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Abstract

In order to understand, evaluate, predict, and control the software development process with regard
to such perspectives as productivity, quality, and reusability, one needs to collect meaningful data
and analyze them in an effective way. However, software engineering data have several inherent
problems associated with them and the classical statistical analysis techniques do not address these
problems very well. In this paper, we define a specific pattern recognition approach for analyzing
software engineering data, called Optimized Set Reduction (OSR), that overcomes many of the
problems associated with statistical techniques. OSR provides mechanisms for building models for
prediction that provide accuracy estimates, risk management evaluation and quality assesssment.
The construction of the models can be automated and evolve with new data over time to provide
an evolutionary learning approach (the Improvement Paradigm) to software modeling and mea-
surement. Experimental results are provided to demonstrate the effectiveness of the approach for
the particular application of cost estimation modeling.

*Research for this study was supported in part by NASA grant NSG 5123, Coopers & Lybrand (IAP member)
and Vitro Corporation (IAP member).



1 Introduction

Managing a large scale software development requires the use of quantitative models to
provide insight and support control based upon historical data from similar projects. This
implies the need for a quantitative approach.

e to build models of the software process, product, and other forms of experience (e.g.,
effort schedule, reliability, ...) based upon common characteristics for the purpose of
prediction.

e to recognize and quantify the influential factors (e.g., personnel capability, storage
constraints, ...) on various issues of interest (e.g., productivity improvement, effort
estimation, ...) for the purpose of understanding and monitoringthe development.

e to evaluate software products and processes from different perspectives (e.g., produc-
tivity, fault rate) by comparing them with projects with similar characteristics.

e to identify strengths and weaknesses in the current environment.

¢ to understand what we can and cannot predict and control so we can monitor it more
carefully.

In Section 2 of this paper, we discuss the needs and the constraints in building effective
models for the software development environment. In Section 3, we review the failings of
the classical statistical approaches with regard to software engineering data. We offer a
new approach for analyzing software engineering data in Section 4, called Optimized Set
Reduction (OSR), that overcomes many of the problems associated with statistical tech-
niques. The approach is based upon pattern recognition techniques tailored to the software
engineering field and offers advantages that overcome many of the problems associated with
statistical techniques.

Besides overcoming some of the drawbacks of statistical analysis for software engineering
model building, OSR provides mechanisms for building models for prediction that provide
estimates of the accuracy of the prediction, models for risk management evaluation for the
risk areas of interest, and quality assessment relative to the pertinent quality models.

The construction of the models can be automated and evolve with new data over time to
provide an evolutionary learning approach to software modeling and measurement in order
to support software development management.

In Section 5, experimental results are provided to demonstrate the effectiveness of the
- approach for the particular application of cost estimation modeling. The data set used
are the COCOMO [BOES81] and Kemerer [KEMS87] data sets. Although the particular
example of cost estimation is chosen, the approach is also being used for other forms of
model building, e.g., the building of models for maintenance.

Section 6 discusses some general issues related to multivariate data analysis in the context
of OSR. A paradigm that defines the learning aspects of software development and man-
agement (called the Improvement Paradigm) is described in Section 7 and it is shown how
OSR performs with the learning and model refinement issues in the IP framework.



2 Requirements for an Effective Data Analysis Procedure

Based upon the constraints associated with the data and the analysis procedures, we gen-
erate a set of requirements for model building approaches. In the text that follows, we will
refer the variable to be assessed as the “Dependent Variable” (DV)(e.g. productivity, fault
rate) and the variable explaining the phenomenon as “Independent Variables” (IV) (e.g.
personnel skills, data base size) [BOE81]. We will see later on that all the issues related
to prediction, evaluation and risk management may be formalized under this form. The
various IVs will form the dimensions of an Euclidian space called the “sample space” in the
following text.

2.1 Constraints related to Software Engineering Data

Model building in Software Engineering is faced with the following difficulties:

e Cp: There is no theory proven to be effective in any environment that would give a
formal relationship among measured metrics in the development process. Therefore
the capabilities of classical statistical approaches seem very limited and statistical
simulation (i.e. Monte Carlo approach) appear improbable.

e C3: The best we can do is make assumptions about the probability density distribu-
tions, with respect to the dependent and independent Variables of interest, with very
little evidence to support our assumptions.

e C3: The sample size is usually small relative to the requirements of the classical
statistical techniques, the quality of the data collected, and the number of significant
independent variables (IV). This is due to the nature of the studied objects in software
engineering and it is difficult to avoid (e.g. software system, module, change, defect

).

o C4: “Software engineering modelers” have to deal with missing, interdependent and
non-relevant independent variables: This is due to a lack of understanding of the
software development process.

e Cs: Both data defined on a continuous (i.e. ratio, interval) and a discrete (i.e. nomi-
nal, ordinal) range have to be handled. Collecting data in a production environment
is a difficult task and discrete data collection is sometimes performed to facilitate the
measurement process. Also, the nature of some of the data may be discrete.

2.2 Requirements to alleviate these constraints

Matching the constraints, we can define requirements for effective data analysis procedures
by the following list:

¢ Ry [matches Cy,C3): The data analysis procedure should avoid assumptions about
the relationships between the Variables regarding the probability density distribution
on the IV and DV ranges.



o R; [C3,C4): A mechanism is needed to evaluate accuracy for each performed estima-
tion. The variations of accuracy lie in a large range depending on the object to be
assessed. For example, you may want to assess a software project from the point of
view of productivity.

C3 The amount of available relevant data may differ according to the character-
istics of the project to be assessed (i.e. location of the project in the sample
space). For example, you may have more data with respect to data processing
business applications than with respect to real time systems. In small samples,
this phenomenon can have significant consequences.

C4 The performed data collection may be more suitable to certain kinds of ob jects
than others. For example, measuring objectively time constraints for real time
systems may be difficult and therefore may introduce uncertainty in assessement.

¢ Rj3 [C4): The data analysis procedure must be as robust as possible to missing, non-
relevant, interdependent IVs and outliers. Then, some procedures must be available
in order to detect and alleviate the effects related to these kind of disturbances in the
data set.

o R4 [Cs]: The data analysis procedure must be able to handle easily both discrete and
continuous metrics without biasing the results obtained.

3 Statistical Background in the Field N

Most of the studies in software engineering have been based on multiple regression and
related techniques (e.g. F tests, stepwise selection). These procedures do not seem to
match most of the previously defined requirements for the following reasons:

e The adjusted coefficient of correlation is a parameter globally calculated over all the
data points. It is the ratio of the variance explained by the calculated correlation
versus the variance still unexplained. This does not provide accuracy of individual
estimations (see requirement R,). Calculating confidence intervals does not seem pos-
sible with an acceptable accuracy. Their calculations are based on an approximation
of the distribution (i.e. normal) and variance of the residuals in the studied popu-
lation. Too few data are usually available to make a reasonable estimation of the
variance. Moreover, we should not expect a constant variance all over the regression
space. The disturbance dueto some missing independent variables in the regression
equation may have a variable intensity in different parts of the regression space. Con-
sidering that in the field of Software Engineering we already make approximations on
the mathematical shape of the regression function, with weak theories to support our
assumptions, this variability may be significant.

o This technique is very sensitive to perturbations related to missing, interdependent
and non-relevant metrics (i.e. independent variables) [DIL84]. Procedures to deal
with these problems are complex and errorprone (e.g stepwise selection, F partial



tests, detection of outliers). These problems make difficult any quantitative analysis
of the development environment and affect the accuracy of predictions.

¢ Continuous metrics are at times difficult to compare because the calculated re-
gression coefficients are dependent on their corresponding measurement units. The
classical way to solve this problem is to work with Beta coefficients (i.e. standardized
regression coefficients). The dependent variable and the independent variables are di-
vided by their standard deviation before calculating the regression equation. In other
words, IVs and DVs are normalized to their variability. This way, the used regression
parameters become unitless numbers and are independent of the magnitude of units.
However, the magnitude of the Beta coefficients are dependent on the variability of
the independent variables in the particular sample that provide the data. This is
another cause of innacuracy in the performed estimations.

¢ Discrete metrics are very difficult to handle because the notion of distance between
categories would be required to build Multiple Regression based models. Then, some
strong assumptions are necessary to integrate these data in a regression calculation
(i.e. assumptions about the relative distances between the defined categories). The
usual way to handle categorical data is to create a regression parameter for each
category of each categorical metric (i.e. dummy variable). For example, The value of
each parameter is either 1 or 0 according to the categories to which the object to be
assessed belongs. Two major drawbacks may be identified:

— The number of regression parameters increases rapidly with the number of cat-
egorical metrics.

— The discrete values (e.g. 0,1)assigned to these parameters are arbitrary and
then make the calculated regression coefficient meaningless for analyzing the
respective influence of the various regression parameters. No beta-coeficient can
be calculated.

There have been some significant attempts to develop alternative techniques to regression
based procedures to analyze software engineering data. The use of statistical classification
techniques has been used to make predictions with respect to errorprone modules in large
scale software systems [SEL88]. These experiments showed encouraging and interesting
results. However, if we consider the usual data availability in Software Engineering, the
used data set was very large (5000 data points). The objective was simply to classify
objects among two categories (i.e. non errorprone and errorprone modules) and not to
come up with a comprehensive data analysis procedure. These experiments opened a door
to a huge research field to be investigated.

4 A Pattern Recognition Approach for Analyzing Data

Based upon pattern recognition principles [TOU74], we propose a data analysis procedure
that is intended to fulfill, to a certain extent, the previously described requirements for
effective data analysis. This procedure and the main principles supporting are described in
this section.



4.1 Description of the Main Underlying Technique

The technique has as its goal the recognition of patterns in a data set. These patterns
are used as a basis for understanding and assessing the development process, product and
environment.

4.1.1 The Basic Concepts and Terminology

¢ A learning sample consists of N vectors (DV;, IVy4,...,I1V,.;), i € (1,...,N), con-
taining one dependent and n independent variables. These vectors are defined in an
Euclidian space called the “sample space”. These vectors, which we will call pattern
vectors, represent measurements taken in the environment.

¢ A measurement vector is defined as the set of independent variable values repre-
senting a particular object whose dependent variable value is to be predicted. That
is, it is a pattern vector without the dependent variable.

¢ To be able to make predictions on the dependent variable, its range has to be
sub-divided or grouped into what we will call DV classes. These classes correspond
to natural situations that can be encountered in the measurement environment, with
respect to the dependent variable, e.g. productivity. If the Dependent Variable is
either “ratio”, “interval” or “ordinal”, the dependent variable range is sub-divided
into intervals, if the Dependent Variable is “nominal”, categories may be grouped
into a smaller set of classes. They are called “states of nature” in decision theory and
“pattern classes” in the pattern recognition field [TOU74]. We have chosen the name
DV classes in order to make the connection with a classical statistical approach for
multivariate analysis.

¢ To be able to use the independent variables as a basis for predicting the dependent
variable, they, like the Dependent variables, must be mapped into IV classes by sub-
dividing or grouping.

e A pattern is defined as a non-uniform distribution of probabilities across the DV
classes.The further a distribution is from uniformity, the more the pattern is considered
as significant (measurable metric developed below).

4.1.2 A Particular Pattern Recognition Process

The problem of predicting the dependent variable for a particular project can be stated as
follows: Given a particular measurement vector (MV), determine the probability that the
actual dependent variable value lies in each of the DV classes. The shape of the probability
density function on the DV class range associated with MV is unknown. The goal and the
basic principle of this process is to find a subset of pattern vectors in the data set, whose
values for the independent variable are similar to the values for the independent variable of
MYV and show a significant pattern among the DV classes.



Taking this approach in the ideal, we can assume that given a learning sample, LS, and
a measurement vector, MV, we could select an ideal subset of all the pattern vectors in
LS having the exact same IV instances as MV (Figure 1). However, since we are usually
working with small samples and numerous independent variables the ideal subset is typically
too small to be useful, so this ideal approach is not applicable.

Figure 1 - Ideal approach

Measurement Vector = {IV1 := C1.x, IV2 := C2.x, IV3 := C3.x}
With Cn.x being any single class on the IVn range
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Nevertheless, we need to find a subset, SS, of LS that contains pattern vectors similar to
MV with respect to some IVs and that yields significant patterns. SS must be large enough
to be usable (notion defined below) and must contain sufficiently homogeneous pattern
vectors to yield significant patterns. To extract SS from LS, we have to select a subset of
IVs among those available, that will be used to select the pattern vectors that will form
SS. The pattern vectors matching the MV instances with respect to the selected IVs will
be extracted from LS. This IV selection will be performed in a stepwise manner and based
upon a selection function SF (Figure 2). In other words, each pattern resulting from a
potential IV selection will be evaluated using SF which provides information on the degree
of significance of the pattern.



Figure 2 - Pattern recognition process
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Two reasons justify a stepwise process:

¢ We wish to stop the subsetting whenever the resulting subset SS is too small.

o If we increase the pattern significance progressively, set reduction after set reduction,
we increase the probability of not getting a good pattern purely by chance due to
the small size of the sample on which the pattern is based. A constant trend is more
convincing than a single pattern based on a small sample.

In the Software Engineering Laboratory at the University of Maryland, a set of experiments
have led us to develop the following pattern recognition process (called Optimized Set
Reduction) applied for any MV:

e Step 1: DV classes are formed either by dividing the DV range into intervals or by
grouping the defined DV categories. For optimal results, a similar number of pattern
vectors should be in each class. The mechanism for creating classes is further described
below.

o Step 2: IV classes are formed in a similar way.

e Step 3: The learning sample is successively decomposed into subsets. At each step, an
IV is selected (according to a selection function described below) and the objects
having the same instance for the IV as the object to be assessed are extracted to



form the reduced subset. This is done recursively on the reduced subsets. We call the
performed process an Optimized Set Reduction.

¢ Step 4: When a predefined condition is reached, the reduction stops. This condition
will be referred to as the termination criteria and will be discussed below. The
subsets resulting from this criteria are called the terminal subsets.

e Step 5: The pattern vectors in the terminal subset(s) are then used to calculate
probability that the actual dependent variable value lies in each of the DV classes.
Several alternatives may be considered for calculating these probabilities and two of
them are described below.

The resulting probabilities (that form the obtained pattern) may be used either for DV
predictions, risk management or quality evaluation in a way that will be described
in Section 4.3.

Despite an apparent simplicity, this approach opens up a set of research questions associated
with each of the steps, that need to be further investigated. The details of each of the steps,
as well as the open questions are discussed here:

¢ Which IV selection function should be used as a reduction mechanism (Step 3)?

The best we have found so far is Entropy (F). The measure of entropy generalized

for m classes from information theory can be used as the impurity evaluation function
[BRE84, SEL88]:

F= i —P(C;/z)log,, P(C;/z)

i=1
where P(C;/x) is the conditional probability of z of belonging to
the DV class C;, ¢ € (1, ...,m).

We assume that the lower the entropy the more likely we are to have found a significant
pattern. This assumption has been supported by the performed experiments: a good
correlation between Entropy and M RE (i.e. Magnitude of Relative Error) has been
observed. The selected IV is the one, that minimizes the defined selection function.

e How is the termination criteria determined (Step 4)?

The termination criteria needs to be tuned to the environment, i.e. the available data
set. Logically, if measuring the significance of a pattern by calculating its entropy is
reasonable, then the entropy should be strongly correlated to the observed prediction
accuracy (i.e. Magnitude of Relative Error for continuous DVs and Misclassification
Rate for discrete DVs). Therefore, an estimation of the prediction MRE/MR is
possible by looking at the decomposition entropy. There are two bounds on the
calculation. If there were no termination criteria, the reduction could decompose
to a subset of a single pattern vector, yielding the meaningless minimum entropy of
zero. On the other hand, if we stop the reduction too soon, we have not sufficiently
decomposed the data set to provide an the most accurate



characterization of the object to be assessed. Thus we are interested in achieving an
accurate approximation of the selection function based upon some minimum num-
ber of pattern vectors in the terminal subsets. To find this minimum number, we
must experiment with the learning sample by examining the correlation between the
MRE/MR and the selection function (e.g., entropy). If this correlation becomes too
weak, then the acceptable minimal number of pattern vectors in a subset should be
increased. The goal is to find a compromise between a good correlation and a sufficient
number of decompositions to provide a reasonable accuracy for predicting the value
of the DV. This determines the number of pattern vectors used as our termination
criteria (Figure 3).

How to create suitable DV and IV classes (Steps 1 and 2)?

Whenever the variable is either continuous or ordinal, the range is divided in a fixed
number of classes. This number may be fixed through a trial and refinement procedure
(Figure 3).

At least two concurrent factors have to be taken into account:

— The amount of data available: Increasing the number IV classes decreases the
average number of reductions during the OSR process, because the average set
reduction rate (ratio # of pattern vectors before red./ # of pattern vectors after
red.) decreases. This tends to decrease the DV prediction accuracy. Whenever
the number of DV classes increases, the ratio # pattern vectors / # of DV classes
decreases and the calculation of the conditional probabilities is less accurate.
Thus the strength of the correlation Accuracy/Entropy is also very dependent
on the number of defined DV classes. So decreasing the number of DV classes
is also a way of improving the correlation. One has to determine, based on the
learning sample, which of the two solutions: decreasing the number of DV classes
or increasing the termination criteria, is affecting the DV prediction accuracy the
most. :

Figure 3 - Tuning the OSR parameters
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— The granularity of the classes: Decreasing the number of DV or IV classes may
make predictions more inaccurate because you may be missing real distinctions
in the values of the data. Granularity is clearly dependent upon the ability to
collect the data accurately. The required accuracy of the DV prediction is a
major criterion for DV granularity.

Whenever the variable is nominal, categories may be grouped to form IV or DV classes.
With respect to DVs, the grouping will depend on the classification to be performed
and also the size of the data set , as above. For IVs, grouping may be subjective
and depends upon the goals of the analysis. For example, assume one wishes to
predict productivity and one of the available IVs is “Programming language used”. If
the possible instances for the variable are “COBOL, FORTRAN, ADA, C++,” one
could create a class “high level language” containing ADA, C++ (because they allow
better rates of code reuse and easier testing procedures) and a second class “Low level
languages” containing COBOL, FORTRAN. If the amount of data makes it possible,
four classes with the four programming languages may be used.

¢ How does one estimate the conditional probabilities that the object to be assessed
falls into the various DV classes (Step 5)?

A simple rule would be to calculate the probabilities as the ratios of pattern vectors
falling into the various categories versus the total number of pattern vectors. This
is the only solution for discrete DVs because there is no notion of distance in the
range of values. A more refined approach for continuous DVs might be to sum the
distances between the subset pattern vectors and the class mean for each of the DV
classes. Call this T D, where n represents the class index. Note that T'D,, is inversely
proportional to the concentration of pattern vectors around the class mean for class
n. Then calculate:

1-(sw25)
P(Cn/z)z—————ﬁ

where m is the number of DV classes.

This formula assumes that the probability is inversely related to the total distance
(TDy) of the pattern vectors to the class mean. This approach refines the probability
calculation since it takes into account the distances between the subset of pattern
vectors and the class means, no just their membership in a specific class. We can fur-
ther refine this probability calculation by defining T'D as the sum of the exponentials
of the distances in order to decrease the weight of the pattern vectors furthest from
some particular class mean.

The OSR process could be improved by investigating the following issues:

¢ Could non-parametric statistical classification techniques (e.g. K-nearest neighbors)
[COV67] be used in order to improve the accuracy of the results ?

10



These techniques could be used, for example, in the terminal subsets to help refine the
results in cases where the entropy is high. The K-nearest neighbors technique yielded
interesting results in experiments on data sets other than the one used as illustration
in this paper. This approach needs to be further investigated in order to come up
with effective empirical procedures.

¢ Could some decomposition heuristics be used to improve the pattern recognition pro-
cess effectiveness?

The simplest way of building an optimized set is to select in a stepwise manner the IVs
yielding the best decomposition entropy until the Termination Criteria is reached as
described above. Although this is certainly the fastest way of generating an optimized
set, it is not the most efficient in terms of pattern recognition. One can imagined
more sophisticated heuristics for example to get better entropies and therefore more
accurate estimations. The user could select, for the S first stages of reduction, the A
IVs yielding the best decomposition entropies. Then, in order to make an estimation of
the studied dependent variable, the user would have to consider S terminal subsets
(each of them yielding an independent result). These results can be weighted and
averaged. The weights can be calculated using, for each terminal subset, the respective
entropy and/or number of pattern vectors. Moreover, the variance of the obtained
results is another insight into the reliability of the prediction.

4.2 Optimized Set Reduction and Decision Trees

The reader may notice similarities with decision tree techniques (e.g. the use of entropy as
a selection function). However, the approach differs in several critical points, the two most
significant discussed below. Moreover, unlike decision trees whose the goal is classification
[BRE84], the goal of OSR is the estimation of the conditional probabilities on DV ranges
associated with specific pattern vectors. These probabilities are intended to be used for
prediction, risk management and quality evaluation as described in Section 4.3.

Decision trees and OSR use different decomposition strategies. For example, Selby and
Porter identified two different selection functions (linear and logarithmic) [SEL88]. Since
the two functions showed similar behaviors and only the logarithmic function is generalizable
to N classes where N > 2 (note that decision trees usually deal with binary decisions), we
have been using the logarithmic function, i.e., the information theory entropy function.
Even with this function, some heuristics still need to be developed in order to improve the
IV selection and the pattern recognition process. In the decision tree approach, one set
of pattern vectors is decomposed by selecting the IV yielding the best average weighted
entropy across the various formed subsets. This decomposition is repeated in each branch
of the formed tree until the predefined termination criterion is met. The Optimized Set
Reduction approach tends to be more effective in recognizing significant patterns. The
following example illustrates a typical case where the difference is noticable:

Let us assume that Complexity (CPLX) and Personnel capability (PERS) are among
several IVs available for the decomposing the available data set, .5, to predict the depen-
dent variable, productivity. S can be decomposed into two pairs of subsets §51,552 and
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553,554 using CPLX and PERS, respectively. Assume that SS1 and §52 contain re-
spectively low and high complexity projects. In a similar way, assume that $53 and S54
contain projects with low and high experience personnel, respectively.

Let the average entropies for each of the two decompositions be E1 and E2 where E1 < E2.
The IV CPLX is thus selected for the first decomposition step of the decision tree. Now
suppose the entropy(5S51) > entropy(S.53) because for a low complexity system, PERS is
the most influential parameter. However, suppose entropy(SS52) < entropy(S5S54) because
CPLX is still the most significant IV for complex systems. If we want to assess an object
(e-g. project) ol that falls in either SS1 or §54 (according to the selected decomposition),
the result will be different according to which fo the two decomposition techniques is used.
For the decision tree and OSR techniques, the subsets used for estimating productivity will
be §51 and 553, respectively. To assess an object 02 that falls in either 5§52 or 554, the
result with both techniques will be the same: 552 will be used.

This example shows that the OSR technique is more effective since it always selects the
decomposition that yields the best entropy for the object to be assessed and is therefore more
likely to achieve better entropy values with fewer levels of decomposition. This property is
crucial if you consider that the number of possible decompositions is very limited for small
samples.

In conclusion, the decision tree technique may be seen as an optimized partition of the data
set. The OSR approach is a set reduction process for recognizing the most significant (with
respect to its pattern) subset for the specific object being assessed. This makes the OSR
technique more calculation intensive, but all automatable.

Another important difference between the OSR and decision tree technique is the definition
of the decomposition termination criterion. In the decision tree approach, the termination
criteria is some minimal class conditional probability. If one of the two classes of the DV
range is above this probability, it is selected as the one to which the object to be classified
belongs. This selection appears to be arbitrary. In the OSR approach, the termination cri-
teria is based upon the need to evaluate the accuracy of the prediction, i.e., it is determined
by the correlation between accuracy, e.g., MRE and the selection function, e.g., entropy.

4.3 Prediction, evaluation and risk management

The three processes, prediction, quality evaluation and risk assessment, are all based on the
recognized patterns and follow a simjlar quantitative approach even though they apparently
deal with three different purposes.

e Prediction:

In this case, one is interested in estimating only one Dependent Variable based on
the set of available Independent Variables. The dependent variable is a measurable
object characteristic that is not known or accurately estimatable at the time it is
needed. For example, one may wish to predict the error rate expected for a particular
project development process in order to determine whether to apply a particular code
inspection intensive development process. So, one tries to estimate the error rate

12



based on other characteristics (IVs) that may be measured, evaluated subjectively
with a reasonable accuracy, or estimated through other models.

If the dependent variable is defined on a continuous range (i.e. the notion of distance
between two values on the range is meaningful), the following approach may be used:
by dividing the DV range into m successive intervals (C; classes: 7 € (1...m)) and
calculating P(C;/z) for each of them, we have in fact approximated the actual density
function P(DependentV ariable/z) by assuming it to be uniform in each class C;.

Therefore, the following expected u; value can be calculated on Cj:

lower boundary_C; + upper boundary_C;
2

pi = E[Productivity/C;,z] =

In other words, the actual density function is approximated by a histogram, where
each column represents the conditional probability of a particular pattern vector z
that lies in a particular DV class C;. No assumption has been made with respect to
the form of this probability density function.

The expected value on the total DV range can be approximated as follows:

E[Prod/z] = p~ ip(c,-/x) X i

i=1

This expected value can be used as an estimate of the Dependent Variable. The
average error interval that can be expected may be estimated quite accurately by
using the correlation of accuracy to entropy. This correlation will be confirmed by the
experiments described in Section 5.

If the Dependent Variable is defined on a discrete range, then prediction becomes a
classification problem:

Given a set of probabilities that a particular pattern vector z belongs to each DV
class Cj, the decision maker must decide to which class to assign z. The class with
the highest probability may not always be chosen. Rather, we may choose the class
based upon the loss associated with incorrect classifications. This is the Bayesian
approach. A risk (or loss) matrix L has to be defined by the decision maker where
Lij represents the loss of having chosen the strategy appropriate for C; when the DV
class (or state of nature) is actually C;. A Bayesian classifier [TOU74] will try to
minimize the conditional average risk or loss Rj(z) (j = 1 ... m) considering the m
defined DV classes.

Ri(z) = 3. Lij P(Cif)

P(C;/z) represents the probability that pattern vector z comes from the pattern class
C;. The bayesian classifier assigns a pattern vector x to the class j with the lowest R
value.
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¢ Risk management:

Software development organizations are interested in assessing the risk associated with
management and technical decisions in order to guide and improve the development
processes. Referencing [CHA89], the risk associated with an action (e.g. software
development) may be described through three dimensions:

— D1: The various possible outcomes
— D2: The potential loss associated with them

— D3: The chance of occurrence for each outcome

One encounters multiple kinds of interdependent risks during software development
(e.g. technical, schedule, cost) [CHA89] and this make risk management and models
complex. Also, the notion of risk is by definition subjective because the associated
loss strongly depends upon one’s point of view. Charette in [CHA89] writes:“ One
individual may view a situation in one context, and another may view the exact
same situation from a completely different one”. According to his/her goals and
responsibilities, one will define the risk in different ways, in the form of various models.

If we try to make the link between the above description of risk and OSR, the following
straightforward associations may be established:

— Outcomes (i.e. dimension D1 ) and DV classes.

— Potential loss (i.e. dimension D2) and distance on the DV range between the
DV class mean and the planned DV value.

— Chance of occurrence (i.e. dimension D3) and conditional probability for each
DV class.

In order to analyze risk during software development, we propose the following ap-
proach based upon OSR:

First, based on the three previously described risk dimensions, we calculate the ex-
pected difference (distance on the range) between planned and actual values for each
DV representing a potential risk (e.g. schedule, effort, ...). Let us call these distances
“DV expected deviations”. From a decision maker’s perspective, the potential loss
resulting from his/her decisions is intrinsically a function of several DV expected de-
viations that may be seen as a specific and subjective risk model. Therefore, a “loss
function” is used as a risk analysis model and may be defined as a function that
combines several DV expected deviations, parameters (e.g. reflecting management
constraints) and constants (e.g. weights). The calculation details are illustrated in
the example below. '

Decision making will result in various sets of IV instances and therefore will have an
impact on the numerical results of an OSR. Through this mechanism, management
choices will have an impact directly on the calculated DV plan/actual deviations and
indirectly (i.e. through the selected loss function) on the calculated potential loss.

Consider the following example with the two continuous DVs, productivity and fault
rate. A budget and schedule have been imposed on the project manager by upper
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management. Therefore a specified productivity P, will be required to reach the man-
agement goals. From the point of view of the project manager, the risk of failure may
be represented as a simple function calculating the Productivity Expected Deviation

(PED):

PED = iP(C;/z) X (Pr — i)

i=1
where py; is the mean of C;

According to the result of this estimation, the project manager will be able assess
the difficulty of the job and make a decision with respect to the development process
in order to alleviate the staff loading and make a suitable trade-off between quality
and productivity. Some analysis can be performed by the manager to see how the
risk evolves according to controllable project parameters (i.e. some of the Indepen-
dent variables). If the project manager wants to make a risk/effort trade-off, in order
to improve competitiveness on a commercial proposal for example, he/she can cal-
culate how the risk evolves according to the productivity required. Based on these
observations, a suitable risk/effort tradeoff can be selected to maximize chances of
success.

One’s perspective of risk may be more complex than the previously defined function,
PED. For example, assume that a contractor wishes to define risk of financial loss
if the system is delivered late and/or there are effort overruns. One can define the
Schedule Expected Deviation (SED) as the expected delay, i.e., the difference between
the planned and predicted schedule and the Effort Expected Deviation (EED) as the
expected effort overrun, i.e., the difference between the planned and predicted effort
expenditures. Then

- Estimated_Size
- SED= PEDxAvg.Team_Size

_ Estimated_Size
— EED = S5gesn=otie

where Estimated_Size is either a parameter, like Avg Team_Size (i.e.

provided as an input by the manager), or another Dependent Variable (i.e. result of
an OSR using some Function Point-like metrics, for example, as IVs ). So the financial
loss function can be defined as a function of both variables SED and EED.

Now suppose that the cost of delay on a particular contract is exponential to the
delay itself. This exponential assumption is based upon predictions with respect to
the delay of other projects dependent upon the completion of this project and the
resulting compensations to be given to the customer. Thus, the SED needs to be
weighted by some Cost per Delay Unit that is an exponential function of SED, call
this CDU. Also suppose that CEU is the average Cost per Effort Unit, i.e., the
average cost per staff hour for the specific project development team.

Then we can define

Financial_loss = SED x CDU 4+ EED x CEU
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¢ Quality Evaluation:
In any quality model, you need a baseline in order to be able to make sensible

comparisons. For example, let us assume that the quality perspectives of interest (i.e.
quality drivers) are productivity and fauli_rate since management views quality as
reliable and inexpensive software.

Assume that using some project features as IVs, the OSR approach yields clear pat-
terns (i.e. low entropy) with respect to productivity in the available data set. These
patterns represent the expected productivity distributions in the current development
environment for the project under study. The relationship between the actual pro-
ductivity for the project under study and the expected value of the predicted patterns
provides the basis for quality evaluation, from the productivity perspective.

For example, suppose the actual productivity for the project under study falls far
below the expected value of the predicted patterns. This implies that the quality
of the project with respect to productivity is low. Using the pattern as a basis of
comparison, we may ask where the difference comes from.

Several causes may be investigated: incomplete or inadequate data collection, some
possible new features or variables affecting the development process, or, of course, the
process quality (e.g. process conformance) is quite low.

In order to quantify quality, from the perspective of productivity, according to some
quality model, a quality value could be defined as a function the distance between the
actual productivity and predicted value(s) of productivity based on the recognized
pattern(s).

This distance may be defined as:

m
Prod_deviation = AP - Y _ P(Ci/z) x p;
o=l
with AP the actual measured productivity.

If we try to include in the quality model both the Fault.rate and Productivity qual-
ity drivers and we assume an approach similar to the Prod_deviation evaluation for
calculating a Fault_deviation, then a global quality evaluation may be formalized by
the following quality model.

Let us define NFD as Fault_deviation (i.e. fault rate deviation) normalized by the
fault rate standard deviation in the available data set and NPD as the equivalent
variable for Prod_deviation. Based upon these unitless deviations, we define the
following quality model:

~ X NFD <0, NPD > 0, the larger [NFD x NPD| is, the better the quality.
— IfNFD >0, NPD <0, the larger [NFD x NPD| is, the worse the quality.
— If both NFD and NPD are negative, the larger %—B— is, the better the quality.
— If both NFD and NPD are positive, the smaller %% is, the worse the quality.
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— If both NFD and NPD have the same sign and %% has a value close to 1,
then quality may be assessed as average or nominal.

This particular quality model takes into account two dependent variables and illus-
trates that a quality model may be a subjective function of several distances on the
rerspective dependent variable ranges. This model might be modified, according to
the user perspective of quality, to change the weighting of the various DVs or factors,
e.g., doubling the effect of fault rate in the evaluation of quality.

4.4 Development Environment Analysis

The user may wish to analyze the collected historical data in order to get some intuition
about the development environment (e.g. what significant features affect productivity?).
This could help an organization improve its development process(es) and management tech-
niques by tailoring them to their environment.

To obtain experimental results, one may perform an OSR on each of the pattern vectors in
the available data set, using all other pattern vectors as the learning sample. Based on the
N Optimized Set Reductions (N being the number of pattern vectors in the test sample),
the occurrences of each IV in the IV terminal subsets are counted and weighted.

Several possibilities are available to weight the counts :

e according to the ranks where they appear in the terminal subsets
e according to the number of data points on which they are selected.

e according to the entropy variations they create

This count should give an insight into the significance ranking (according to the dependent
variable) of the available IVs in the development environment where the data has been
collected. Obviously, these counts can be performed on subsets of the data set and compared
(e.g. real time versus business applications).

If an IV is known from experience as very influential but it does not appear very often in
the terminal subsets, several reasons are possible :

o the IV represents a factor that is very influential with respect to the dependent variable
but is quite constant in the development environment. This may due to inappropriate
interval boundaries on the range of the independent variable that do not sufficiently
differentiate the objects of study in the learning sample. This ability to differentiate
may change over time with the evolution of technology.

o the IV is not selected because it is highly interdependent with other available IVs
selected during the set reductions (this issue is explained more in detail in Section 6).

e an innacurate data collection
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5 Experimental Results

In this section we demonstrate the effectiveness of the approach by applying the OSR. mod-
eling process to the problem of cost estimation and showing that OSR is able to recognize
meaningful patterns on the available data sets. Although we will only be dealing with the
prediction capability, this experiment can be viewed as demonstrating the effectiveness of
the risk assessment and quality evaluation capabilities since the three processes have been
shown in Section 4.3 to all be based on the conditional probabilities estimated on the de-
pendent variable range. Therefore the accuracy of the three formulas are all dependent on
the significance of the recognized patterns.

We will also determine the most influential factors affecting productivity, regardless of the
development environment. We will do this by assessing the significance of each factor in
predicting productivity. We will then analyze the results to determine if they are reasonable.

The largest part of our data set comes from the COCOMO database published in 1981 (63
data points/pattern vectors) [BOE81]. A second source of data is provided by Kemerer (15
data points), collected in a COCOMO format and published in 1987 [KEMS7].

The first data set is a mix of business, system, control, high level interface and scientific
applications. A significant percentage of these projects has been developed in FORTRAN
(38%) and a very small number in Cobol (8%). The second set of projects reflects a variety of
data processing applications most of them developed in Cobol (87%). The following sections
describe an experimental evaluation of the OSR technique as applied to effort estimation
based upon these two data sets. Results obtained with the OSR approach are compared to
results from other standard approaches in order to provide some basis for comparison.

In the following sections, we use three different data analysis procedures to make cost
predictions for the fifteen Kemerer’s projects based on their COCOMO cost drivers:

e the OSR approach.
¢ a calibrated intermediate COCOMO model.

e a pure regression approach.

In what follows, we will use the term data set to refer to the COCOMO and Kemmerer
data sets, the test sample refers to the Kemerer data set which is the sample on which we
are going to assess the OSR capabilities, and the learning sample for each optimized set
-reduction is the data set minus the project we are trying to assess.

Thus, 15 optimized set reductions will be performed, one for each of the test sample pattern
vectors. Each time, the pattern vector to be assessed will be removed from the whole data
set to form the learning sample (77 projects) in order to get realistic results. This would be
similar to a situation where an organization has collected data about 77 projects and wants
to assess a new project. '

However, the reader must consider that various subsets of the 78 projects have been devel-
oped in various environments, at different points in time and collected by different people
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according to different procedures, in different organizational structures. The difficulties in
tailoring the COCOMO cost drivers to various environments causes a loss of consistency in
the data collection regardless of the analysis technique. Moreover, it is important to notice
that the project productivities lie over a very large range (i.e. from 20 to 2491 LOC/MM).
The 78 pattern vector data set is small enough to assess the capability of the approach
to deal with small samples. The number of independent variables used (15) compared to
the available data set and the nature of these IVs (i.e. ordinal, nominal) make any pure
regression analysis based approach difficult to apply.

In order to evaluate the performance of the OSR technique, we will first reference the results
obtained by Kemerer in using some of the main models available:

e SLIM: MRE=772%

o Intermediate COCOMO: MRE=583%
¢ FP: MRE=103%

¢ ESTIMACS: MRE=85%

According to the author, one of the reasons for which the last two models yielded substan-
tially better results is that they are built on business data processing application projects.
Since the data used to develop the FP and ESTIMACS models were either not available or
not provided in a COCOMO format, we cannot include them in our data set even though
they may be more suitable as a learning sample for the fifteen projects of the test sample.

5.1 Understanding and assessing the cost of development using OSR

As the Dependent Variable, we use project productivity (i.e. size/effort). The size metric
used is the ” Adjusted Delivered Source Instruction” as defined in COCOMO, and the effort
unit is staff-months. The Independent variables are the COCOMO cost drivers. The ranges
for all but one (SCED) of the IVs have been decomposed into two intervals (i.e. the
boundary being located either just below or above nominal depending on the IV) and the
DV range into five intervals containing an equivalent number of pattern vectors, to the
extent possible.

Using the termination approach defined in Section 4.1, the termination criterion was set
to 8 projects, after being tuned based upon the learning sample. No more sophisticated
decomposition heuristic was used.

Table 1 gives the results for each of the fifteen data points of the test sample. The five
columns contain the project number, the actual productivity, the predicted productivity,
the actual effort, the predicted effort and the entropy yielded by the OSR processes.

19



Table 1

oracr [ Acun [preasiea] actar” Toreacter T cureon
1 884 299 287 846 0.63
2 491 935 82 44 0.24
3 580 674 1107 668 0.45
4 2467 643 87 333 0.06
5 1338 952 336 473 0.27
6 595 1196 84 a2 0.47
7 1853 1016 23 42 0.47
8 1535 1006 130 199 0.52
9 2491 431 116 670 0.56
10 542 1028 72 38 0.06
11 983 . 1028 258 247 0.06
12 557 1025 231 125 0.06
13 1028 1035 157 155 0.06
14 667 1070 247 154 0.27
15 861 964 70 62 0.06

Despite an encouraging average prediction accuracy which is discussed below, the three
data points with highest productivity (project 4, 7 and 9 in Table 1) yield large effort
overestimation. These three projects have a productivity far above the other 75 projects of
the learning sample and these productivity values might be the result of several problems:

e the size evaluation (i.e. adjusted KDSI) has not been performed according to the rules
described in [BOES81]. This lead to a size overestimation.

e something occurred that was not captured by the 15 COCOMO cost drivers.

More information on these particular projects would be necessary in order to make a more
thorough analysis. However, in order to keep these three projects from introducing noise in

our analysis, we will also analyze the results obtained by removing them from the learning
sample.

Tables 2.1 and 2.2 summarize the previous results by giving, for three entropy intervals, the
average Magnitude of Relative Error of the effort estimation in the respective intervals for
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each modeling technique, (columns MRE—-OSR, —CC for calibrated COCOMO and —SR
for stepwise regression ), and the percent of the test sample falling in that interval, (column
%TS). Table 2.1 takes into account the projects 4,7,9 and Table 2.2 ignores them. This
provides some insight into the correlation between the accuracy of the effort estimation and

the entropy.

Table 2.1
SUBSET MRE-OSR | MRE-CC | MRE-SR | % TS
F <=0.06 65% 34% 78% 40%
0.06 <F<= 047 | 50% 168% 80% 40%
0.47¢F¢«=063 | 2462 - 622% 261% 20%
Table 2.2
SUBSET MRE-OSR | MRE-cC | MRE-SR | 2 TS
F <=0.06 21% 33% 47% 42%
0.06 <F<=0.47 | 433 81% 60% 42%
0.47¢<F<=063 | 1242 76% 105% 16%

The reader should notice from Table 2.2 that as the entropy gets lower, the accuracy (i.e.
MRE) gets higher. Therefore, whenever one makes an estimate, the entropy of the pattern
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on which the estimate is based is calculable and provides an assessment of the accuracy
of the estimate. For example, if the obtained entropy is around 0.06, you know that the
expected accuracy should be around 21%, according to the results obtained in Table 2.2. In
Table 2.1, the results seem disturbed by the three high productivity projects. They create
large standard deviations with respect to the accuracies in each entropy interval. Table
2.3 gives the standard deviations calculated in each interval. The first column takes into
account the three high productivities projects. The second one ignores them.

Table 2.3
SUBSET SD-15 SD-12
F <= 0.06 102 20
0.06 < F¢=0.47 9 4
0.47<F<¢= 0.63 323 58

According to the second column of Table 2.3, the standard deviations of the average accuracy
in the two lower entropy intervals are relatively small showing that the prediction accuracy
may be estimated with a reasonable precision. If the entropy is below 0.06, the accuracy
has a high probability of being under 41% (average M RE plus the standard deviation in
this specific entropy category). For example, if the distribution of the residuals around the
average M RFE is assumed Normal, then this probability value lies around 85%. Since the
highest entropy interval contains only two projects, it is difficult to draw any conclusion
from its high standard deviation. However, a high standard deviation of the MRE values
should be expected in high entropy categories since patterns are not very significant and
therefore yield inaccurate predictions.

A problem that may affect the analysis is that the estimation a,céura,cy may be disturbed
significantly when the actual productivities of projects are close to the extreme boundaries
of the productivity ranges. This is because the density of projects in these parts of the
range may be much lower than projects found in the middle of interval ranges. Only
intuition based upon understanding the particular situation can help the manager detect an
unusual, extremely low/high productivity so the effort estimate may be increased /decreased.
Obviously, something that has never or rarely occurred is difficult to predict.

In summary, based on Table 2.2, the results are very encouraging, especially if we consider
that we are using only fifteen new projects and with different profiles. That is, despite the
constraints, impressive results (averageM RE = 32%) was achieved in 84% of the cases
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(projects 4,7,9 are ignored). We have clearly satisfied requirement R, from Section 2.2.
Another important point is that no assumptions have been made of the kind discussed in
requirement R;.

Thus, someone with only 15 projects specific to his/her environment may use the COCOMO
data set to form a learning sample on which to construct an OSR model and get some useful
predictions.

In order to determine the most influential factors affecting productivity, counts of occur-
rences of the various independent variables have been performed according to the description
given in Section 4.4. Table 3 has three different columns. The first gives the raw counts of
occurrences, i.e., the number of occurrences of each IV used to create some decomposition
for the given test sample. The second gives the same counts of occurrences weighted ac-
cording to the level of decomposition where the independent variables appears in the OSR
processes (e.g. if an IV appears at the level two of a decomposition then its occurrence count
increases by 1/level = 0.5). The third column shows the total variation of the productivity
mean due to each cost driver in the fifteen OSRs performed. This table gives several in-
sights into the influence of each of the fifteen cost drivers on the productivity of the fifteen
business applications studied. The three columns give three different perspectives of the
impact of each cost driver on the predictive ability of the model.

Table 3
C.DRIV | ocC W. OCC ]| MEAN VAR,
RELY 2 1.33 720
DATA 3 2.33 594
CPLX 1 0.25 270
TIME 1 0.33 280
STOR " 105 2770
VIRT 4 266 65
TURN 4 1.83 85
ACAP 7 35 706
AEXP 1 0.33 350
PCAP 7 266 2075
LEXP 0 0 0
VEXP 1 0.5 268
MODP 1 05 270
TOOL 0 0 0
SCED 0 0 0
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When a factor yields a low number of occurrences, several causes may be considered:

o The factor is quite constant in the learning sample and therefore will not help in
differentiating projects. It should be noted that when a factor is constant in an
environment, there is a loss of information about the effects of that variable.

o The factor has not much influence on the Dependent variable studied.

e There is an interdependence between the IV and some more influential IV.

Table 4 provides an assessment of the influence of the cost drivers on productivity relative
to only one of the three columns from Table 3, the unwieghted occurrences. Table 4 has 2
columns: the first one gives non-weighted counts of occurrences and the second one shows
the cost drivers matching them. Two distinct cost driver subsets may be observed that
yield very different counts of occurrences (< 4, > 7). Considering the test sample size, we
may only say that there is clearly a set of three very influential cost drivers for which the
data collection must be as accurate and consistent as possible, (ACAP, PCAP, STOR).

Table 4
* 0CC Cost Drivers
0 Tool, Sced, Lexp

1 Cplx, Time, Aexp,Vexp,Modp

2 Rely
3 Data
4 Virt, Turn
7 Acap, Pcap
11 Stor

Storage constraints appear to be very significant. This makes sense for systems focusing
on data processing and dealing with very large amounts of data. The data set shows that
most of these fifteen projects fall in the categories "high” and ”very high” with respect
to the cost driver DATA which makes the previous statement reasonable. The cost driver
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STOR appeared at the top level of decomposition in ten of the fifteen OSRs performed.
The average entropy for the ten projects is much lower (i.e. 0.17) than the average entropy
for the five projects where STOR was not used (i.e. 0.52). This furthers the argument that
STOR is very significant for the prediction ability of the OSR model for this particular
test sample. STOR was not used in any case where storage constraints were rated above
nominal. As a consequence, high storage constraints make productivity difficult to predict
for this particular data set.

Of course, as shown in Software Engineering Economics [BOE81], the staff capabilities
(Analyst, Programmers) play a crucial role in achieving optimal productivity. When STOR,
ACAP and PCAP were all included in the decompositions, the entropies were the best
obtained (i.e. 0.06). Therefore, ACAP and PCAP seem to significantly improve the average
entropy of the recognized patterns (i.e. 0.06 instead of 0.17). Moreover, all the projects
where ACAP and PCAP were used had high capability teams. This shows that productivity
predictability is more accurrate at higher ranges of capabilities.

Table 4 shows that the reliability and complexity factors have a weaker influence on pro-
ductivity than expected (according to the results published in [BOES1]). However, the fact
that most of the fifteen projects of the test sample fall in the “nominal” category and there
are no extreme complexities or reliabilities present may explain the lack of significance of
these parameters for this particular test sample.

Therefore, based on the above examples, it should be noted that the significance of the IVs
(i.e. cost drivers) in predicting productivity seems to be very dependent on the localization
of the test sample pattern vectors on the IV ranges themselves. STOR does not seem to
help predict productivity when the storage constraints are high in the range (i.e. above
nominal). In this case, the variability (and the entropy) in the produced patterns is larger
and therefore STOR is not selected in the decompositions. The same phenomenon may be
observed for low ranges of PCAP and ACAP. With respect to CPLX and RELY, results
are more difficult to interpret because of the lack of variation in the test sample. However,
their low significance in the test sample might be explained as a consequence of the nominal
reliability and complexity of the projects included in the test sample. Considering that
most of these projects are business data processing applications, this result seems to make
sense.

Neither “Virtual machine volatility” (VIRT) nor “Virtual machine experience” (VEXP)
show much influence here on productivity. There is nothing in the data that explains this
result and therefore we may conclude that these factors are not significant. The factors
MODP (i.e. modern programming practices) and TOOL (i.e. use of software tools) show
almost no significance. This result contradicts the results shown in COCOMO. No interde-
pendence with other factors was detected in the data set. This latter result may be due to
a weak variability in the level of technology involved in the system developments or incon-
sistent data collection between the two data sets used. For example, the definitions of the
MODP categories are quite fuzzy and leave room for interpretation and inconsistencies.

AEXP also has minimal impact. This may be understandable in this context where the
application domain of these 15 projects does not involve high-technology or mathematically
intensive problems. LEXP shows no influence on productivity. Considering the low com-
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plexity of the programming language COBOL, the learning process for this language may be
estimated as very fast for any experienced programmer. SCED (i.e. schedule constraints)
shows no impact on productivity and therefore confirms the conclusions of the COCOMO
model.

According to the counts of occurrences in Table 4, the three most influential cost drivers
(i.e. ACAP, PCAP, STOR) belong to the category of the seven most influential cost drivers
in the COCOMO’s cost driver ranking, despite the different nature of the considered fifteen
projects.

5.2 Effort Estimation Using a Regression Tailored COCOMO

To allow for an evaluation of value of the OSR technique for the prediction of productivity
and effort, a comparison with more conventional techniques is provided. In Section 5.1, we
referenced an evaluation by Kemerer [KEM87], where the average MRE was 583%. However,
the model overpredicted on every project, so it seems that COCOMO may be calibrated
too high for this environment. It seems unfair to directly compare uncalibrated results to
the results obtained through the OSR technique. In this section we describe an experiment
in tailoring the intermediate COCOMO model to the data supplied by Kemmerer using
regression based techniques. The calibration technique chosen was the one that most closely
resembled the previously described OSR experiment. A new model was developed from
project data from both COCOMO and Kemerer, using the intermediate COCOMO project
information. The base data set for the experiment was the data points of the COCOMO
model, along with all but one of the data points from Kemerer’s data set. The mode of
the removed project was determined, and a model was developed from all of the projects of
that mode from the base data set, with the local data points being weighted three times the
COCOMO data points. A regression was performed on the equation In(E/7) = A+ bin(S)
(where 7 is the product of the effort multipliers) to determine the best values for the constant
term a (where a = e#) and the scale factor b. The values of the effort multipliers were not
adjusted in any way. The model for the prediction of effort then becomes E = 7aS$°.
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This model was then evaluated by comparing its prediction to the actual effort for the
remaining project. This experiment was done for each of the 15 projects in the Kemerer
data set. Table 5 provides a summary of the experiment:

Table 5

Project Predicted MRE

effort

1 230.9 .196
2 54.5 .339
3 1641.6 483
4 120.2 .383
5 849.5 1.526
6 187.5 1.232
7 163.7 6.055
8 303.7 1.33
] 2105.8 17.183
10 £8.2 .083
11 204.7 139
12 134.9 415
13 264.1 682
14 383.0 551
15 4.7 403

The results are not so good. The average MRE overall is 206%; however, if project 9 (an
apparent outlier) is removed from the data set, MRE is reduced to 99%. The results for
projects of the semi-detached mode were better than either of the other modes. This was
expected, as there are many more projects in this mode than in either of the other modes.
For the semi-detached mode, the average MRE is 44%, with 3 of the 9 projects having an
MRE of < 20%. For the other modes, there may not be enough data points to accurately
adjust the model to local environment. For the 2 projects categorized as organic mode,
the average MRE was 104%, and for the 4 embedded mode projects, the average MRE was
623%. Removing project 9 from the data set lowers the embedded mode average MRE to
259%. The model still tends to overpredict, with overestimations on 2/3 of the projects,
which furthers the notion that the COCOMO cost multipliers are not representative of the
local projects. Further experimentation indicated that the best prediction could be obtained
by ignoring the mode and all the effort multipliers, and utilizing only the local effort and size
data in the development of the model. The fact that the mode was not useful when tailoring
the model is either due to the small number of data points in the organic and embedded
modes, or an indication that mode is not significant in this environment. This indicates
that the COCOMO effort multipliers are either not significant in this environment, or that
they do not have the appropriate values for this environment. Unfortunately, since the data
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set is small, and the original values for the COCOMO effort multipliers were developed
somewhat heuristically, we can not accurately adjust the values to be useful for prediction
in this environment.

5.3 Effort Estimation Using a Pure Regression Approach

We performed a standard regression process having the following characteristics:

The dependent variable of the regression was productivity, as in the OSR experiment previ-
ously described. A linear functionnal form was used for the regression equation. The fifteen
COCOMO cost drivers were the potential parameters included in the equation. Then a
stepwise selection of the regression parameters was run based on the F partial values of the
various regression parameters [DIL84].

The results for all the fifteen projects are the following:

e R2=0.36
¢ MRE =115%

If projects 4,7,9 are removed from the test sample (see previous sections), then the results
are improved:

e R2=0.54
e MRE = 62%

Detailed results are provided in Table 6.
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Table 6

Project Predicted Predicted MRE
Productivity Etfort

1 553.5 458.2 596
2 628.9 64.4 .219
3 848.6 5298.7 522
4 740.7 289.5 2.331
5 578.1 778.2 1.314
6 1049.1 477 433
7 659.9 65.2 1.808
8 620.2 3225 1.475
9 370.2 780.7 5.73
10 489 .0 79.8 .108
1 384.0 662.0 1.558
12 1304.9 98.6 573
13 1159.9 139.1 114
14 12022 1275 483
15 939.6 64.1 .083

54 A Cdmparison of the Three Techniques

Comparing the results of the OSR and regression based techniques leads to several observa-
tions. First, for this data set, the OSR technique provides a significantly better prediction
than either a tailored COCOMO or a stepwise regression. For 10 of the 15 projects, the
prediction of the OSR model was more accurate than that of both regression models. If
outliers are not removed, the two regression based models had an average MRE of 206% and
115% respectively, while the OSR model had an average MRE of 94%. If the projects 4,7
and 9 that showed extremely high productivities are not considered, the MRE for the re-
gression models becomes61% and 62% respectively, while the OSR model is 47%. Moreover,
the OSR results were obtained without using the notion of “development mode”, making
the estimation process easier. The results for OSR are much better that the regression
techniques in the two lower entropy categories (32% vs. 57% and 54% respectively for the
calibrated COCOMO and the stepwise regression models). This result should have been
expected since poor entropy implies that no significant pattern has been found and so the

poor entropy projects bias the OSR results negatively. Consequently, in the highest entropy
category, regression based techniques can perform better.

A second benefit of the OSR technique its ability to provide an indication of the expected
accuracy of the prediction, as demonstrated by the clear correlation of MRE to entropy.
Projects with characteristics that have previously shown widely varying productivities (i.e.
no clear patterns) are flagged with high entropies, allowing the manager to recognize that
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the prediction may be suspect. The regression based models provide no such indication of
the accuracy for an individual prediction.

For exmaple, the tailored COCOMO model provided relatively accurate predictions for
projects of the semi-detached mode (an average MRE of 32%), except for a poor prediction
for project 8, with an MRE of 133%. The prediction for project 8 using the OSR model
was more accurate (MRE of 53%); however the prediction was flagged with a high entropy,
indicating an unstable prediction. The regression based models provide no indication of the
potential of the innacurate prediction, while the OSR technique indicates that no significant
pattern has been recognized in the available data set. The worse prediction obtained by
applying the OSR technique was for project 1 (if you eliminate projects 4,7,9 whose the
bad results are likely to be due to extreme productivities and missing IVs). In agreement
with the expectation, this poor prediction is visibly flagged with the worse entropy (i.e.
0.63) among the fifteen projects of the test sample.

Despite this important advantages of the OSR technique with respect to prediction, the
regression based approaches may be very useful because their prediction abilities appear
better when OSR yields bad entropies (see Table 2.2), i.e., when no significant pattern has
been recognized. Therefore, an overall prediction process could be defined as a combination
of all the modeling techniques previously cited.

6 Data Analysis Disturbances

The decision maker will have to take into consideration the following issues in order to
perform a sensible analysis. These problems will have to be better understood and investi-
gated. Some procedures will have to be defined, from the perspective of the OSR approach,
in order to alleviate their effects on the data analysis. This section of the paper does not
give definitive solutions but rather poses the issues in clear terms and shows how an OSR
. approach might deal with the described problems.

6.1 Interdependence among explanatory variables

There are two different kinds of interdependence between two variables I'V;, and IV3, i.e.
positive and negative correlation. The first case is where the two variables have a similar
influence on a Dependent Variable defined on a continuous range (e.g. DV decreases when
either I'V; or IV; increases). For example, let’s suppose the dependent variable is produc-
tivity and for the given applications, code complexity is strongly correlated with the size
of the database (i.e. number of entities and relationships for a relational model) . Both
have a tendency to decrease productivity. The variables do not lose their explanatory power
and will be effective for prediction using an “optimized set reduction” approach. However,
the count of occurrences will be disturbed and will not represent accurately the indepen-
dent influences of either “code complexity” or “database size” on productivity. There is a
causality relationship between the two independent variables. A large “database size” will
systematically create a high “code complexity”. Thus, the numbers of occurrences for both
the independent variables cannot be considered distinctively. However, the two variables
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may be combined in a higher level IV called for example “System Complexity”.

In the second case, the two variables have an opposite influence on the dependent variable.
For example, the DV being productivity and due to an effective project management or-
ganization, experienced programmers are assigned on complex programs. This situation is
much more harmful in the sense that the two IVs lose their explanatory power (i.e. the
productivity will not seem to decrease with complexity). They are not likely to be selected
in the decompositions of the OSRs despite their strong influence on productivity. The accu-
racy of the results should not be significantly affected. However, the actual impact of these
factors on productivity becomes difficult to assess. With respect to the previous example,
using the ratio Complexity/Experience as an IV could be a solution to investigate in order
to minimize the impact of interdependence.

If a missing IV is interdependent with available IV in the data set, then the previously
described problems occur and become even more difficult to detect.

From an OSR perspective, an easy way of measuring the interdependence between two
positively correlated IVs IV, and IV, is to calculate the variation of occurrences O, if IV,
is withdrawn from the used IV set.

Let us define:

o IVS; (IVset 1) = IV S, - IV,

¢ Onp being the counted occurrences with IV S, for IV,,n € (1,2)
The Level of Interdependence (LI) between A, and A, can be define as follows :

|O1p — Oz
L] = i

where the higher the value of LI, the greater the effect of interdependence on the analysis
of the influence of the factors.

The effects of interdependence are not avoidable independent of the modeling technique.
The only solution consists in taking a larger sample, preferably in a way that decreases
interdependence between IVs. However, being able to detect such phenomena in the data
set in a simple and effective way, is required in order to partially fulfill the requirement R3
(Section 2.2).

This issue is still to be further investigated in order to come up with a well defined procedure
based on OSR, correlation matrices, etc. and refined based upon lessons learned from
experiments.

6.2 Outliers and Missing Independent Variables
The detection of outliers based on multiple regression is quite subjective and difficult to

perform. Outliers are defined as: “Observations that have a disproportionate influence on
the calculated model” [DIL84]. Some techniques are available to evaluate the influence
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of a data point (or a group of data points) on the regression coefficients, coefficient of
determination, or residuals. However, no objective rule or heuristic exists to determine the
level when a (group of) data point has a "disproportionate influence”. Also one outlier may
mask the effect of another and the detection process may become even less effective. Then,
you have to examine the influential effects of subsets of data points. It may be difficult to
apply (in N-dimension space with NV greater than 2) because there is no simple way (e.g.,
visually) of selecting the right group of data points in order to avoid the “masking effect”.

Outlier detection in the context of an “Optimized Set Reduction” becomes much easier
and more objective and therefore partially fulfills R3. By performing OSRs, you obtain
patterns on the DV range. If some data points are far from the main distribution forming
the pattern, then they may be considered as outliers matching the following definition :
“Outliers correspond to objects that do not lie in the expected DV intervals because the
data collection has not captured the phenomenon responsible for the different behavior of
these objects with respect to the DV”. According to this definition, outliers are strongly
related to the “missing independent variable” issue. Therefore, analyzing the outliers may
lead to redefining the data collected.

In Section 5, three among the 78 projects present in the data set had extremely high
productivities (i.e. projects 4, 7, 9 in the Kemerer data set). Accordingly, these three
extremely high productivities were not explained by the fifteen defined cost drivers and are
typical examples of outliers.

7 Learning using an OSR approach

Understanding, evaluating, predicting, and controlling software development requires the
ability to build quantitative models of various software processes, products, and other forms
of experience, e.g. resource estimation and allocation, defect prediction, reusability. Model
development is further complicated by the fact that organizations change and our knowledge
evolves over time. Therefore it is necessary that the models evolve over time in an effective
way, e.g., valid, cost-effective.

Based upon our experience in trying to evaluate and improve software quality in several
organizations [BAS85, BWS81, RB87, SB88] a quality-oriented, evolutionary life cycle model
has been developed, called the Improvement Paradigm (IP) [BAS89, BR88]. The IP is
measurement based and requires the development of models that can learn and evolve with
an organization. '

The IP is defined as a set of six activities:

e S51: Characterize the current project and its environment.

o 52: Set up goals and refine them into quantifiable questions and metrics for successful
project performance and improvement over previous project performances.

e 53: Choose the appropriate software project execution model for this project and
supporting methods and tools.
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e 54: Execute the chosen processes and construct the products, collect the prescribed
data, validate it, and analyze the data to provide feedback in real-time for corrective
action on the current project.

o 55: Analyze the data to evaluate the current practices, determine problems, record
the findings and make recommendations for improvement for future projects. This
is an off-line process which involves the structuring of experience so that it can be
reused in the future.

e 56: Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it in an
experience base so it is available for future projects.

In the context of the Improvement Paradigm, two distinct kinds of improvement goals can
be seen. First, the manager wants to improve the models that are being used to describe
the processes of the environment. Additionally, it is desireable to improve the processes
themselves to better meet organizational goals. Unfortunately, these improvement goals
conflict. As the processes change, the models that describe these processes may lose there
validity. In an environment featuring a great deal of change and experimentation with
new methods, techniques and tools, it is essential that the models be refined and assessed
continuously.

The OSR approach can be used to address both improvement goals. Analysis of the patterns
found in projects with higher or lower productivities can help to focus areas of improve-
ments in the development processes. For example, it may be noticed that projects with tight
timing constraints and teams with little prior experience with the target machine typically
have low productivities. The manager may choose to ensure that on projects with such
timing constraints, the team must have significant target machine experience. Similarly,
if a particular project profile yields a high entropy value (indicating widely varying pro-
ductivities), the manager may make changes to the development process to obtain a more
predictable project.

As the processes evolve, the OSR automatically incorporates the new experience into the
models. Future predictions will be based on both the new and the old data in a manner
transparent to the user. However, some independent variables may become less significant
as the technology evolves (e.g. complexity, storage constraints). This may be easily ob-
served by taking several test samples covering the time range and comparing the counts of
occurences. If a trend is observed, then one of the two following conclusions may be drawn:

o Ideally, the more one collects data, the better are the chances of improving the pro-
cess. However, if a metric is expensive to collect and it appears insignificant in the
OSR experiments, the team in charge of the data collection might stop collecting the
corresponding factors in order to lower the measurement cost.

o The intervals on an IV range, as currently defined, have become unsuitable over time.
For instance, let us say the new systems have become more reliable. As a consequence,
most of them will fall in the category “very high” and the factor RELY will lose its
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explanatory power over time. The way data are collected and/or the way the IV range
is divided must be changed in order to improve the prediction process.

8 Conclusions

The Optimized Set Reduction (OSR)has been developed in order to address the specific
data analysis issues within the software development process, as defined by the Improvement
Paradigm. The procedure has the following positive characteristics that allow prediction,
risk assessment and quality evaluation:

¢ It makes no assumptions with respect to probability density functions on the depen-
dent and independent variable ranges. It does not attempt to fit data to predefined
distributions, rather it uses the data to approximate the actual distribution (i.e. pat-
terns). Also, no particular mathematical relationship between the DV and IVs needs
to be assumed. Thus OSR seems to fulfill R;.

o It allows an estimation of accuracy for each analysis so we can answer the question :
is the estimation usable? This fulfills R,.

o It is robust to non-relevant and missing metrics and allows a more objective way of
dealing with outliers. First, the OSR process is intended to select the combination
of IVs yielding the best patterns and therefore selects automatically the most signifi-
cant group of IVs. Significance has been evaluated by calculating the entropy of the
distributions on the DV range. Non-relevant IVs will not be chosen. Second, OSR
detects outlier more easily because it analyzes distributions on the DV range as op-
posed to influencing analysis of pattern vectors in the multi-dimension sample space.
Third, OSR provides an easier way of detecting missing significant IVs by two differ-
ent means, the recognition of bad entropies and the detection of outliers. The issue
of interdependence between IVs requires more investigation. Rj is therefore partially

fulfilled.
¢ It handles discrete and continuous IVs in a natural way and therefore meets Ry4.

¢ It provides an automated refinement of the model as new data is incorporated into
the data set.

o The process for selecting IVs, among those available in the data set, can be automated.
Thus, the prediction process may be effectively automated and supported by a tool.

o It provides more objective baselines for comparisons and therefore allows more sensible
evaluations (e.g. product and process quality). Then learning procedures, based on
more objective quantitative evaluation, may be more accurate and effective.

¢ The use of the approach supports common sense and intuition as opposed to com-
plex mathematical assumptions. Therefore, project managers are more able to plan,
predict, control and make corrective actions supported by intuition.
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Finally, the results of the preliminary experiments have been encouraging. They strengthen
the idea that predictions may be accurate enough to be usable, despite the inherent con-
straints of software measurement in a production environment (see 2.1).

A prototype tool supporting the OSR approach is being developed at the University of
Maryland as a part of the TAME project.

Future research directions for this work include:

¢ refine the OSR process by addressing the issues presented in Section 4.1.2.
o analyze other data sets that highlight the issues related to discrete DVs.

o address the unsolved issues related to data interdependence.
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