Evaluating Software Testing Strategies

Rlchard W. Selby, Jr. and Victor R. Basili
Department of Computer Sclence
Unlversity of Maryland
College Park, Maryland 20742
(301) 454-4247

Jerry Page
Computer Sclences Corp., Sllver Spring, MD

Frank E. McGarry
NASA/GSFC, Greenbelt, MD

ABSTRACT

This study compares the strategies of code reading, functional testing, and struc-
tural testlng In three aspects of software testlng: fault detectlon effectiveness, fault
detectlon cost, and classes of faults detected. Thirty two professional programmers
applled the three techniques to three unit-sized programs In a fractional factorlal experl-
mental design. The major results of this study so far are the following. 1) Code readers
detected more faults than did those uslng the other technlques, while functional testers
detected more faults than did structural testers. 2) Code readers had a higher fault
detectlon rate than dld those using the other methods, while there was no difference
between functional testers and structural testers. 3) Subjlects testing the abstract data
type detected the most faults and had the highest fault detection rate, while individuals
testing the database malntalner found the fewest faults and spent the most effort test-
Ing. 4) Subjects of Intermedlate and Junlor expertise were not different In number or
percentage of faults found, fault detection rate, or fault detection effort; subjects of
advanced expertise found a greater number of faults than did the others, found a
greater percentage of faults than did just those of junlor expertise, and were not
different from the others In elther fault detectlon rate or effort. 5) Code readers and
functlonal testers both detected more omlission faults and more control faults than did
structural testers, while code readers detected more Interface faults than did those using
the other methods.

Research supported in part by the Natlonal Aeronautics and Space Administration Grant NSG-5123 and the Alr Force Office
of Sclentific Research Contract AFOSR-F49620-80-C-001 to the University of Maryland. Computer support provided in part by the
factlitles of NASA/Goddard Space Flight Center and the Computer Sclence Center at the University of Maryland.

42

1. Introduction

The processes of software testing and defect detectlon continue to challenge the
software community. Even though the software testing and defect detectlon actlvltles
are inexact and lnadequately understood, they are cruclal to the success of a software
project. The controlled study presented addresses the uncertalnty of how to test soft-
ware effectively. In this Investigatlon, common testing technlques were applied to
different types of software by a representative group of programming professionals.

This work 1s Intended to characterize how testing effectiveness relates to several factors:
testing technique, software type, fault type, tester experlence, and any. Interactlons.

among these factors.

This paper glves an overview of the testing technlques examlined, Investigation
goals, experimental design, and data analysis. The results presented are from a prellm-
Inary analysis of the data; a more complete analysls appears elsewhere [Selby 84, Baslll

& Selby 85).

2. Testing Techniques

To demonstrate that a particular program actually meets 1ts speclficatlons, profes-

slonal software developers currently utllize many different testlng methods. In func-

tional testing, which 1s a ‘“‘black box’ approach [Howden 80], a programmer constructs
test data from the program's specification through methods such as equlvalence parti-

tloning and boundary value analysls [Myers 79]. The programmer then executes the
program and contrasts 1ts actual behavior with that indlcated In the speclification. In -
structural testlng, which 1s a ““white box” approach [Howden 78, Howden 81)], a pro-

grammer inspects the source code and then devises and executes test cases based on the

percentage of the program's statements or expressions executed (the *‘test set coverage’’)
[Stuckl 77]. The structural coverage criterla used In thls study was 100% statement

coverage. In code readlng by stepwise abstractlon, a person ldentlifies prime subpro-
grams In the software, determines thelr functions, and composes these functlons to
‘determine a function for the entire program [Mills 72, Linger, Mllls & Witt 79]. The

code reader then compares this derlved function and the speclficatlons (the Intended

function).

2.1. Investigation Goals

The goals for thls study are to compare the three common testlng techniques of
code reading, functlonal testlng, and structural testing in terms of 1) fault detectlon
effectlveness, 2) fault detectlon cost, and 3) classes of faults detected. An example °

research question In each of these goal areas ls as follows. Which testing technlique

(code reading, functional testing, or structural testing) leads to the detection of the most ‘:
faults? Which testing technique leads to the highest fault detection rate

(#faults/effort)? Which testing techniques capture which classes of faults?

3. Empirical Study

Admittedly, the goals for this study are quite ambitlous. In no way Is it lmplled:
that this study can definitively answer all of these questions for all environments. It Is

43

T

Intended, however, that the statistically significant analysls undertaken lends Inslghts
Into thelr answers and Into the merlt and approprilateness of each of the techniques.

A primary conslderation In this study was to use a reallstic testing environment to
assess the effectiveness of these different testing strategles, as opposed to creating a best
possible testing sltuation [Hetzel 76]. Thus, 1) the subjects chosen for the study were
professlonal programmers with a wlde range of experlence, 2) the programs tested
correspond to different types of software and reflect common programming style, and 3)
the faults In the programs were representative of those frequently occurring in software.
Sampling the subjects, programs, and faults In this manner Is Intended to provlide a rea-
sonable evaluatlon of the testing methods, and to facllitate the generallzation of the
results to other environments. Note that prior to this experlment, we conducted a slmi-
lar testing study Involving 42 advanced students from the Unlversity of Maryland [Bastill
& Selby 85].

The following sections describe the empirical study undertaken, Including the selec-
tion of subjects, programs, and experimental deslgn, and the operation of the study.

3.1. Subjects

The 32 sublects In the study were programming professionals from NASA and
Computer Sclences Corporation. These individuals were mathematiclans, phystclsts,
and englneers that developed ground support software for satellites. They had famillar-
ity with all three testing techniques, but used functlonal testing primarlly. R. W. Selby
conducted a three hour tutorial on the testing techniques for the subjects. The subjects
were selected to be representative of three different levels of computer sclence expertise:
advanced, Intermedliate, and junlor. Several criterla were considered In the assoclation
~of a subject with an expertise level, Including years of professional experlence, degree
background, and thelr manager's suggested asslgnment. The Iindividuals examined
Included elght advanced, eieven intermedlate, and thirteen Junior subjects; these groups
had an average of 15.0, 10.9, and 6.1 years of professional experlence, respectively, with
an overall average of 10.0 (SD = 5.7) years.

3.2. Programs

The three FORTRAN programs used In the Investigatlon were chosen to be
representative of several different software types: a text formatter, a numeric abstract
data type, and a database maintalner. The programs are summarized In Figure 1. The
specificatlons for the programs and thelr source code appear In [Selby 84].

‘ Flgure 1. The programs tested.
source | executable cyclomatic | #routlnes | #faults
rogram lines statments complexity
text 169 55 18 3 9
formatter
numeric data 147 48 18 9 7
abstraction
database 365 144 57 7 12
maintalner

There exists some differentiation In size among the programs, and they are a realls-
tlc size for unilt testlng. The first program Is a text formatting program, which also
appeared In [Myers 78]. A verslon of this program, originally written by [Naur 69)] using
techniques of program correctness proofs, was analyzed In [Goodenough & Gerhart 75].
The second program Is a numerlc data abstractlon conslsting of a set of list processing
utllities. This program was submitted for a class project by a member of an Intermedl-
ate level programming course at the Unlversity of Maryland [McMullln & Gannon 80].
The third program Is a maintalner for a database of blbllographlc references. Thls pro-
gram was analyzed In [Hetzel 78], and was written by a systems programmer at the
Unlversity of North Carollna Computation Center.

3.3. Faults

The 28 faults In the programs comprise a reasonable distribution of faults that
commonly occur In software [Baslil & Welss 82, Baslll & Perricone 84]. All the faults In

‘the database malntalner and the Jaumerlc abstract data type were made durlng the

actual development of the programs. The text formatter contalns a mix of faults made
by the original programmer and faults seeded In the code. Note that this investigation
Involves only those types of faults occurring In the source code, not other types such as
those In the requirements or speclifications.

Two abstract classification schemes characterlize the faults In the programs. One
fault categorization method separates faults of omlission from faults of commisslon. A
second fault categorization scheme partitions software faults Into the six classes of 1)
Inltlalization, 2) computation, 3) control, 4) Interface, 5) data, and 8) cosmetic. An
explanatlon of these classification schemes appeared In [Baslll & Perricone 84], and the
faults themselves are described In [Selby 84]. These two classificatlon schemes are
Intended to distingulsh among dlifferent reasons that programmers make faults In soft-
ware development. The consistent applicatlon of the two schemes to the faults in the
programs resulted In a mutually excluslve and exhaustive categorization; 1t Is certalnly
posslble that another analyst could have a different Interpretatlon (see Figure 2). '

45

_Fl_gure 2. Distributlion of faults in the pro_gTrams. |
Omlsslon CommIission Total
Initialization 0 2 2
Computation 2 2 4
Control 2 4 6
Interface 2 11 13
Data 2 0 2
Cosmetic 0 1 1
Total 8 20 28

3.4. Experimental Design

The experimental deslgn applled was a fractional factorlial design [Cochran & Cox
50, Box, Hunter, & Hunter 78]. All of the subjects tested each of the three programs
and used each of the three techniques. Of course, no one tested a given program more
than once. The order of presentation of the testing techniques was randomized among
the sublects In each level of expertise. A factorlal analysls of variance (ANOVA) model
supports the analysls of both the maln effects (testlng technlique, software type, pro-
grammer expertise) and any Interactlons among the maln effects.

- The subjects examined In the study were random samples of programmers from the
large population of programmers at each of the levels of expertise. If the samples exam-
Ined are truly representatlve of the population of programmers at each expertise level,
the Inferences from the analysis can then be generallzed across the whole population of
Indivlduals at each expertise level, not just across the particular subjects In the sample
chosen.

3.5. Experimental Operation

The controlled study included five phases: tralning, three testing sesslons, and a
follow-up sesslon. All groups of subjects were exposed to a simllar amount of tralning
on the testing technlques before the study began. In the testing sesslons, the individuals
were requested to use the testing technlques to the best of thelr ability. The subjects’
deslre for the study's outcome to Improve thelr software testlng environment ensured
reasonable effort on thelr part. Note that when the subjects were applyling elther func-
tlonal or structural testing, they generated and executed thelr own test data; no test
data sets were provided. At the end of each of the testlng sesslons, the subjects
estimated the amount of time spent detecting faults and the percentage of the faults in
the program that they thought were uncovered. The study concluded with 2 debrieflng
sesslon for dlscussing the preliminary results and the subjects’ observations.

4. Data Analysis

This sectlon presents the data analysls according to the three goal areas discussed
earller. :

46

4.1. Fault Detection Effectiveness

The first goal area examlnes the factors contributing to fault detection effectiveness.
The followlng sectlons present the relationshlp of fault detection effectiveness to testing
technlque, software type, programmer expertise, and self-estimate of faults detected.

4.1.1. Testing Technique

The subjects applying code reading detected an average of 5.09 (SD = 1.92) faults
per program, persons using functlonal testing found 4.47 (SD = 1.34), and those apply-
Ing structural testing uncovered 3.25 (SD = 1.80); the subjects detected an overall aver-
age of 4.27 (SD = 1.86) faults per program. Subj)ects using code reading detected 1.24
more faults per program than dld subjlects using elther functional or structural testing

(x<.0001, 95% c.. 0.73 — 1.75).! Subjects using functlonal testing detected 1.11 more
faults per program than did those uslng structural testing (a<.0007, 95% c.l. 0.52 —
1.70). Since the programs each had a different number of faults, an alternate interpreta-
! tlon compares the percentage of the programs’ faults detected by the techniques. The
3"; technlques performed In the same order when percentages are compared: sublects apply-
: ' Ing code reading detected 16.09% more faults per program than did subjects using the
! other technlques (a<.0001, c.l. 8.9 — 22.19%), and subjects applylng functional testing
detected 11.2% more faults than did those uslng structural testing (a<<.003, c.l. 4.1 —
18.3%). Thus comparing either the number or percentage of faults detected, Individuals
using code readlng observed the most faults, persons applylng functional testing found

the second most, and those dolng structural testlng uncovered the fewest.2

4.1.2. Software Type

: The subjects testing the abstract data type detected an average of 5.22 (SD =
1.75) faults, persons testing the text formatter found 4.19 (SD == 1.73), and those test-
; Ing the database malntalner uncovered 3.41 (SD = 1.68). The applicatlon of Tukey's
multlple comparison reveals that subjlects detected the most faults In the abstract data
type, the second most in the text formatter, and the fewest faults in the database maln-
talner (slmultaneous a<.05). This ordering s the same for both number and percen-
tage of faults detected.

4.1.3. Programmer Expertise

Subjects of advanced expertise detected an average of 5.00 (SD = 1.53) faults, per-
sons of Intermedlate expertise found 4.18 (SD = 1.99), and those of junlor expertise
uncovered 3.90 (SD = 1.83). Subjects of Intermediate and Junlor expertise were not sta-
tistically different In terms of elther number or percentage of faults observed (a:>.05).

! The probably of Type I error s reported, the probabllity of erroneously rejecting
the null hypothesls. The abbreviatlon *‘c.l.” stands for confidence Interval. The Inter-
vals reported are all 959 confldence intervals.

2 Recall that the Individuals used the following techniques: code reading by stepwlse
abstractlon, functional testing uslng equivalence partitioning and boundary value
analysls, and structural testing with 1009 statement coverage criteria.

47

Individuals of advanced expertise detected both a greater number and percentage of
faults than did those of junlor expertise («<<.05). Persons of advanced expertise
detected a greater number of faults that did those of Intermediate expertise (a<.05),
but the advanced and Intermediate groups were not statlstically different in percentage
of faults detected (a>.05).

4.1.4. Self-Estimate of Faults Detected

At the completion of a testing sesslon, the sublects estimated the percentage of a
program’s faults they thought they had uncovered. This estimation of the number of
faults uncovered correlated reasonably well with the actual percentage of faults detected
(R = .57, @<.0001). Further Investigation shows that lndividuals using certaln tech-
nlques gave better estimates: code readers gave the best estimates (Pearson R = .79,
@<.0001), structural testers gave the second best estimates (R = .57, @<.0007), and
functlonal testers gave the worst estimates (no correlation, a>.05). This observation
suggests that the code readers were more certaln of the effectlveness they had In reveal-
Ing faults in the programs.

4.2. Fault Detection Cost

The second goal area examines the factors contributing to fault detectlon cost. The
following sectlons present the relatlonshlp of fault detection cost to testing technlque,
sqftware type, and programmer expertise.

4.2.1. Testing Technique

The subjects applylng code readlng detected faults at an average rate of 3.33 (SD
= 3.42) faults per hour, persons using functional testing found faults at 1.84 (SD =
1.08) faults per hour, and those applylng structural testing uncovered faults at a rate of
1.82 (SD == 1.24) faults per hour; the subjJects detected faults at an overall average rate
of 2.33 (SD = 2.28) faults per hour. Subjects using code readlng detected 1.49 more
faults per hour than did subjects using elther functlonal or structural testing (<<.0003,
c.l. 0.75 - 2.23). Subjects using functional and structural testing were not statistlcally
different 1n fault detectlon rate (a>.05). The subjects spent an average of 2.75 (SD =
1.57) hours per program detecting faults. Comparing the total time spent In fault detec-
tlon, the technlques were not, statistically different (a>.05). Thus, subjects using code
reading detected faults at a higher rate than did those applylng functional or structural
testing, while the total fault detectlon effort was not different among the methods.

4.2.2, Software Type

The subjects testlng the abstract data type detected faults at an average rate of
3.70 (SD = 3.28) faults per hour, persons testing the text formatter found faults at 2.15
(SD = 1.10) faults per hour, and those testing the database malntalner uncovered faults
at a rate of 1.14 (SD = 0.79) faults per hour. Applying Tukey's multlple comparlsons,
the fault detectlon rate was hlgher In the abstract data type than it was for either the
text formatter or the database malntainer, while the text formatter and the database
malntalner were not statistically different (simultaneous «<.05). The overall time spent
In fault detectlon also differed among the programs. Subjects spent more tlme testing

48

the database malntalner than they spent on either the text formatter or the abstract
data type, while the time spent on the text formatter and the abstract data type was
not statistlcally different (simultaneous a<.05). Thus, subjects uncovered faults at the
fastest rate In the abstract data type, and spent the most time testing the database
maintainer.

4.2.3. Programmer Expertise

Subjects of advanced expertise detected faults at an average rate of 2.36 (SD =
1.61) faults per hour, subjects of Intermediate expertlse found faults at 2.53 (SD = 2.48)
faults per hour, and subjects of Junlor expertlse uncovered faults at a rate of 2.14 (SD
= 2.48) faults per hour. Programmer expertise level had no relatlon to either fault
detection rate or total effort spent In fault detection (both a>.05).

4.3. Characterization of Faults Detected

. The third goal area focuses on determining what classes of faults are detected by
the different technlques. An earller section characterized the faults in the programs by
two different classlfication schemes: omisslon or commission, and Initiallzatlon, control,
data, computatlon, Interface, or cosmetlc.

When the faults are partitioned according to the omisslon/commission scheme, a
distinctlon surfaces among the technlques. Subjects using elther code reading or func-
tional testlng observed more omission faults than did Indlviduals applying structural
testing, whlile there was no difference between code reading and functlonal testing.
Since a fault of omisslon occurs as a result of some segment of code belng left out
(“omltted”), you would not expect structurally generated test data to find such a fault.

Dividing the faults according to the second fault classification scheme reveals a few
distinctions among the methods. Subjects using code reading detected more interface
faults than did those applying elther of the other methods, while there was no difference
between functional and structural testing. This suggests that code readlng by abstract-
Ing and composing program functions across modules must be an effectlve technique for
finding interface faults. Individuals using elther code reading or functional testing
detected more control faults than did persons applylng structural testing. Recall that
subjects applying structural testing determined the execution paths In a program and
then generated test data that executed 1009% of the program's statements. One would
expect that more control path faults would be found by such an approach. However,
structural testing did not do as well as the others in this fault class, suggesting the
Inadequacy of statement coverage criteria.

5. Preliminary Conclusions

This study compares the strategles of code reading, functional testing, and struc-
tural testing In three different aspects of software testing: fault detectlon effectlveness,
fault detectlon cost, and classes of faults detected. Each of the three testing technlques
showed merit In thls evaluation. The Investigation was intended to compare the
different testing strategles In a representatlve testing situation, using professional pro-
grammers, different software types, and common software faults.

49

TR 1Y

B e L

AT L

TRUTEPT U UTTRR AV 0 T e

The major results of this study so far are the following. 1) Code readers detected
more faults than did those using the other technlques, while functional testers detected
more faults than dld structural testers. 2) Code readers had a higher fault detection
rate than did those using the other methods, while there was no difference between func-

tlonal testers and structural testers. 3) Subjects testing the abstract data type detected
- the most faults and had the highest fault detection rate, while Individuals testing the

database malntalner found the fewest faults and spent the most effort testing. 4) Sub-
Jects of Intermedlate and Junlor expertise were not different In number or percentage of
faults found, fault detection rate, or fault detection effort; subjects of advanced exper-
tise found a greater number of faults than did the others, found a greater percentage of
faults than did Just those of Junlor expertise, and were not different from the others In
elther fault detectlon rate or effort. 5) Code readers and functional testers both
detected more omlisslon faults and more control faults than did structural testers, while
code readers detected more interface faults than did those using the other methods.

A comparison of professional programmers using code reading with novice and
Junlor programmers using the technlque suggests a posslble learnlng curve. In a testing
study simllar to this one, using a group of advanced students, code readers and func-
tlonal testers were equally effective 1n fault detectlon while structural testers were elther
equally effective or Inferlor [Basill & Selby 85]. Also, the three technlques were not

. different In fault detectlon rate. Further comparison of thls study with other testing
studles, Including [Hetzel 76, Myers 78, Hwang 81], appears In [Baslll & Selby 85].

Investigatlons related to this work include studles of fault classificatlon [Basill &

n. Welss 82, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83, Baslll & Perricone 84]

and Cleanroom software development [Selby, Baslll & Baker 84]. In the Cleanroom soft-
ware development approach, technlques such as code reading are used In the develop-
ment of software completely off-llne. In the above study, systems developed using
Cleanroom met system requirements more completely and had a higher percentage of
successful operatlonal test cases than did systems déveloped wlith a more traditional
approach.

This empirical study Is intended to advance the understanding of how varlous soft-
ware testing strategles contribute to the software development process and to one
another. The results given were calculated from a set of Individuals applylng the three
techniques to unit-sized programs - the dlrect extrapolation of the findings to other test-
Ing environments is not Implied. However, valuable insights have been gained and addi-
tlonal areas of analysis and Interpretation appear In [Selby 84, Baslll & Selby 85].

6. Acknowledgement

The authors are grateful to the subjects from Computer Sclences Corporatlon and
NASA Goddard for thelr enthuslastlc participation in this study.

50

[Y'Y + ¥ 1 ey

7. References

[Basilt & Welss 82]
V. R. Basill and D. M. Welss, Evaluating Software Development by Analysis

of Changes: The Data from the Software Englneering Laboratory*, Dept.
Com. Secl., Unlv. Maryland, College Park, Tech. Rep. TR-1236, Dec. 1982..

[Baslllt & Perricone 84]
V. R. Baslll and B. T. Perricone, Software Errors and Complexity: An Em-

pirical Investigation, Communications of the ACM 27, 1, pp. 42-52, Jan.
1984. '

[Basill & Selby 85]
V. R. Baslll and R. W. Selby, Jr., Comparing the Effectiveness of Software

Testing Strategles, Dept. Com. Sci., Unlv. Maryland, College Park, Tech.
Rep., 1985.

[Box, Hunter, & Hunter 78]
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Ezperimenters,

John Wlley & Sons, New York, 1978,

[Cochran & Cox 50]
W. G. Cochran and G. M. Cox, Ezperimental Designs, John Wlley & Sons,

New York, 1950.

[Goodenough & Gerhart 75]
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data Selec-

tlon, IEEE Trans. Software Engr., pp. 156-173, June 1975.

[Hetzel 76]
W. C. Hetzel, An Expermental Analysis of Program Verlfication Methods,

Ph.D. Thesls, Unlv. of North Carolina, Chapel Hill, 1976.

[Howden 78]
W. E. Howden, Algebralc Program Testing, Acta Informatica 10, 1978.

[Howden 80
W. E. Howden, Functional Program Testing, I[EEE Trans. Software Engr.

SE-6, pp. 162-169, Mar. 1980.

[Howden 81]
W. E. Howden, A Survey of Dynamlc Analysls Methods, pp. 209-231 In Tu-

torial: Software Testing & Validation Techniques, 2nd Ed., ed. E. Mlller and
W. E. Howden, 1981.

51

" [Hwang 81] .
S-S. V. Hwang, An Empirical Study in Functional Testing, Structural Test-

ing, and Code Readlng/Inspection*, Dept. Com. Scl., Unlv. of Maryland,
College Park, Scholarly Paper 382, Dec. 1981.

" [Johnson, Draper & Soloway 83]
W. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification

Scheme Must Take the Programmer Into Account, Proc. Workshop High-
Level Debugging, Palo Alto, CA, 1983.

“[Linger, Mills & WI1tt 79]
R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory

and Practice, Addlson-Wesley, Readlng, MA, 19879.

< APV -’«"&Wf,’:.-":\ﬁ‘x‘ibﬂmwwwﬂpi*mﬂw‘mwm’ 2'?"'”‘-fﬁ'?f’*?Pﬂﬁm‘%wg‘mmwmwwﬁw N

[McMullln & Gannon 80]
P. R. McMullln and J. D. Gannon, Evaluating a Data Abstraction Testing

System Based on Formal Specifications, Dept. Com. Scl., Univ. of Maryland,
College Park, Tech. Rep. TR-993, Dec. 1980.

PRGBS ¢ L, -

£ ~ [Mills 72]
f H. D. Mlills, Mathematlcal Foundatlons for Structural Programming, IBM
Report FSL 72-6021, 1972.
: [Myers 78]
: G. J. Myers, A Controlled Experiment In Program Testing and Code
Walkthroughs/Inspections, Communications of the ACM, pp. 760-768, Sept.
1978.
Myers 79]
G. J. Myers, The Art of Software Testing, John Wlley & Sons, New York,
1979.
[Naur 89]

P. Naur, Programming by Actlon Clusters, BIT 9, 3, pp. 250-258, 1969.

[Ostrand & Weyuker 83]
T. J. Ostrand and E. J. Weyuker, Collecting and Categortzing Software Er-

ror Data In an Industrial Environment, Dept. Com. Scl., Courant Inst. Math.
Scl., New York Unlv., NY, Tech. Rep. 47, August 1982 (Revised May 1983).

[Selby 84]
R. W. Selby, Jr., A Quantitative Approach for Evaluating Software Techno-

logles, Dept. Com. Scl., Unlv. Maryland, College Park, Ph. D. Dlssertatlon,
1984.

52

[Selby, Baslll & Baker 84|
R. W. Selby, Jr., V. R. Baslll, and F. T. Baker, CLEANROOM Software De-
velopment: An Empirical Evaluatlon, Dept. Com. Secl., Univ. Maryland, Col-
lege Park, Tech. Rep. TR-1415, July 1984. (submitted to the IEEE Trans.
Software Engr.)

[Stuckl 77]
L. G. Stuckl, New Directlons In Automated Tools for Improving Software
Quallty, in Current Trends in Programming Methodology, ed. R. T. Yeh,
Prentlice Hall, Englewood Cliffs, NJ, 1977.

53

‘
i

