SOFTWARE DEVELOPMENT IN ADA

Victor R. Basili
- Elizabeth E. Katz
Unlversity of Maryland

. 1. Introductlon

Ada will soon become a part of systems developed for the US Department of
Defense. NASA must determine whether 1t will become part of 1ts environment and
particularly whether 1t will become a part of the Space Station development. How-
ever, there are several Issues about Ada which should be considered before this decl-
slon 1s made. What Informatlon Is needed to make that declslon? What are the
tralning needs for Ada? How should the life cycle be modified to use Ada most
effectlvely? What other issues should management conslder before making a decl-
slon? These are but a few of the Issues that should be considered.

One means of consldering these Issues Is the examination of other developments
In Ada. Unfortunately, few full-scale developments have been completed or made
publlcly avallable for observatlon. Therefore, 1t will probably be necessary to study
an Ada development in 2 NASA environment.

Another means related to the first is the development of Ada metrics which can
be used to characterize and evaluate Ada developments. These metrics need not be
confined to full-scale developments and could be used to evaluate on-golng projects
as well.

The remalnder of this paper describes an early development in Ada, some
observatlons from that development, metrlcs which have been developed for use
with Ada, and future dlrectlons for research Into the use of Ada In software develop-
ment In general and In the NASA Goddard environment in particular.

2. Overvlew of a Previous Prolect

In a previous project conducted by the Unlversity of Maryland and General
Electric, we monltored a software development project written In Ada by integrat-
Ing measurement Into the software development process. Our goal was to ldentify
areas of success and difficulty In learning and using Ada as a deslgn and coding
language. The underlying process and the evolving product were measured, and the
resulting Informatlon characterized thils project’s successes and fallures. Observa-
tlons from the project might be used to make recommendations about tralning,
methodology, and metrles to the Ada users community. Thls experience with data
collection and metrics also will ald In the selectlon of a general set of measures and
measurement procedures for any software development project.

This work s supported In part by the Office of Naval Research and the Ada Joint Program Offlce under grant NOOO14-
82-0225.

Ada Is a registered trademark of the US Department of Defense - AJPO.

65




The project studled Involved the redesign and reimplementation of a portion of
a satellite ground control system originally written In FORTRAN. Four program-
mers were chosen for their diverse backgrounds and were given a month of tralnlng
In Ada and software development methodology. They designed the project uslng an
Ada-like PDL although a processor for the PDL was not avallable at that time. The
design evolved Into Ada code which was processed by the NYU Ada/Ed Interpreter.
The deslgn and coding phases of the project extended from April 1982 to December
1982. Some unit testing of the project was done durlng the summer of 1983 uslng
the ROLM compller; however, the entire system has not been tested.

We used a goal-directed data collection approach from the beginning. Goals
and objJectives for the study were defilned. Specific question and hypotheses were
assoclated with each goal. Data collectlon forms and procedures were developed to
address these questions. The forms and procedures were Integrated Into the
software development methodology. The flnal step of this approach involved
analyzing the data In order to answer the questions and elther accept or reject the
hypotheses.

Most recently, the data have been analyzed. All the data from the forms were
entered In a database as were the data gathered by a processor which parses the
design and code, checking for correct syntax and taking varlous measurements. Our
observatlons are summarized below and elaborated upon in [2] and [3].

3. Observatlons from that Project

Although the project studled ended part way through development, the results
Indicate what might happen In early stages of development in other projects. The
data can be compared with the corresponding stages of other prolects. The results
from this project may prevent others from making costly management mistakes.

Learning Ada takes tlme. In this project it consumed 20% of the total effort.
That time must be Included In any estlmate of effort for early prolects using Ada.
Tralning will probably have to be a continulng process as the team members learn
the finer polints of the language.

Ada 1s_more than syntax and slmple examples. The underlylng software
englineering concepts must be taught in conjunctlon with the support Ada provides
for those concepts. Most programmers are not famlillar with the methodologles
developed In the seventies that Ada supports. Tralning in software engineering
methodology and how to use it In the environment of a particular application Is an
absolute necessity for the proper use of Ada.

We do not know how Ada should be used. Ideally, our understanding of the
software englineering concepts Ada supports would make the use of Ada natural.
However, many people learn by example, and we do not have many good examples
of how Ada should be used. We do not know how and when to use exceptions,
tasks, and generlcs. We need to study varlous alternatives and show how they work
with examples from various environments.

Deslgn alternatives must be Investigated. The design for this project was func-
tlonal and more llke than unlike the earller FORTRAN design. This may be the
66




best deslgn, but a group at General Electric developed an object-oriented design for
the same project [4]. It 1s not clear which deslign, If elther, 1s most appropriate.
Just as a comblnation of top-down and bottom-up development Is appropriate to
many applications, a comblnation of functional and object-oriented design might
well be most appropriate. Only after we know which type of deslgn, or comblnation
thereof, Is best sulted to the particular application can we teach people which design
approach to use. Without such tralning, programmers wlll rely on thelir experience
wlith other languages and will probably produce functional desligns.

Proper tool support Is mandatory. Thls project was done without a
'productlon-quallty valldated compller. In additlon to that very necessary tool, a
language-oriented editor, which could have ellmlnated 60% of the observed errors,
would have been desirable. This would have allowed the programmers to focus
thelr attention on the loglc errors that undoubtedly remaln In the design and code.
Data dletlonaries, call structure and compllation dependency tools, cross references,
and other means of obtalnlng multiple views of the system would have helped. A
PDL processor with Interface checks, deflnitlon and use relatton lists, and varlous
- metrlcs would also be helpful.

Some methodology must be followed for a project to be successful. The metho-
dology and tools to be used should be understood before the project begins. The
effect of the lack of good tools Is mentloned above. In addlitlon, the PDL was
loosely defined until after deslgn began. Effectlve deslgn reading might have caught
many of the errors. Even If we wanted to test thls project after a compller became
avallable, we would have needed to create a test plan after the requirements were
completed. However, that aspect of the methodology was deemed unlmportant.
The language s only one aspect of the environment and methodology. It cannot
: 8ave a project In which the rest of the methodology is Ignored.

We belleve that thls project s atyplcal In that it was done before a compller
was avallable and was not finished. However, 1t Is typlcal in that tralnlng consumed
an enormous amount of effort and the programmers were not famlllar with the
underlyling software englineering concepts of Ada and that 1t might look like the
beginning of many prolects. The learning curve In methodology 1s quite large. As
we study more projects that use Ada, we will learn how to teach 1t, how to use it,
and where we might make mistakes. Until then, we need to study Ada and Its use
further.

4. Metrics for Ada

In conjunctlon with the project described above, a number of metrics specific to
Ada have been developed. Some of these have been used to evaluate the use of
packages on that project and the other deslgn presented In [4]. Two of the package
metrics characterize the visiblllty of packages and the use of data hlding via pack-
ages. These and other metrics for packages are further described In [5].

Other aspects of Ada might also be measured. Although we have not studled
these In detall at this time, metrics for tasking might characterize the shared code
and evaluate the use of concurrency. Metrics for exceptlon handling might measure

67




the locallty of the exception handlers or the complexity of those handlers. However,
Wwe must determline how these aspects of Ada should be used before we try to asslgn
qualltatlve values to these measures.

In addltlon, we are developing a taxonomy of evaluative, predictlve, and
characterlstic metrics that might be used for Ada projects In particular but also
non-Ada software developments. Metrics are placed In elght categories which fall
roughly Into two groups. The first group contalns the process categories such as
resource use, changes, and environment. The second group contalns the product
categories such as size, control, data, language, and operation. This Is but one
example of a categorization, and determining which categorles are most pertinent to
one’s environment s a difficult task. However, we attempt to provide a set of
metrics which can be used In conjunctlon with the data collection paradigm
described above.

In addition to the categorization, the taxonomy also contalns a formalization
for describing metrics via formula generators. Thls Is a notatlon for deseriblng sets
of metrics so that the myriad of combinations of metrics can be discussed without
enumerating them. An earller version of this work appeared 1n [1], but a better for-
mallzation is belng developed.

5. Future Work

Ada Is a new language and It Is only starting to be used. We do not know how
10 teach people to use Ada correctly. We do not even know how Ada should be
used. However, we plan some further research into Ada In order to answer some of
the questions above.

We plan to continue our work with Ada-specific metrics. We would like to
apply these metrics to varlous projects and compare the measures to our perceptions
of the projects. Also In this area, we would llke to develop more elaborate metric
tools.

Also In the area of tools, we plan to categorize tools and technlques by the
faults they will prevent, the faults they will detect, the faults they might detect,
and the faults they will not detect. If we know the types of faults code developed in
this environment usually contalns, we might be able to apply the appropriate tools
or technlques to best discover those faults.

There were many drawbacks to the project presented above. The tralning
should have contained specific and more detalled examples. A clearly defined
methodology, Incorporating Ada, should have been used. Finally, the project should
have been taken to completion. We plan to monltor other large projects in which
these problems have been corrected. At least one of these will probably be done in
the NASA environment to determine how Ada flts Into that environment.

In addlitlon, we would like to study varlous deslgn alternatlves. Comparisons of
when to use an object-orlented versus a functional design would probably help in
Ada tralning. However, we currently do not know when each type of design should
be used. We need to determine some means of comparing designs and evaluating
the varlous alternatlves. Controlled experiments would be one vehicle, along with

68




‘the larger projects, for these studles of deslign.

There many !nteresting problems assoclated with Ada. We are addressing only
some of those problems. We welcome any comments on our research and encourage
others to Investigate these and other aspects of Ada.

8. Acknowledgements

We wish to thank John Balley, Shih Chang, John Gannon, Ellzabeth Kruest,
Nora Monina Panlillo-Yap, Connle Loggla Ramsey, Sylvla Sheppard, and Marvin
Zelkowltz for thelr contributlons as the other monitors of the GE project.

7. References

[1] Victor R. Baslll and Ellzabeth E. Katz, "Metrics of Interest In an Ada Develop-
ment,” IEEE Workshop on Software Engineering Technology Transfer,
Mlami, FL, April 1983, pp. 22-29.

[2] Victor R. Baslll, Nora Monina Panlillo-Yap, Connle Loggla Ramsey, Shih
Chang, and Elizabeth E. Katz, "A Quantitative Analysis of a Software
Development In Ada,” Unlversity of Maryland Computer Sclence Technl-
cal Report, UOM-1403, May 1984.

[38] Victor R. Baslll, Ellzabeth E. Katz, Nora Monlna Panlillo-Yap, Connle Loggla
» Ramsey, and Shih Chang, "A Quantitative Characterization and Evalua-
tlon of a Software Development In Ada,” submitted to IEEE Computer.

[4] A.G. Duncan, J.S. Hutchison, J.W. Balley, T.M. Chapman, A. Fregly, E.E.
Kruesl, D. Merrill, T. McDonald, and S.B. Sheppard, " Communlcations
System Deslgn Uslng Ada,” Proc. 7th Intl. Conf. on Software Engineer-
Ing, Orlando, FL, March 1984, pp. 398-407.

[8] John D. Gannon, Elizabeth E. Katz, and Vlctor R. Baslll, "Metrics for Charac-
terlzing Ada Packages” under draft.

69







