 TECHNICAL REPORT TR-1310 August 1983
: AFOSR-F49620-80-C~001

SYSTEM STRUCTURE ANALYSIS:
CLUSTERING WITH DATA BINDINGS*

‘David H. Hutchens
Victor R. Basili

Department of Computer Science
University of Maryland
College Park, MD 20742

#This work was supported inp part by the Air Force Office

-of Scientific Research Contract AFQSR-F49620-80~C-001 to the

- University of Maryland. Computer support was provided -in part
by the Computer Science Center at the University of Maryland.

Abstract

This paper examines the use of‘cluster analysis as a
tool for Sygtem modularization. Several clustering tech-
niques are discussed and used on two medium-zize systems and
a group of small projects. The small projects are presented
because they provide examples (that will fit inte a paper)
of certain types of phenomena. Data bindings between the
routines of the aystem provide the basis for the bindings.
It appears that the clustering of data bindings provides a

meaningful view of system modularization.

1. Introduction

An aspect of complexity that has long been recognized,
but seldom measured, is the cbmplexity associaﬁed with sys-
tem modularization, i.e. the grouping of procedures into
modules within the system. It has been argued by many
(Myers 78, Yourdon 75] that system modules should have amall
interfaces (parameters and shared data) and that the inter-
nal components of the modules should he strongly connected.
It has also been suggested that modules should be developed
so that a fault is contained within a small module. Faults
might be usea as a means of determiﬁiﬁg if modularization
techniques have placed together those procedures that are

often sharing faults.

The analysis of the interfaces between the small c¢om-
ponents of the system can be used to determine the modulari-
zation that those interfaces define. This analysis 1is
called clustering, and the modules so defined will be
referred to as clusters. Armed with this knowledge, one
might ask questions about how elosely the current modulari-
zation (as desdribed in the documentation) corresponds with
the modularization defined by the clustering. One might
also consider the strength and coupling of the modulariza-
tion of the system defined by the elustering. The informa-
tion gained from this work should be of interest to
designers and maintainers. It may alsoc be used to cbtain a

modularization of a system that has no (or little) existing

high level documentation, giving maintainers a handle on the

structure of the system.

The <¢loser that the objectively defined modules
correspond to the modules defined by the developer, the
better one should feel about the design. However, it is
unlikely that fthe two views of the system will correspond
exactly. Something can be learned about a system from the
differences. It may also be possibhble to derive some basic
measurements of the quality of the modularity from. the
results of thias analysis. These measures may provide a
means of comparing various design proposals and meonitoring

aystems during maintenance.

Each of these possibilities will be considered in the
following sections. Having sﬁated the research goals, it is
now appropriate to consider the work that has been done by

others and provide the foundations of this work.

2. Background
= 7

Data organization metrics are measures of data use and
visibility. -Several types of data organization metrics
appear in the literature. Some of these are briefly men-
tioned here. Data binding [Basili & Turner 75; Stevens,
Myers & Constantine T74] is an example of a module interac-
tion metric. Span [Elshoff 76) measures the proximity of
references to each data item. As such it qualifies as. a
data organization metrie. Slicing [Weiser 81] can élso be
considered a.data organization metrie. A slice ias that (not
neceszsarily consecutive) portion-of code that is necesséry-
to prodgce some prescribed partial output from the program.
" Fan-In [Henry & Kafura 81] measures the number of procedures
that pass data, Ehrough parameters or globals, into a given
procedure. . FPan-Qut is the number of procedures receiving
data from the given procedure. [Yau & Collofello 80] use
detailed data flow analysis to determine a measure they call

atability.

2.1. Data Bindings

Data bindings will be used in this paper to measure the
interface Dbetween the components of a system. In order to
compare this work with other work that has used data bind-

ings, several levels of data bindings will be defined.

A potential data binding is defined as an ordered tri-

ple (p,x,q) where p and q are procedures and x is a variable

within the static scope of both p and q. Potential data
bindings reflect the Dpossibility of a data interaction
between two components, based upon the locations of p, q,
and x. That 1is, there i3 a possibility that p and q can
communicate via the variable x without changing or moving
the definition of x. Whether or not x is mentioned inside
of p or g is irrelevant in the computation of potential data

bindings.

A used data binding is a potential data binding where p

and g use x for either reference or assignment. The used
data binding requires more work to caleculate than the pdten-
tial data Binding as 1t is necessary to look inside the com-
ponents p and q. It reflects a similarity between p and q

(they both use the variable x).

An actual data binding is defined as a used data bind-

ing where p assigns a value to x and g references x. The
actual data binding is slightly more difficult to calculate
as a distinction between reference and assignment must be
maintained. Thus more memory is required but there is 1lit-
tle difference in computafion time. The actual data binding
only counts those used data bindings where there may be a
flow of information from ©p to g via the variable x. The

possible orders of execution for p and q are not considered.

A control flow data binding is defined as an actual

data binding where there is.a "possibility" of control pass-

ing to ¢ after p has had control. The possibility is based
on a fairly simple control flow analysis of the program. To
be more precise, a poséibility is. said to exiét whenever
either 1) there exists a chain of calls from p to q or vice
versa, or 2) there exists a procedure, r, such that there
are chains of calls from r to p and from r to q and there
exists a path iq the direqted contrel flow graph of r con-
necting the call chain to p with the call chain to q. The
solution to the general problem of allowable control flow
sequences (where allowable means there exists data which
ﬁill cause the sequence to be followed) is known to Dbe
uncomputable. However, one miéht improve on this measure by
using techniques of data flow analysis to prove more paths
Iimpossible and thereby remove'moré data bindings. It Seems
unlikely that this added effort will yield enough improve-
ment to justify the effort. This binding requires consider-
ably more computation effort than actual data bindings
because statiec data flow analysis must be performed. Note
that a control flow data binding of the form (p,x,q) may
exist even though q can never execute afterpr p {(because of

the dynamic properties of the program).

As an example consider the following portions of code.

The parameter of the call is assumed to be ecall by value.

INT a,b,c,d

PROC p1
/% yuses a,b */
/% assigns a %/
CALL p2

PROC p2
/% uses a,b ¥/
/% assigns b ®*/

CALL p3 (x)
CALL pb
PROC p3 (int e)
/% uses c,d,e */
/* agsigns ¢ %/
PROC pB

/* uses c,d ¥/
/% assigns d %/

START pi1
In this example, the potential data bindings are:

(p1,a,p2),(p1,a,p3),(p1,a,p4),
(p2,a,p1),(p2,a,p3),(p2,a,pH4),
{(p3,a,p1),(p3,2,p2),(p3,a,pl),
{(p4,a,p1),(p4,a,p2),(p4,a,p3),
(p1,b,p2),(p1,b,p3),(p1,b,pu),
(p2,b,p1),{(p2,b,p3),(p2,b,pl),
(p3,b,p1},(p3,b,p2),{p3,b,pH4),
(p,b,p1),(pl,b,p2),(pl,b,p3),
{pl,e,p2),(p1,c,03),(p1,c,pH4),
(p2,e,p1),(p2,c,p3),(p2,c,pk4),
{p3,eyp1),(p3,e,p2),(p3,c,pl),
(pl,c,p1),(pl,c,p2),(pl,c,p3),
(p1,d,p2),(p1,4,p3),(p1,d,p4),
(p2,d,p1),(p2,d,p3),(p2,d,p4),
(p3,d,p1),(p3,d,p2),(p3,d,p4),
(pt#,d,p1),(pl,d,p2),(p4,d,p3),
(p1,e,p3),(p2,e,p3),(pl,e,p3)

However, .the used data bindings are only:

(plya,p2),(p2,a,p1),(pt,b,p2),(p2,b,p1),
(D3ycapn)’(D”,C,D3),(P3,d,pu),(p“,d,p3),
(p2,e,p3)

actual data bindings are:
(p1,a,p2),(p2,b,p1),(p3,c,pﬂ),(pﬂ,d,pB),(p2,e,p3)
and control flow data bindings restricts the set to Just:

(p17a!p2),(p27b3p1)3(p3!cspu)’(p2:e3p3)

2.1.1. Using Data Bindings

The [Belady & Evangelisti 82] study applied used data
b;ndings in determining modules for a system. Based on the
study of an IBM operating system, they éongluded that cer-
£ain metrics of modularity could be derived from clustering.
They used a technique that gave a flat (non-hierarcﬁic) par-

titioning of the components of the system into modules.

The use of data bindings to determine the appropriate
modularization has its drawbacks. A module that hides a
data structure is easily found by a data bindings modulari-
zation technique. However, a module that defines an
abstract data type and has no local data that is shared
among _the operations on the type will not be located using
this method. The reason is fhat there. is no direct data
binding between the operations of the module. All of the
in;eractions are indireect through the procedures that use

the abstraction. Hence there are relatively few data

bindings between them, and they do not tend %to cluster.

It would =seem that the abstract data type modules need
a different measure of connectivity. However, only explicit
syntax such as the package of Ada (TM) f[Ada 82] or the
module of MODULA [Wirth 77] allow abstract data types to be
automatically recognized as utility funetions and removed
from the analysis. Except ag noted for specific utility

routines, this issue will be ignored in the rest of this

" thesis.

2.2. Definition of Clustering

Since the components will be grouped based on the
strength of their relationships with each other, a reason-

able starting point is mathematical taxonomy, often referred

to as clustering. The idea has been used [Belady & Evangel-

isti 82] to- partition a large system into subsystems. This
gection will give a formal definition of a hierarchicec e¢lus-
ter method based on the one presented in [Jardine & Sibson

71].

A dissimilarity matrix, d, for an ordered set P of n

elements is defined to be an nxn matrix such that

1) d{a,b) > 0
2) d(a,b) = d(b,a)
3) d(a,a) = 0

for all a,b 1<a<n, 1<{b<n. That is, d 1is a non-negative,

‘real, symmetric matrix with zeros on the main diagonal.

D is defined to be a dendrogram gver P if

1) D : [0,infinity) =-> E(P)

2) 0<x<y => D(x) < D(y) ,

3) there exists x>0 such that D(x) = P cross P

4) given x>0 there exists y>0 such that D(x+y) = D(x).
where E(P) is the set of equivalence relations on P. That
is, 1) given any non-negative real number x (a level), D
yields an egquivalence relation. The clusters defined for
level x are the equivalence partitions of P defined by D(x).
Furthermore 2), given level y > X, each cluster at level x
iz contained in some c¢luster at level V. Also 3), there
exists some level at which all of P is in a single c¢luster.
Lastly 4), is just a uniqueness technicality to handle the

ambiguity 'at those levels where D is discontinuous. Hence a

dendrogram might be pictured as follows:

This dendrogram shows (a), (b,¢) and (d,e) forming clusters
at level 5, (a,b,c) and (d,e) at level 10, and all collaps-

ing together at level 20.

A dendrogram may be represented as a tree where the
branches of the tree are the clusters with associated ievels

and the leaves are the elements of P. The tree for the

above dendrogram might be given in LISP-like notation as

(20 (10 2 (5 b ¢)) (5 d e)).

A hierarchiec cluster method is a function from the set

of dissimilarity matrices to the set of dendrograms over an
~ordered set P. The basic algorithms that will be used to

implement the c¢luster methods are agglomerative, or bottom

up. They iteratively create larger and larger groups, until
the elements have cocalesced into a single c¢luster. The ele-
ments chosen for grouping are the ones with the smallest
dissimilarity. Given an algorithm, =2 c¢luster method is
determined, although thé converse 1is not true. Algorithms
are intrbduced here because they provide a reasonable way of

specifying the cluster methods.

The character of the individual algorithms is deter-
mined by the method used-to éompute the new dissimilarity
matrix at each iteration. The dissimilafity between two
elements should not change during an iteration. However, at
gach iteration some elements are replaced by a single ele-
ment representing a newly formed clugter. It is the dis-
similarity between the newly formed clusters and the other
eiements (including other newly formed clusters) that must

"be specified.

The eclassical algorithms include "single-link" which

takes the. smallest dissimilarity between the elements of

each pair of newly formed clusters as the new dissimilarity
coefficient between tﬁe them. This gives clusters whose
elements are connected at the given level. Another algo-
rithm uses the largest dissimilarity between the elements as
the new coefficient and gives clusters that are completely
connected at the given level. (Strictly speaking, the clus-
ters are completely connected only if all of the elements
that combine inte a single cluster during one iteration are
pairwise related by the same dissimilarity.) Other well
known algorithms wuse the average dissimilarity or the

welghted average dissimilarity as the new coefficient.

2.3. Data Sources

The [Software Engineeriné‘Laboratory 82] (S8SEL) data was
collected during the development of p}oduction software for
the NASA Goddard Space Flight Center. The systems used in
this work are ground-support systems for satellites and were
written in FORTRAN by Computer Sciences Corporation. The
developers have a large amount Qf eXxperience in building
this type of systenm. Both the users and the developers feel

that the overall system designs are fairly good.

Data concerning effort, errors, methods, re-used code,
and other relevant information has been collected for
several projects. Most of the data is supplied by the
developer on forms prepared for use by the SEL. These forms

are normally filled out by the programmer or manager most .

- 11 -

closely involved with the subject of the form as the
knowledge required becomes available. The data has bheen

used to investigate many aspects of system development.

3. A Modularity Study

A technique will be presented that automatically pro-
dﬁces a hierarchic module decomposition for a system. The
technique is based on data bindings and clustering algo-
rithms. There are several choices to be made in deﬁermining
the best technique for this application. Some reasonable
choices are presented and analyzed. The techniques are then

used on some sample systems and the results are given.

3.1 Specialized Clustering Techniques

The use of data bindings to determine dissimilarity
requires that we abstract the data to give a symmetric
‘matrix. Let b(i,3) be the number of control flow data bind-
ings of the form (i,x,j) or (j,x,i) for some program vari-
aﬁle X A dissimilarity matrix may be computed from the

binding matrix, b, in sesveral ways.

3.1.1. Recomputed Bindings

One way was chosen that captures the intuitive notion
that if a component of the system is entirely connected to
just one other component, that conneection should be computed
as a lower dissimilarity than any connection that iz not
complete. It is based on the percentage of the bindings
that connect to either of the two components and are shared
by the two components. That is, let p be the dissimilarity

matrix defined by

tsumi + sumj - 2 b{i,j))

(sumi + sumj - b(i,3))

where sumi is the number of data bindings in which i occurs
and sumj is the number of data bindings in which J occurs.

Since
sumi + sumj - b(i,)

is the number of data bindings in which either i or j occur

and
sumi + sumj - 2 b(i,J)

is the number of data bindings in whiech either i or j occur
but * not both, pf(i,jJ) is the probability that a.randgm data
binding chosen from the union of all bindings associated
with i or 3 is not in the intersection of all bindings asso-
ciaﬁed with 1 and j. Note that if components i and j Thave

no external connections then
sumi = sumj = b(i,j)

and p(i,j)=0. Note also that if 1 and j share no common

data then b(i,j)=0 and p(i,j)=1.

For an example, consider the program in section 2.%4.1

with the actual bindings:
(pT,a,pZ),(p2,b,p1‘),(p3,c,pu),(pu,d,p3),(p2,e,p3).
A binding matrix can be. computed such that the (i,j)th entry

- 11 -

is the number of data bindings between the ith and the jth

procedures giving

. p1 p2 p3 pi
p1 0 2 0 0©
p2 2 0 1 0
p3 0 1 0o 2
pt 0 0o 2 o.

Then the dissimilarity matrix computed as ocutlined above is

p1 p2 p3 pk4
p1 0 173 1 1
p2 1/3 O 4s/5 1
p3 1 U4s5 0 1/3
p4 1 1T 1/3 0.

Another degree of freedom in clustering is the choice
“of the algofithm. While any of the previousiy presented
algorithms might be used, they do not correspond to the
intuitive notion that the dissimilarity between two clusters
should be directly related to the number of data bindings
that cross the Soundary. To achieve this property, a new
dissimilarity matrix is computed from the bindings matrix at
each iteration in the clustering process. This, however,
introduces another problem. Each of the algorithms stated
earlier has the property that if the elements with least
dissimilarity are merged (into perhaps several clusters) at
one iterétion, then the next dissimilérity matrix will have
entries that are all greater than the least non-diagonal
entry of the last matrix. If the dissimilarity matrix is

recomputed at each iteration based on the bindings matrix,

it 1is possible that the new matrix will contain values that
are smaller than any that existed in the last matrix. The

resulting trge from this new approach is not a dendrogram.

As an example, start with the following binding matrix

for the elements (4,B,C):

AV)
w O -
O W N

That is, there are three procedures, A, B, and C, with 1
data binding between A and B, 2 between A and C, and 3
between B and C. This produces the dissimilarity matrix:
0 5/6 u4/6
5/6 0 3/6
476 3/6 0.
Joining B and C into a cluster produces a new binding

matrix:

W oD
QW
.

The new dissimilarity matrix is:

oo
o C

cauging (B C) to be united with {A) at level 0 to get the

tree:

(0 &4 (172 B C))

which is clearly not a dendrogram (since the level of a node

must be greater than the level of a saon and 0<1/2).

The tree can be converted to a dendrégram in a2 natural
way. If it i3 assumed thgt any cluster that was created
with a lower value than its son was really included in the
same cluster {(at the same level) as its son, the tree can be

collapsed into a dendrogram.

The above example would thus give the 3imple dendrogram

described by:

(172 A B C).

The dendrogram obtained from fhe latter approach has
‘many good properties. Each cluster is based on the bindings
to the other clusters regardless of how late in the cluster-
ing process it was formed, This method will be called

Recomputed Binding Clustering.

3.1.2. Expected Bindings

A problem with the proposed clustering method is that
the 1levels are somewhat incomparable. That is, at a point
in the algorithm where there are a large number of elements
(e.g. 50) there is less likelihood that two components will
have a very large percentage of their total bindings occur
between them than when there are few elements (e.g. 3). It

seems reasonable to attempt to weight the binding levels

- 17 -

relative to the total number of elements under consideration
in a given iteration. In particular, if there are n ele-
ments under consideration and there are k bindings . inveolving
elther element i or element j, one would expect k/(n-1) of
the bindings to be between 1 and j were the bindings to be
distributed in a uniformly random way. Hence those with
exactly &/(n-1) interconnections should have a similar level
whether n=5% or n=2%0. One might therefore compute the new

dissimilarity as
d(i,j) = (k/(n=-1))/bind(i,j)

for each i not equal to j at each iteration. ‘This method

will be referred to as Expected Binding Clustering.

Consider the example of the % procedures P1, P2, P3,
and P4 from the introduction. If we take the used data

‘bindings, the binding matrix is

P1 P2 P3 P4
PT 0 2 0 O
p2 2 0 1 0O
P3 0 1 0 2
PY¥ 0o 0o 2 0.

This gives the dissimilarity matrix of

P1 P2 P3 Pk
P1 o 1/2 I I
P2 1/2 0 5/3 I
P3 £ 5/3 0-1/2
P4 I I 172 0.

where-I is infinity. The first iteration c¢ombines (P1,P2)

and (P3,Pl4) at level 1/2 giving the new binding matrix

- O
[Y
.

The new dissimilarity matrix happens to be the same as the

binding matrix and we get the Expected Binding dendrogram
(1 (1/2 P1 P2) (1/2 P3 P4)).

This dendrogram is intuitively satisfying as P1 and P2 gseem
to be closely bound and P3 and P4 seem to be ¢losely hound.
Note that if we use the control flow data bindings P3 and P4
no longer seem so c¢losely bound. Computing the Expected

Binding dendrogram for these bindings yields
(1 P3 P4 (1/2 P1 P2))
reflecting the reduced cohesion between P3 and PL.

3.2. System Fingerprints

The clusters that are derived from a system are analo-
gouszs to a star systenm. That is, there may be several small
subsystems that revolve around the main subsysten. This
analogy leads to the naming of some various types of system

fingerprints,

Each of these fingerprints will be illustrated by a
program chosen from the group of élass projects used by the
[Basili & Reiter 81] study. These programs implement a

small language on a stack based machine, simulated for the

- 19 -

students by the 3 procedures POP, PUSH, and INTERP. Not
surprisingly, these 3 procedures tend to cluster quickly.
Contrdl-flow data bindings were computed for these projects

and form the basis for the analysis.

Indentation will take the place of parentheses in the

examples. That is, the dendrogram

(8 A (5 B C))

will be given as

Planetary systems are those that have several subsys-
" tems that are coﬁnected to form the whole system. These
systems may (thbugh not necessarily) have a larger subsystem

that acts as the core of the systenm.

As an example, the following is an Expected Binding

Cluster of one of the 19 compiler projects.

b6 COMMENT ASIMPID BACKUP
54 HASH ALLOCATERETURN DUMPSYMBOLS FINDIT
LOOKUP ALLOCATESEGMENT ALLOCATEARG ADDRESS
27 ACONST
24 AARRID AID :
19 AFUNCID ASCAN ARPAREN AEVALEXP
EXPRESSION ALPAREN AFLUSH APRODCODE
ASTACKOPR ADQIFLUSH
45
42 DCL CODEGEN SEGMENT
7 POP INTERP PUSH
41 PROGRAM
32 STMT CONSTGEN
13 NEXTCHAR SCAN NEXTSYMB SPECTALCHAR
IDENTIFIER CONSTANT

Notice how the clusters tend teo form distinet parts of the
compiler. The group at the bottom (at level 13) is the
scanner. The group a few lines above it (at level 7) is the
interpreter. An interesting group 1is the large c¢luster
close to the top (ét level 27). This cluster was written by
one of the members of the brogramming team (his name began
with an A). Also notice how all of the routines fall

together when the symbol table routines are added {at level

5”)0

Black Hole systems have no visible planets. The c¢lus-

tering process finds one key subsystem that then absorbs the
rest of the syétem. This'may be a natural phenomenon asso-
ciated with the way the system is built, or it may be a bias
of the clustering scheme. Since the bindings are recomputed
at each iteration in the process, a cluster that has already
been -formed may contain more bindings with other elements
than do small elements. Hence the strongest connection that

exists may be with the already formed and growing Black

- 21 -

Heole. If this happens, the Black Hole may tend to absorb
procedures before their relationships with other parts of

the system are discovered.

The following example is also an Expected Binding Clus-
ter of one of the 19 compiler projects.
100 STMTLIST DCLLIST
87 HEADING ACTUALLIST
86 CODEDUMP INPUTCHAR ASSIGN IFSTMT WHILESTMT
RETURNSTMT READSTMT WRITESTMT EXP LOGICALPROD
RELATION ADDEXP MULTEXP FACTOR
24 POP
16 INTERP PUSH
71 CALLSTMT
65 SCANNER
55 PROGRAM :
53 ACTUAL VARIABLE PRIMARY
46 SEGMENTLIST FORMALPARM

41 SEARCHSYMTAB SYMTABDUMP
36 ARRAYDCLLIST IDLIST

The symbol table routines, SEARCHSYMTAB, SYMTABDUMP, ARRAYD-
CLLIST, and IDLIST, seem to dominate this preogram in a dif-
ferent way from the previous one. Here they are the gquick-
est tc cluster and then they form a nucleus about which
everything else revolves. Tt would seem that this group was
less effective in isolating the symbol table from the other
routines. One might guess, just from the appearance of the
clusters, that many of the routines in this program have
intimate knowledge of the structure of the symbol table.
This is most clearly true of ARRAYDCLLIST and IDLIST which

build entries directly in the table.

- 22 =

Gas Cloud systems are those that show no tendency to
cluster. These systems are possibly poorly designed as
there is no strength to the modules and a large degree of
coupling Dbetween them. None of the compilers provide a
clear exXample of this type of system. However, the follow-
ing dendrogram has some of the properties.

87 MAIN ASSIGNMENT SEGRETURN STATEMENT IO EXPRESSION
PROGRAM WHILESTMT IFSTMT LOAD JUMP PARSE INITIALIZE
ggcgggATION SEGMENT SEARCH SEGCALL PRIMARY

73 INTERP PUSH
83 SCAN NUMBER IDENTIFIER GETNEXTNONBLANK

This dendrogram iz a recomputed binding clustering of
‘one of the compiler projects. Note that the majority of thé
procedures fall'together at one level. While this systeﬁ
does show modularity with the scanner and interpretef, the

rest of the system does not display much modularity.

3.3. Using Weighted Clustering

If the Black Hole Syndrome is caused by the c¢lustering
method, a reasonable approach to cor;ect its bias is chang-
ing the weighting of the bindings when producing the dis-
similarity matrix for the next iteration. The weighting
would cause bindings to large clusters to be discounted
8lightly to allow the planets to form. This could bé done
by replacing each oocurrénce of b(i,3) in the equation that
computes the dissimilarity matrix with b{i,j)*w(i,3) where

w(i,j) depends on the size of element i and element Je

- 23 -

3.4, Measurements

Several measurements can be taken on the clustered sys-
tem. The more obvious ones include the number and sizes of
the clusters. Other interesting measurements that may be
taken from the dendrogram are the strength and coupling lev-
ela of the clusters. These are available from the levels at
which the elusters form. If several clusters form at level
.76 and then collapse into a single ecluster at level .87
then 1t may be said that they have a strength of .76 and a
coupling of .87. For éxampie, note how the preceding com-
piler examples have a module of the interpreter {(containing
PQOP, PUSH and INTERP) that has a low degree of coupling and
a high degree of strength. The numbers juét given are from
the last example. Note also that even‘ though the inter;
preter module is essentially the same in all of the'pro-
jects, the measurements are quite different. This type of
analysis appéars to be sensitive to the environment of the
moedule. The values of these measures may have more meaning
if they are viewed for a single system as it changes over

time.

The stability of the system with respect to data
interactions c¢an be examined by evaluating the changes in
the dehdrograms as data bindings are added or removed from
.the bvinding matrix. In faet, whole procedures could be
removed from the analysis to see what the system structure

is without them.. This may be-particularly-useful-if'partsv

- 24 -

of the system are built as virtual machines, utility func-
tions, or data abstractions. A particular layer of the sys-
fem could then be examined while assuming all of the lower
layers act as primitives. This approach is best taken by
removing the lower layers of the system and treating calls
to them as references and definitions of the global vari-

ables that they use.

3.5. Case Studies

The clustering techniques presented have been applied
to two medium size systems thét are part of the [Software
Engineering Laboratory 82] data collection effort. The sys-
tems consist of approximately 100,000 and 64,000 lines of
FORTRAN source code, including comments. The larger one was
designed as two distinct load modules, one of which has two
distinet functions which are not used together in a single
execution. Thus there are essentially three programs to
analyze. The three programs were not independent, however,
as they contained several coemmon subsystems. The actual
data bindings between the routines were computed for each.bf
the two systems and used as the basis for the clustering.

Actual data bihdings were used because they are much cheaper

to calculate than control flow data bindings.

Several routines that were designated as wutility rou-
tines were removed from the analysis as described in the

‘preceding section. This removal was helpful in determining

the true relationships among the remaining routines.
Without the removal of the utility routines, they provided a
second order relationship between the routines that called
them. For example, there was a user-written utility routine
that converted one form of date to another. When two very
different routines both called this date routine, a two step
path was ereated between them (e.g. (p,x,date) and
(q,x,date) are data bindings where p and q each call date
with parameter x}. Even though there was no actual data
relationship between them, they were pulled together in the
clustering algorithm. After removal of the utility routine,
their direct relationship emerged. The location and removal
of utility routines is not automatable. However, these rou-
tines tend to ﬁe ones that do all of their communication via,
parameters and return vélues and are called by more than one
other routine. Hence it is possible to automate part of the

search for these routines.

The second‘project, while smaller than the first, 1is
not broken into independent portions so i1t actually provides
a larger example. The seéond project also has more errors
which involve multiple modules s0 it is better suited for

some of the analysis which follows.

3+5+.1. Finding Functional Clusters

One of the goals of the study was to determine if any

of the methods were able to piek out logical modules - in the

- 26 -

software. The system was designed as several subsystems,
and these subsystems were further refined with the ma jor
emphasis of design placed on functionality. If the cluster-
ing approach is to be useful, the modularization given by
the clustering techniques should be similar to the develop-
ers’ subsystems. There was a close correspondence between
the two views of the system. This may be seen by the den-
drogram of the smaller system in the Appendix. The two cap-
ital letters preceding each of the FORTRAN procedure names
designates the subsystem in which the designers placed the

routine.

An interesting note can be made about the places where
the cluster and the sub;ystem designation differ. In a talk
Wwith one of the developers, it became clear that these
differences occurred with rouﬁiﬁes which operated on data
which was different from that used by the rest of the rou-
tines in the subsystenm. From this it may be concluded that
there is, in this environment, a strong relationship between
the functionality of routines and the data usage of the rou-
tines. But at the same time, something can be gained by
looking at the system from another viewpoint. That is,
functionality is not the only view of the system. The maine
tainer should also be aware of the data usage that actually
exists. This information is not necessarily contained in
the calling chart documentation even if the documentation is

current.

3.5.2. Error Analysis

The study of errors involving changes to more than one
-routine can yield insights into the effectiveness of the
clustering techniques. The NASA-SElL database contains error
histories for the systems being studied. .For a given clus-~
tering, the errors that involved more than one routine were
attached to the smallest cluster that contained all of the
routines involved (that is, it is attached to the smallest
cluster which covers the error). Thé number of errors
attached to each cluster was multiplied by the number of
routines in the c¢luster and the products summed over the
clusters. The resultant number is an indication of how well
a given technique places all of the routines that were
involved in a given error into a single cluster at a low
level. A low number indicates that many errors were con-

tained in small clusters.

The results of the error study were inconclusive
because the NASA-SEL environment tends to generate a small
number of interface errors and because o¢nly two projects
have been examined. Thé majority of such errors were con-
fined to the developers” subsystems so they tended to be

somewhat localized by the clustering techniques as well.

+5.3. Clustering Technique Compariscn

(W8]

Another goal of this study was to determine if there

was a difference between clusters that are generated by the

- 28 .

- various clustering techniques presented earlier. Based on
these two case studies, it appears that the Expected Binding
Cluster and the Recomputed Binding Clustgr are similar to
each other and better than the other methods tested. Better
here refers to 1) locality of errors and 2} clusters that
capture the developers’ subsystems and pPlace the individual
routines with reasonable siblings at the lower clustering

levels.

The following chart illustrates the differences among
the clustering techniqgues as measured by error*module_size
count. Smaller values indiéate that errors were contained

.in smaller modules.

SL RB EB ' WB

" Large-1 780 571 653 6§05

Large-2 827 571 629 727

Large-3 601H 4635 5172 Bue2

Small 13571 14765 14175 25321
The abbreviations are SL = Single-Link, RB = Recomputed
Binding, EB = Expected Binding, and WB = Weighted Binding.

The weighted binding did not perform well according to this
test. For the large system recomputed binding seems to have
been superior, but for the small system single 1link did
better. It must be remembered that Large-1, Large-2, and
Large-3 contain portions of common code 30 there are not

four independent observations in these results.

4. Conclusions

Several clustering methods have been presented and
analyzed on some small and medium size programs. It appears
that celustering by data bindings <¢an select the logical

modules of a system.

This study has not produced sufficient evidence to
determine which module generating techniques are best at
reducing the scope (i.e. the size of an encompassing module)
of development errors. All three subsystems of the larger
case study favor the recomputed bindings. technique. How-
ever, the other case study favors the standard shortest link
-method. Further work in this area should focus on -the
selection of the élgorithm. In particular, the algorithms
should be tried on some very large systems to see if they
3till work well. One should be wary of the application of

random cluster methods to this {or any) domain.

The dendrogram=s resulting from the data bindings counts
can provide fingerprints of some basic design decisions. In
particular examples were shown which distinguish between the

use of data hiding versus the global use of data structures.

The case studies show a large degree of correspondence
between the automatically generated module structures and
‘those defined by the developers. The places where these
differ are instructive in the explanation of procedure con-

nectivity.

The value of clustering may be greatest when it is used
on a single system as it evolves over time. 3uch a use
would allow the maintenance personnel to be aware of the
changing relationships among the components of the system.
Clustering may also be used to test the hypothesis that sys-
tem modularity tends to deteriorgte over time. Once the
modules have been determined it is possible to use cluster-
ing to determine measures of the strength and coupling of
the modules. The dendrogram gives a fingerprint or classif-

ication of the systenm.

Several measures have been proposed for evaluating the
automatically derived module hierarchy. These measures have
not been adequately evaluated dug to the lack of a proper

set of data.

There were some inconclusive tests conducted with
respect to modularization. Among these is the question of
which technigue provides the best description of the systems
modularity. Perhaps the choice should depend on whether the
goal is to localize errors, mimic the designer, or compute
measures of sfrength and coupling. Indeed, the question of
how to compute measures of gtrength and c¢oupling is still
unresolved. The use of clustering analysis and data bind-
ings holds promise of providing meaningful pictures of high
level system interactions. One might readily ask if these
pictures are useful to the designer or maintainer of the

software. The answer lies in further research and

- 31 =

experimentation.

Appendix

The following 1s an expected binding dendrogram of the
amall system. The numbers before the parentheses are the
levels defined and discussed in the paper. The two numbers
iﬁside the parentheses are 1) the number of errors for which
this cluster is a minimal cover and 2) the number of subrou-
tines in the cluster.

50(11,246) UAcvtgra TPhex BIbiasin OAopinit
5(13,217) TPinitr8 TPchkmod TPlodipd
42(4,209) TPmbhs TPhaskbhs TPinitil#¥ TPhsksyn TPtimpos
TPerinit TPhexdmp TPhbhs
h1(22,55)
40(3,53) TPspnprd TPoosync TPconadr
1(0,3) TPunhedm TPhedek TPunhedp
39{(0,39) TPgqalchk TPconbhs
31(4,37) TPstore. TPmsaun
30(8,35) TPmnfechk
22(11,34)
7(0,12) TPtpread
2(2,4)
1(0,2) TPrdtelm Ufadlechk
1(0,2) TPdrvadl TPredadl
3{0,7)
2(3,5) TPtrans TPpretrn TPtpinit
1(0,2) TPdsktap TPrevse
1(0,2) UAreader TPnonadl
19(5,22)
18(0,9)
3(0,3) TPpltmsn
2(0,2) TPlodmsn TPunpmsn
5(0,6) TPintvrS§
1(0,2) TPereint TPintvil
2(0,3) TPunpack TPlodhsk TPunphsk
18(45,13)
7(2,11) TPcodsai TPcvtipd TPhsun
TPevthsk TPtppoce
b(2,4)
0(0,2) TPtpfnal TPtpwrsm
3(0,2) TPdrivtp TPtpdisp
5(0,2) TPevtmsn TPtpipd -
3(0,2) TPpoecbld TPsungmt

- 32 -

7(0,2) TPchktim TPmilsec
2(0,6) TPprered
1(0,5) TPmxmnid4 TPnomint TPnormil4 TPnormrS8
TPmxmnr8
7(0,2) TPdebug TPplthsk
34(2,146) UAcurtim DAadjin
22(0,144) DCgstat?
21(2,143) DAadtape
18(8,142) OCplotin
13(6,141) BIbset BIbprint BIbrecur BIbinit
BIbobsp BIbstate BIbdisp Bibfprt
DAnadang OAdtchek
12(0,118) OAeph DRstatus BIbupdat
4(7,32) DRreport
3(1,31) AZchkgap AZgapfil AZrdhdrs
AZazcomp AZrecur AZsumary
AZeXpwrt AZallpts AZazlist
2(0,2) AZpresmo AZextend
2(0,3) AZazdriv AZazview AZoveral
1(0,2) AZreadat AZpadgap
2(0,9) AZazrate
1(0,8) AZredriv TPreinit AZobsmod
AZrefilt AZabinit AZabdriwv
AZabfilt AZsmooth
1(0,4) AZazmuth AZhsaz AZsunaz
AZprovec
1(0,2) AZinitop AZmemnam
11(19,81)
2(1,6) OCocobs OCocprnt OCocstat
1{0,3) OCplotoc OCzeroxo OCocpre
8(1,38) OAattdt3 OAattdtld Qhattone
OAunc1 QAconel OAcones
7(0,7) OAunccon
3(0,4) OArocots2 OAunc? DAattdt?
DAattdtb
2(0,2) 0OAattdet OAattdt?
7(0,2) OAroots1 OAattdts
5(0,7) DCdedriv
2(1,6) DCdecinpt
1(0,5) DCdcangl DCldihor DClddih
DCldcone DClddual
7(0,16) OAsindis
4(0,15) OAocawrit
3(0,6) OAocasys Olfuarfix
2(0,4) OAcasmon
1{0,3) OAblkavg OAspnavg
OAchoose
1(0,6) OAdisplt OAfillZ2 QAfillup
0Afill1 OAfcotnt OlAcbag92i
0(0,2) OAoaplot QAocaplt?

7(7,37) DAephem DAinitef DAwrtazm
DAwrtoab DAdaint DAadjust
1(1,5) DAedit DAfree DAcopyb
O(O 2) DAsmthvl DAfitdri
507, 2&) DAfirst
3(5,9) .
0(0,2) DAdurat DAdurchk
1({0,5) DAnadir DAdangle DAdotdri
DAdottst DAvaldat
0(0,2) DAchklm DAlimchk
3(1,7) DAoutat DAtwerk DAoutoab
DAtimsel DAoutaz
1(0,2) DAdatadj DAoutput
1(1,3) DApreavg DAreduce DAsift
3{(0,2) DAdaread DAplotz
0(0,2) DArddata DAsample
6(0,2) DAcopya DAadjint
5{(0,2) BIbframe BIoabizs
0{0,2) TPrdadl BIbobse
4{0,6) DRdridea DRresult
3(0,4) DRdschek DRtiming
2(1,2) DRdeadri DRdrinit
1{(0,5) DCfinal2 DCgdecon DCblkinv
0(0,2) DCcofsm DCdccons
1(0,3) TPtolang TPtptolr TPtolspn
0(0,2) TPdrvuecl TPucltrn
18(0,10) DRnladj DRnlaz DRnldcec DRnldri DRnloab DRnloas
DRnloce DRnltp
3(0,2) UArename DRwritit
0(0,75) DRrewine DRrecall UAmodd TPtpsupr TPtpnld
DRdafile DAinitfg DAprcent DCunitde TPovride
TPselgmt TPtimseq UAintenv UAdspshr JAdspmod

References

(ada 827
Reference Manual for the Ada Programming Language,
Draft revised MIL-STD 1815, U.S. Department of Defense,
July 1982,

[Basili & Reiter 81]
V.R. Basgsili and R.W. Reiter, "A Controlled Experiment
Quantitatively Comparing Software Development
Approaches,™ TEEE Trans. Software Eng., May 1981.

[Basili & Turner 75]
V.R. Basili and A.J. Turner, "Iterative Enhancement: A&
Practical Technique for Software Development," IEEE
Trans. Software Eng., Vol. 1, No. 4, Dec. 1975, pp.
390-396,

(Belady & Evangelisti 82]
L.A, Belady and C.J. Evangelisti, "3ystem Partitioning
and its Measure", The Journal of 3ystems and Software,
Vol. 2, No 1, Feb. 1982, pp. 23-29.

[Elshoff 767
J.L. Elshoff, "An Analysis of some Commercial PL/1 Pro-
grams," IEEE Trans. Software Eng., Vol. 2, No 2, June
1976, pp. 113-120. ' :

[Henry & Kafura 81] -
' S. Henry and D. Xafura, "Software Quality Metrices Based
on Interconnectivity," Journal of Systems and Software,
Vol. 2, No. 2, 1981, pp. 121-137.

fMyers 78]
G.J. Myers, Composite/Structured Design, Van Nostrand
Reinhold, 1978.

[Software Engineering Laboratory 82]
Software Engineering Laboratory, SEL-81-104, he

Software Engineering Laboratory, NASA Godard Space
Flight Center, Feb. 1982,

[Stevens, Myers, & Constantine 74]
W.P. Stevens, G.J. Myers and L.L. Constantine, "Struc-
tural Design,” IBM Systems Journal, Vol. 13, No. 2,
1974, pp. 115-139,

[Weiser 79]
M.D. Weiser "Program Slicing," Fifth International
Conference on Software Engineering, San Diego, Califor-
nia, 19871, '

[Yau & Collofello 80]
3.8. Yau and J.S. Coellofello, "Some Stability Measures
for Software Maintenance™, IEEE Trans. on Software
Eng., Vol. 6, No. 6, Nov. 1980, pp 545-.552,

[Wwirth 771
N. Wirth, "MODULA: A Programming Language for Modular
Multiprogramming,” Software Practice and Experience,

vel 7, Jan 1977, pp. 3=35,

[Yourdon 751
E. Yourdon, Technigues of Program Structure and Design,

Prentice Hall, 1975.

UNCLASSIFIER
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod),

REPORT DOCUMENTATION PAGE BEF%%;DCIgﬁgﬁg%&IgNFSORM
7. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIFIENT'S CATALOG NUMBER
TR-1310
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
SYSTEM STRUCTURE ANALYSIS: CLUSTERING WITH Technical Report

DATA BINDINGS
: 6. PERFORMING ORG. REPORT NUMBER

TR-1310

7. AUTHOR(S) 8. CONTRACT CR GRANT NUMBER(s)
David H. Hutchens and Victor R. Basili AFOSR-TF49620-80-C-001
9. PERFORMING ORGAMIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Department of Computer Science
University of Maryland
College Park, MD 20742

11, CONTROLLING GFFICE NAME AND ADDRESS 12. REPORT DATE

Math. and Info. Sciences, AFOSR August 1983

Bolling AFB "13. NUMBER OF PAGES
| Washinston. D. C. 20332 36
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED
158, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differsnt from Repart)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reversa side if necessary and identify by block number)

cluster module
coupling strength
data binding system structure

20, ABSTRACT (Continue on reverse side if necessary and identify by block number) TH1S paper examines the
use of cluster analysis as a tool for system modularization. Several clustering
techniques are discussed and used on two medium-size systems and a group of
small projects. The small projects are presented because they provide examples
(that will fit into a paper) of certain types of phenomena. Data bindings
between the routines of the system provide the basis for the bindings. It
appears that the clustering of data bindings provides a meaningful view of
system modularization.

FCRM
DD | an 73 173 =0iTion OF 1 NGV 65 IS 0BSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

