversight and

direct involvement in the software safety assurance process was somewhat limited.

As another example, if one wishes to track defects over time, then visibility must be

provided by the vendor into their defect tracking database (or some proxy). If this is

not written into the contract, then there is a risk that such information will be

unattainable and the associated risks not measurable.

5. CONCLUSION

We have seen that the PRA method can uncover potential process risks and provides

a means for evaluating emergent properties early in the development cycle. We have

learned several lessons and observed some limitations in applying the PRA method

over the course of these three studies.

5.1 Lessons Learned about PRA

The PRA method is both an evaluative method of a process, and a method to improve

the process while it is being applied. PRA is most effective as a quality assurance

activity where the methodology is applied by people familiar with but outside of the

process. The first assumption of applying the PRA method is that there is a process,

whether it is implicit or explicit, that can be analyzed. Ad-hoc methods of achieving a

desired product property are not candidates for the PRA method of detecting process

risk.

If the process you wish to study is implicit, making it explicit can reveal undefined

“grey” areas, differences in interpretation, etc. In both our Constellation and DoD

studies, we received valuable insight from software safety personnel involved in

program management, but were not performing the safety analysis itself except in a

review capacity. From these individuals, we obtained insight into the goals of the

safety process and insights into applying those processes in their respective contexts

that were invaluable in interpreting the risks we observed. Expert domain

knowledge is necessary to interpret the semantic meaning of technical artifacts, but

the risks we uncovered in the processes did not require significant technical expertise

but a thorough understanding of the process requirements and goals. However,

interaction with the experts is critical to validate goals, to verify findings, and to

create willingness to adopt proposed responses to risks.

The PRA methodology is iterative. For a given application, readiness assessment

questions may not pass, thus requiring you to start over in identifying insight areas.

The metrics you interpret may raise further questions (e.g. after counting the

number of software defects, what is really needed is how severe they are), causing

you to reformulate goals and questions. It is very likely that the process artifacts

that you plan to examine (e.g. safety requirements) do not contain the information

you desire or the quality of information is poor (both of which are indicators of

process risk), and thus you will need to rethink potential insight areas while also

looking at how to improve the process.

Step 3, asking Readiness Assessment Questions, although a simple step, found

significant risk in the projects we studied. This step is crucial to challenging the

assumptions of most risk models (as described in Sections 1-2). We believe, from

anecdotal evidence, that these assumptions do not hold true across a large number of

software developments, and are the sources of significant development risk. Step 3

should always be completed using actual project data before proceeding to steps 4-6.

Step 3 may cause you to reevaluate steps 1 and 2 regarding where you can look for

data and what’s important. In the DoD study, we could have saved significant effort

since the data required for steps 4-6 was simply not available. For Constellation,

asking readiness assessment questions resulted in changing the method for obtaining

the hazard reports we needed to evaluate.

Models and interpretations help shape goals. Goals, measures, models will vary

according to when the measurement takes place as the process can have different

expectations/outputs at different points in time. For example, all the projects we

studied were in the preliminary design phase when only requirements and high-level

designs were available for safety analysis. The responses to the identified process

risks were to improve the process and provide process support, and the response to

product risk is to change the design of the system. At a later stage of development,

say testing and verification, one could obtain more concrete metrics on the state of

system safety with respect to actual system behavior. At that point, the responses

are more limited in that changing design and implementation will be extraordinarily

expensive (especially in a large system).

5.2 Summary

The PRA method helps address and respond to software development process risk in

achieving emergent system properties, such as reliability, safety and security. Our

six-step method does this by challenging the following assumptions in the application

of development processes:

• The process is an effective way of achieving the property and of mitigating

the risk of not achieving the property;

• The process is appropriate for the development context;

• The process is followed correctly.

The PRA method provides visibility into process risks throughout the

development lifecycle by measuring process conformance through the analysis of

syntactic and, possibly, semantic information contained in intermediate process

artifacts. It is important to note that the PRA method does not and cannot provide

any assurance that the emergent property exists, e.g., that the system is safe. It only

provides indicators that there is a risk that the product will not satisfy the emergent

property, i.e. that the system will not be safe. It provides insights into why and how

the exposed issues might be fixed while the system is still under development. Thus

this approach is meant to be used in conjunction with methods that test the final

product for the emergent property.

We have applied the PRA method to three case studies of software safety

processes on the NASA Constellation program, a large, network-centric Department

of Defense system of systems and a small NASA satellite program. We uncovered

several risks in the software safety processes of these programs. The risks in these

processes shared overlapping themes: difficulty in identifying and tracking software

safety concerns; inadequate traceability from safety requirements to design controls;

and inconsistent scope and detail in reporting safety concerns. The feedback to the

system engineers or the QA team was deemed valuable and work was underway to

make the modifications presented.

As part of ongoing and future work, we will apply our process across a larger

number of case studies, environments and organizations to both show that the

process does find safety risks, and to understand how prevalent these risks seem to

be across the industry. In addition, we are currently applying the PRA method to

identify process risks in achieving other emergent system properties, such as

reliability and security.

APPENDIX A – THE HAZARD ANALYSIS PROCESS

Because both of our case studies focus on the hazard analysis process, we describe

some common hazard analysis concepts. While the official documentation of the

Hazard Analysis Process for the DoD and NASA programs differed, the following

concepts are common to both.

Hazard analysis is a top-down approach to system safety analysis. A hazard is

any real or potential condition that can cause: injury, illness, or death to personnel;

damage to or loss of a system, equipment, or property; or damage to the environment.

An example of a hazard might be “Avionics on-board computer hardware failure

leads to loss of mission.” A hazard is accompanied by a list of systems, elements and

subsystems that cause or are affected by the hazard, a detailed description of the

hazardous condition, and information regarding the likelihood of the hazardous

condition occurring.

Hazards analyses focuses on the identification of several important properties:

• Causes – The root or symptomatic reason for the occurrence of the hazardous

condition;

• Controls – An attribute of the design or operational constraint of the

hardware/or software that prevents the cause from occuring or reduces the

residual risk to an acceptable level;

• Verifications – A method for assuring that the hazard control has been

implemented and is adequate through test, analysis, inspection, simulation

or demonstration.

Figure 1 illustrates the conceptual organization of a hazard. Each hazard (e.g.,

engine failure) has one or more causes (e.g., failure with fuel line, software turns off

engine). Each cause has one or more controls that reduce the likelihood that a cause

will occur or mitigates the impact should the cause be realized. Controls often

represent new requirements for the system (e.g., backup computers to account for

software failures, redundant hardware). Each control has one or more verifications

(e.g. test, inspection, simulation or demonstration) to ensure that the control is

appropriately implemented.

Figure 1. Hazard Structure

It is important to note that, in the DoD and NASA case studies, software is never

a hazard; hazards all represent physical events that may harm the mission.

Component failure (e.g., degraded thruster performance) or external events (e.g.,

hitting space debris, impact of weather, cosmic ray impact) may impact a mission,

but software itself is not a hazard. However, software, as well as human error or

component failure, can certainly cause a hazard (e.g., the software shutting a fuel

valve at the incorrect time).

In the both the DoD and Constellation programs case studies, all hazards and

their associated causes, controls and verifications are stored in a database called the

Hazard Tracking System (HTS). Each such hazard is stored as a Hazard Report

(HR) in the HTS. These process artifacts are rich in safety information and provide

insight into areas of technical risk. They are also evidence of how the hazard

analysis process is applied on the different projects.

Appendix B – PRA TEMPLATES

Step 1: Identify insight areas

Inputs

• The property you want to measure

• The processes associated with achieving that

property

• The intermediate outputs of each step for each

process

Outputs

• The set of process outputs or artifacts that

should give us the most information about the

effectiveness of the process for achieving the

property, including:

• The format of the output

• Rationale as to how these outputs are of value

for identifying the risk of non-conformance or

evaluating the effectiveness of the process

Activities or Questions to ask

• What are the process outputs created during application of the process?

• What kind of information does each output provide?

• How does that information grow or change over time?

• Can I use this information to gain insight into whether the process is being performed

appropriately and if the process is achieving its goals?

• Is it feasible to analyze the insight area given the current timing during the project? What is the cost

of analysis?

Step 2: Identify measurement opportunities

Inputs

• Process outputs/artifacts identified in step one

Outputs

• Potential metrics based on process

outputs/artifacts

Activities or Questions to ask

• What can I measure that will provide insight into process conformance?

• What can I measure to determine if the desired product property (e.g. safety, performance) is being

achieved?

• What can I measure to evaluate if the process is sufficient for achieving the desired property?

• Can we identify potential bounds that provide insight for our goals? What is good or bad?

Step 3: Develop readiness assessment questions

Inputs

• Proposed measurement opportunities and the

associated risks they measure

Outputs

• Advice on how the intermediate outputs and

metrics can be used to identify process risk

• A high-level assessment of process

conformance risk, i.e. are the processes

producing meaningful outputs?

Activities or Questions to ask

• Examine the process artifacts and try to apply the proposed metrics. Can I apply the metric?

o Is the information accessible and available?

o Is the information in good enough form that it can be measured?

o Is the information complete?

• If I can apply a metric, then it will be a candidate for future measurement.

• If I cannot apply a metric, why not?

o Why is the information inaccessible?

o Why is the information in such a poor state?

o Why is the information incomplete?

Step 4: Define goals, questions and metrics

Inputs

• A set of proposed metrics that have passed the

readiness assessment check

Outputs

• A GQM structure with specific goals,

questions and metrics

Activities or Questions to ask

• Apply the GQM method to derive a goal template, the questions, and what measures are needed.

o What is the object of study?

o What is the specific focus of the measure?

o What is the purpose of the measure?

o Who is the person who needs to make a decision about the results of this measure?

o What are the context variables that might influence the interpretation of the results?

o Given the goals and questions, what are the metrics?

Step 5: Develop interpretation models and define threshold values

Inputs

• A set of goals, questions and metrics to be

collected

Outputs

• A set of models that provides indication that

there may be a risk

Activities or Questions to ask

• Define a set of measures and interpretation models for those metrics, based upon what data is

available or can be assumed, to provide indicators that there is a risk that the process is not being

followed and the product is at risk of not satisfying the particular property.

o What is the expected value of that metric and possible margin of error, i.e. what is the

range of values that would be acceptable?

o Do historical data exist for any of the metrics?

o Are there proxies for the bounds on these metrics?

o Can we gather any expert opinion on the bounds?

Step 6: Propose responses to identified risks

Inputs

• Metrics and an interpretation model

• Data from intermediate project artifacts

Outputs

• Advice on what the project should do if we are

outside the acceptable bounds and there is a

risk

Activities or Questions to ask

• Provide expert safety engineer advice on what to do under the circumstances

APPENDIX C – DOD AND NASA SATELLITE PROJECT DESCRIPTIONS

DoD Program

The DoD system was a large, network-centric system of systems with a potentially

large number of software safety risks that safety engineers needed to track and

verify before the system was deployed [Basili et al. 2008]. In this system, software

was critical in assuring the safety of DoD personnel6. The development process was

expected to follow the traditional Defense Acquisition V-Model and the safety process

[MIL-STD-882]. Because of the cost and complexity of developing this system, safety

risk management was integrated throughout the lifecycle, since design and

architecture changes late in development would be prohibitively expensive. Our goal

was to develop an approach that provided the software safety engineer with early

warning signs of safety problems throughout development by tracking process

conformance across the multitudes of subsystem development.

We applied the PRA early in the DoD program’s lifecycle, when only

requirements, preliminary designs, and the safety processes were available to help

gauge software safety risk. We applied all of the steps of the PRA before we had the

opportunity to look at the data. As a result of this application of PRA, we modified

the PRA to be an iterative process where steps 1-3 were performed (sometimes

repeatedly) prior to steps 4-6.

As in the Constellation program, the DoD program development process included

hazard analysis for system safety. A program-wide hazard tracking system was also

in place, which was used as the basis of data for the PRA. However, in asking the

readiness assessment questions, we found that the HTS contained little data. The

HTS was viewed as a storage repository rather than an analysis tool by the engineers

6 We are legally unable to provide a more informative description of the system.

– something to be used as a library after the fact rather than a tool to support safety

understanding. Consequently, very little useful hazard information was available.

Hazard data was unavailable, difficult to extract because of a multitude of formats,

and no automated syntactic analysis of the data was available. There was insufficient

information to identify a sample set software hazards or requirements for more

detailed semantic analysis as the HTS and requirements management systems did

not distinguish between software and non-software hazards and requirements. The

entire collection of hazards and requirements was simply growing too large (already

several hundred hazards) for us to perform our analysis given our available

resources.

NASA satellite project

The NASA satellite is a joint project that partners with other international space

agencies. Because satellites are unmanned, the safety risks are considerably fewer

in number than on a manned mission such as Constellation. In addition, the launch

of an unmanned earth satellite is a relatively mature technology that is well

understood. Most of the safety risks occur during the pre-launch and launch phases,

when explosions, structural collapses or the release of toxic fuels can potentially

endanger the lives of workers on the ground. In this satellite, most of the software

safety risks concerned the flight computer’s involvement in controlling propulsion

and in activating onboard instruments.

We applied the PRA method to the hazard analysis process during Phase II of

development where the system design is reviewed and approved so that fabrication

can proceed. These hazards differed from Constellation in that they were more

mature and provided more clear descriptions of hazard controls. The satellite had 23

hazard reports, 5 of which were software-related. Each of the five software-related

hazards had one software cause. We identified 12 non-software causes that

contained software controls. In the five software-related hazard reports, 17% of the

causes were software causes, but 57% of all causes were software-related (having a

software control).

Acknowledgements

This research was supported by NASA OSMA SARP grant NNX08AZ60G to the Fraunhofer CESE. We

would like to acknowledge the help of Frank Marotta at the US Army Aberdeen Test Center during the

DoD case study and Karen Fisher and Risha George at NASA Goddard Space Flight Center for providing

us support and access to people and artifacts of the Constellation and NASA satellite programs.

REFERENCES

BASILI, V. R., AND WEISS, D. 1984. A Methodology for Collecting Valid Software Engineering Data,

IEEE Trans. on Soft. Eng. SE-10, 6, 728–738.

BASILI, V. R., AND SELBY, R. W. 1987. Comparing the Effectiveness of Software Testing Strategies,

IEEE Transactions on Software Engineering 13, 12, 1278–1296.

BASILI, V. R., AND ROMBACH, H. D., 1988. The TAME Project: Towards Improvement-Oriented

Software Environments, IEEE Trans. on Soft. Eng. 14, 6, 758–773.

BASILI, V. R., DANGLE, K., ESKER, L., MAROTTA, F., AND RUS, I., 2008. Measures and Risk

Indicators for Early Insight Into Software Safety, CrossTalk: The Journal of Defense Software

Engineering, 21, 10, 4-8.

CHRISSIS, M. B., KONRAD, M., SHRUM, S., 2003. CMMI(R): Guidelines for Process Integration and

Product Improvement (2nd Edition), Addison-Wesley Professional, Boston, MA.

DEPARTMENT OF DEFENSE, 2000. Standard Practice for System Safety, MIL-STD-882.

DEHLINGER, J., AND LUTZ, R., 2004. Software fault tree analysis for product lines, 8th IEEE Int’l Sym.

on High Assurance Systems Engineering (HASE'04), Tampa, FL, 12-21.

FEDERAL AVIATION ADMINISTRATION, 2008. System Safety Handbook.

http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/.

KRISHNAN, M. S., AND KELLNER, M. I., 1999, Measuring process consistency: implications for reducing

software defects, IEEE Trans. on Soft. Eng. 25, 6, 800-815.

LAYMAN, L., BASILI, V. R., ZELKOWITZ, M. V., AND FISHER, K. L. 2011. A Case Study of Measuring

Process Risk for Early Insights into Software Safety, Proc. of the 33rd Int’l. Conf. on Software

Engineering, Honolulu, HI, 623-632.

LEVESON, N.G., AND TURNER C. S., 1993. An investigation of the Therac-25 accidents, IEEE

Computer¸ 26, 7, 18-41.

LUTZ, R. R. AND SHAW, H-Y., 1999, Applying Adaptive Safety Analysis Techniques, Int’l. Symp. on

Software Reliability Engineering, Boca Raton FL, 42.

MAIER, T. 1995. FMEA and FTA to Support Safe Design of Embedded Software in Safety-Critical

Systems, CSR 12th Annual Workshop on Safety and Reliability of Software Based Systems, Bruges,

Belgium.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 2004. NASA Software Safety Guidebook,

NASA-GB-8719.13.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 2004. NASA Software Safety Standard,

NASA-STD-8719.13B.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 2004. Software Assurance Standard,

NASA-STD-8739.8.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 2007, NASA Space Flight Program and

Project Management Requirements, NPR 7120.5D.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 2009. Constellation Program Hazard

Analyses Methodology, CXP-70038, Revision B.

NUSEIBEH, B., 1997. Ariane 5: Who Dunnit?, IEEE Software¸14, 3, 15-16.

PARDO, C., PINO, F. J., GARCIA, F., AND PIATTINI, M., 2011. Harmonizing assurance processes and

product characteristics, IEEE Computer, 44, 6, 94-96.

