
University of Maryland, CS-TR-3346 - 1

Goal-Driven Definition
of Product Metrics Based on Properties

Lionel Briand*, Sandro Morasca**, Victor R. Basili*

* Computer Science Department
University of Maryland, College Park, MD, 20742

{lionel, basili}@cs.umd.edu

** Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
morasca@elet.polimi.it

Abstract

Defining product metrics requires a rigorous and disciplined approach,
because useful metrics depend, to a very large extent, on one's goals and
assumptions about the studied software process. Unlike in more mature
scientific fields, it appears difficult to devise a "universal" set of metrics in
software engineering, that can be used across application environments.

We propose an approach for the definition of product metrics which
is driven by the experimental goals of measurement, expressed via the
GQM paradigm, and is based on the mathematical properties of the
metrics. This approach integrates several research contributions from the
literature into a consistent , practical and rigorous approach.

The approach we outline should not be considered as a complete and
definitive solution, but as a starting point for discussion about a product
metric definition approach widely accepted in the software engineering
community. At this point, we intend to provide an intellectual process that
we think is necessary to define sound software product metrics. A precise
and complete documentation of such an approach will provide the
information needed to make the assessment and reuse of a new metric
possible. Thus, product metrics are supported by a solid theory which
facilitates their review and refinement. Moreover, their definition is made
less exploratory and, as a consequence, one is less likely to identify spurious
correlations between process and product metrics.

1. Introduction

Metrics can help address some of the most critical issues in software
development and provide support for planning, monitoring, controlling and
evaluating the software process. However, past approaches for designing
new software metrics very seldom addressed a specific objective explicitly,

 This work was supported in part by NASA grant NSG–5123, UMIACS, and NSF grant 01-
5-24845. Sandro Morasca was also supported by grants from MURST and CNR.

University of Maryland, CS-TR-3346 - 2

and were usually not based upon assumptions/information about the
characteristics of the development environment under study. These include
descriptions of organizational structure and work procedures, guidelines,
standards, etc. This frequently led to some degree of fuzziness in the metric
definitions, properties, and underlying concepts, making the use of the
metrics difficult, their interpretation hazardous, and the results of the
various validation studies somewhat contradictory [IS88, K88].

As a consequence, the number of available metrics in the literature is
quite large, but the number of used and useful metrics in industry is small.
It is our position that, in order to make software measurement a viable part
of the solutions to software engineering issues, metrics must be defined
according to clear assumptions about the process under study and an
explicit definition of the specific goal(s) to be addressed. Based on these
goals and assumptions, desirable metric properties may be identified and
used to direct and constrain the search for metrics. Such an approach
appears particularly necessary for product metrics since these metrics are
often more complex than process metrics and address phenomena that are
poorly understood.

The goal of this paper is to specify (based on our experience [BMB93,
BBH93, BMB94(a)]) a practical metric definition approach, specifically
aimed at product metrics, and usable as a practical guideline to design
technically sound and useful metrics. The focus will be the construction of
prediction systems, which is a crucial application of measurement. Not all
activities in this approach can, at this point, be fully formalized, nor do we
believe that they will be completely formalized in the future. We think that
formal techniques can be very effective in providing support for better
understanding and analyzing software processes and products—indeed,
we advocate the need for a formal definition of metrics' mathematical
properties. However, the definition of a metric is a very human-intensive
activity, which cannot be described and analyzed in a fully formal way. We
believe that our metric definition approach may be better detailed, refined,
and tailored to fit the needs of different application contexts. This will be
made possible through the experience gained by using this metric
definition approach across several environments. Thus, this work should
be considered as a contribution towards a satisfactory solution. We point out
what information ought to be provided when one proposes a new metric in
order to make its review and refinement possible. Furthermore, we
determine what intellectual process one should go through to ensure the
technical soundness and practical usefulness of the defined metrics. A
purely exploratory approach to metric definition would have for a
consequence the experimental evaluation of a large number of
relationships between product metrics (possibly not supported by any
theory) and development process characteristics (e.g., effort). A simple
probability calculation [F91] shows that this kind of approach is likely to
lead to the identification of spurious statistical relationships, e.g.,
correlations uniquely due to coincidence.

Several important research issues involved in the definition of such
an approach have already been investigated. Basili et al. [B92] [BR88] have
provided templates to define operational experimental goals for software

University of Maryland, CS-TR-3346 - 3

measurement. Melton et al. have studied product abstraction properties
[MGB90]. Weyuker [W88] and Tian and Zelkowitz [TZ92] have studied
desirable properties for complexity metrics. In addition, the latter authors
provided a property-based classification scheme for such metrics. Fenton
and Melton [FM90], and Zuse [Z90] have investigated the use of
measurement theory to determine measurement scales. Finally,
Schneidewind has proposed a validation framework for metrics [S92]. All
this research needs to be integrated into a consistent and practical metric
definition approach.

The paper is organized as follows. In the next section, we provide an
overview of a practical metric design approach in part inspired by the work
referenced above and augmented with some new ideas. Then, in the
subsequent sections, we separately show each step of our metric design
approach in detail (Sections 3-8). Section 9 outlines the directions for future
work.

2. Overview of Our Metric Definition Approach

We provide here an overview of the steps composing this approach, as
illustrated in Figure 1 by a Data Flow Diagram. The remaining sections
will go in detail through all the issues involved in each of the steps and will
provide examples.

Step 1: Define Experimental Goal(s)
Define the experimental goal(s) of the data collection, based on the
general corporate objectives (e.g. reduce cycle time) and the available
information about the studied development environment (e.g.,
weaknesses, problems). This step requires goal definition techniques.
The Goal/Question/Metric paradigm (GQM) [B92] [BR88] is one of the
approaches that can be used to this end. It provides a set of templates to
define experimental goals and refines them into concrete and realistic
questions, which subsequently lead to the definition of metrics. For
instance, a GQM goal is:

Analyze software components for the purpose of prediction with respect
to the number of faults from the viewpoint of the project manager.

(We will use this very simple example to illustrate the steps of our
approach during this concise overview.) A GQM goal specifies the
object(s) of study (software components), the purpose of measurement
(prediction), the quality focus of interest (the number of faults), and
viewpoint (project manager) from which measurement is performed.
The goal strongly impacts all other steps of the metric definition
approach and the information they need. For instance, the object of
study and the viewpoint are used to determine the product artifacts and
information to be taken into account. The GQM paradigm uses
descriptive models (e.g., definition of complexity metrics) and predictive
models (e.g., cost models) in order to achieve the experimental goals it

University of Maryland, CS-TR-3346 - 4

specifies. However, the GQM paradigm does not specify how to generate
these models. In this paper, we expand the GQM paradigm to address
this issue with respect to product descriptive models. As we will see in
Section 6, questions about product characteristics are no longer
necessary in our approach. However, GQM questions on the confidence
with which assumptions are stated and on the quality (e.g., accuracy of
collection procedures, granularity) of data to be collected [B92, BR88] still
need to be asked. We will not address this issue, which is beyond the
scope of this paper.

Metrics

Goal(s)

State
Assumptions

Define Product
Abstractions and
Refine Properties

Product
Information

Corporate
Objectives

Define
Metrics

Define
Experimental

Goal(s)

Formalize
Relevant

Measurement
Concepts

Step 1

Step 2 Step 3

Step 4

Abstractions
+

Generic and
Context-dependent

Properties

Step 5

Validated
Metrics

Experimental
Validation

Step 6

Environmental
Characteristics

Generic
Concept

Properties
Assumptions

+
Relevant Product Aspects

Expert
Opinion

Relevant
Concepts

Existing
Concepts

Existing
Metrics

Existing
Abstractions

Goal(s)

Environmental
Characteristics

Build
Measurement

Models

Figure 1. Goal-Driven and Property-Based
Definition Approach for Product Metrics

University of Maryland, CS-TR-3346 - 5

Step 2: State Assumptions
Based on the object of study and the quality focus (as defined by the
experimental goals, Step 1), a set of relevant assumptions must be stated
to embody our intuitive knowledge about the development environment
and object(s) of study. Assumptions implicitely define an order on the set
of objects of study with respect to the quality focus [MGB90]. For
instance, components are ordered with respect to their error-proneness.
Furthermore, while stating these assumptions, relevant measurement
concepts are identified, e.g., size. For instance, based on developers'
interviews and a careful study of the development environment, we
might assume that the larger the number of sequential blocks of
statements and conditional statements in a program, the higher the
number of faults. From this assumption, size appears to be a possibly
relevant measurement concept. As an input for this step, we need
information on the development environment (e.g., descriptive process
model), product information and expert opinion as an intuitive basis for
the assumptions. Besides assumptions, the outputs of this step also
include

- a set of relevant measurement concepts (e.g., size)
- a better definition of the relevant aspects of the object of study (e.g.,

statement blocks and control flow)

Step 3: Formalize Relevant Measurement Concepts
Relevant measurement concepts of interest are formally defined (e.g.,
size, complexity, coupling, cohesion) through their mathematical
properties. Thus, they are clearly characterized and the search for
metrics is guided and constrained by these generic properties. This
makes the search for metrics less exploratory and provides precise
mathematical criteria for assessing the soundness of the metrics to be
defined. The mathematical properties characterizing the concepts are
identified independently from the concept instantiation into a metric
[TZ92] [Z90] [W88] and are therefore referred to as generic concept
properties. With reference to our simple example, we can say that a
property of size is that it is non-negative. As opposed to other papers on
the subject, we believe that these properties are subjective even though
some of them might be widely accepted. However, it appears that, for a
matter of convenience, a universal set of properties should be defined for
the most important concepts used by the software engineering
community, as is the case for more mature engineering disciplines. It is
important, when defining metrics, that one precisely determines the
meaning of concepts like size or complexity. Existing definitions may,
however, be reused when available and, conversely, the newly created
concepts may be stored so that they may be eventually reused.

Step 4: Define Product Abstractions and Refine Properties
One needs to define abstractions of the object of study that capture all the
information (i.e., objects, attributes, relationships) needed to express the
assumptions and the relevant product aspects they refer to. Some
examples of product abstractions are data flow graphs, data dependency

University of Maryland, CS-TR-3346 - 6

graphs, and control flow graphs. These abstractions will be
representations of the object of study that will help us express useful
properties and define metrics. For our example, we may assume that
control flow graphs are suitable abstractions with respect to the set of
assumptions and the concepts defined.

Once useful abstractions are defined, a set of new properties is added
to the generic concept properties. The objective is to formalize the
assumptions stated in Step 3: The intuitive ordering of the objects of
study (e.g.,components) with respect to the quality focus (e.g.,
components' error-proneness) must be preserved by the ordering of
abstractions (e.g.,components' control flow graphs) with respect to each
measurement concept (e.g., components' size) [MGB90]. For instance,
under the assumption stated in Step 3, and given two control flow
graphs G1 and G2, we can preserve the intuitive ordering captured by
the assumption if we define the following size property: the size of G1 is
greater than the size of G2 if G1 has more nodes than G2. These
additional properties allow us to tailor the generic concepts to any
particular quality focus and set of assumptions. It should be noted that
the added properties must be consistent with the generic properties
defined in Step 2. These added properties are specific to a given context of
measurement (i.e., goal, concept, assumptions, abstractions) and are
referred to as context-dependent properties. At this point, if the defined
abstractions are not fully adequate to define the context-dependent
properties, this step can be reiterated.

Steps 2, 3, and 4, taken as a whole, can be seen as a macro-step in which
measurement models [F91] (i.e., abstractions and generic/context-
dependent properties, main outputs of Step 4) are defined based on the
experimental goals, environmental characteristics, and product
information (inputs of Step 2).

Step 5: Define Metrics
Metrics are defined based upon the defined product abstraction(s),
concepts and their associated properties. Existing metrics can also be
reused if they satisfy the defined properties. With respect to our
example, size can be simply measured as the number of nodes in a
control flow graph. We are not able, at this point, to select optimal
metrics from those metrics satisfying the generic and context-dependent
properties. Experimental validation (Step 6) will help us do so. Metrics
are also generated to answer the GQM questions produced in Step 4.

Step 6: Experimental Validation
After defining metrics in Step 5, the data collected on the actual products
must be used to validate the assumptions upon which the metrics are
built. The procedure to follow for experimental validation varies
significantly depending on the purpose of measurement. With respect to
prediction, which is our main focus here, one needs to validate the
product metrics with respect to their statistical relationship to the
quality focus of interest. For example, we might find a very strong
correlation between the defined size metric and a simple descriptive

University of Maryland, CS-TR-3346 - 7

model of error-proneness, e.g., the number of faults. If the assumptions
are not supported by the experimental results, we need to repeat from
Step 2, re-consider the assumptions and properties, then re-define new
metrics. The definition and validation of metrics are performed
iteratively until the metric validation yields satisfactory results [S92].

It is important to mention that most of the outputs (e.g., product
abstractions, assumptions) of the steps defined above are reusable. They
should be packaged and stored so that they can be efficiently and effectively
reused [BR88]. In a mature development environment, inputs for most of
those steps should come from reused knowledge.

Moreover, many refinement loops are not represented in Figure 1.
For example, as we said in the description of Step 6, poor experimental
results may trigger the need for refining assumptions. This is an
important issue that needs further investigation.

In the remainder of this paper, we will use this definition approach
to define data flow size and complexity metrics as simple examples. Each
step will be discussed in detail in a different section. Each section contains
three subsections:

- Definition of the step
- Examples
- Discussion of related issues.

3. Define Experimental Goal(s) (Step 1)

Definition

In this section, we apply the first step of the Goal/Question/Metric
paradigm [B92, BR88] to set the measurement goals. Here is a summary of
templates that can be used to define goals:

Object of study: products, processes, resources
Purpose: characterization, evaluation, prediction, improvement, ...
Quality focus: cost, correctness, defect removal, changes, reliability, ...
Viewpoint: user, customer, manager, developer, corporation, ...

A detailed description of the GQM paradigm is beyond the scope of the
paper. A comprehensive description of the GQM paradigm can be found in
[B92, BR88].

It is important to note that the four goal dimensions mentioned above
have a direct impact on the remaining steps of the metric definition
approach and, from a more general perspective, the whole data collection
program. This can be summarized as follows:

The object of study helps determine the

- software artifacts that are to be modeled by mathematical
abstractions in order to be analyzable (Step 4).

University of Maryland, CS-TR-3346 - 8

- assumptions (Step 2) that may be relevant because related to the
object of study.

The purpose points out what is the intended use of the metrics to be defined
and therefore the

- type of data to be collected, e.g., process improvement requires
additional data over process prediction (e.g., with respect to
development effort), in order to allow for the determination of optimal
techniques and methods. For example, performance data are needed
in sufficient amount to ensure a minimal level of confidence in the
improvement decisions.

- amount of data to be collected, e.g., if prediction usually requires
more data than characterization so that the identified relationships
are statistically significant. Characterization only requires the data
to be representative of what is to be characterized.

The quality focus helps determine the

- dependent variable against which the defined product metrics are
going to be experimentally validated (Step 6) [S92]. This dependent
variable will in fact be a descriptive model of the quality focus. For
instance, number of requirement changes per month per thousand of
lines of code is a descriptive model of requirement instability. Since
there may be alternative models, validation may require the use of
several dependent variables. In this case, if inconsistent
experimental results are obtained, the dependent variables are very
likely to actually capture different quality focuses.

- assumptions (Step 2) linking the object of study characteristics to the
quality focus of interest.

The viewpoint helps determine

- the point in time at which characterizations, predictions, or
evaluations should be carried out and therefore what product
information will be available to define product abstractions and
metrics (Steps 4, 5).

- what information is costly or difficult to acquire and consequently,
what information should be left out of the model if it does not show a
sufficiently strong impact on the quality focus (Steps 5, 6).

- the definition of descriptive models of the quality focus. For example,
from the user's point of view, error-proneness may be defined as the
mean time to failure, whereas, from the tester point of view, it may be
defined as the number of errors occuring during the test phase.

In this framework, we will not derive questions from goals as suggested by
the GQM paradigm. A justification will be provided in Section 6.

University of Maryland, CS-TR-3346 - 9

Example of a goal

Let us assume that one of the corporate objectives is to reduce development
time, and more particularly the time spent on testing activities. Assuming
that previous studies have shown that errors are usually concentrated in a
small number of "difficult" components (example of information about the
development environment), the following experimental goal seems
pertinent. By identifying error-prone components, we may concentrate
verification activities where needed and, thereby, reduce effort.

Goal G

Object of study: component
Purpose: prediction
Quality focus: error-proneness
Viewpoint: tester

Let us take an example to illustrate the impact of the defined experimental
goal on our metric definition approach. We know from the object of study
that we have to define relevant component mathematical abstractions so we
can derive component metrics. We know from the purpose of measurement
that we need to collect enough data about the quality focus to allow a
statistically significant validation of the relationships between the
component metrics to be defined and the quality focus. This requires that
we better define our quality focus: error-proneness. Very likely, we need to
determine precisely how to count defects, e.g., what testing and inspection
phases should be taken into account?, are all errors equal or should they be
weighted according to a predefined error taxonomy? Such questions are
also dependent on the particular viewpoint. In our example, testers want to
find out where errors are and more particularly critical errors (according
to their own definition of criticality). Therefore, errors will be weighted
according to the level of criticality of their consequences. Similarly, errors
could be weighted according to the correction effort they require. The
determination of suitable error counting procedures will depend on the
particular application of the predictive model to be built and therefore on the
viewpoint of our experimental goal.

In the next sections, we will discuss more precisely about the impact
of experimental goals on the definition of software product metrics.

Discussion

The definition of the goals is a fundamental phase, since all other steps in
our approach are affected by the experimental goals. Therefore, extra care
must be used when setting the goals. Specific descriptive process models
and knowledge acquisition techniques can be used to better understand the
issues that are most relevant to software development in a software
organization. Careful application of the GQM paradigm provides two
important results:

University of Maryland, CS-TR-3346 - 10

- Data collection is ensured to respond to the specific needs of the
software organization;

- The derivation of metrics from explicit goals and the definition of
explicit measurement models (output of Step 4 of our approach) allow
the analyst to specify a priori the interpretation mechanisms
associated with the collected data. This prevents a posteriori search
for patterns which are not based on precise assumptions.

4. State Assumptions (Step 2)

Definition

We have to state assumptions (see examples below) about some aspects of
the software process under study that are relevant to the experimental
goals. These assumptions capture our intuitive understanding of the
studied phenomena and need to be explicit so they can be discussed,
questioned and refined. Various sources of information can be used to
devise pertinent assumptions. A thorough understanding of the working
procedures, methodologies and techniques used in the studied development
environment, combined with the interview of domain experts, is usually
very helpful [BBK94]. The set of assumptions defines an ordering on the set
of products [MGB90] with respect to the quality focus. This ordering will be
used to evaluate the adequacy of the metrics defined in the remainder of
this approach.

An assumption is a statement believed to be true about the relationship
between the quality focus and the characteristics of the object of study.

Stating assumptions helps identify the measurement concepts (e.g., size,
complexity) that are characteristics of the object of study relevant to the
goal. In addition, assumptions allow us to identify artifacts, or parts of
artifacts (e.g., definitions, condition expressions), that must be taken into
account for the definition of suitable product abstractions.

Examples of assumptions

In order to capture our intuitive understanding about data flow size and
complexity, we define the following assumptions.

Assumption 1:
The larger the number of definitions and condition expressions, the larger
the likelihood of error.

Assumption 2:
The larger the number of definitions and condition expressions
"depending" on a definition D, the larger the probability of ripple effects if D
is to be created or modified.

University of Maryland, CS-TR-3346 - 11

Assumption 3:
The larger the number of definitions on which a definition or a condition
expression D "depends", the more difficult it is to create and understand D.

Assumption 4:
The larger the "distance" between two definitions or condition expression
D1 and D2, where D2 depends on D1, the more difficult the control of ripple
effects on D2 if D1 is to be created or modified.

The concepts between quotes are not defined: they make sense on an
intuitive level. They will be formally defined later, either via the definition of
product abstractions (as is the case of "dependency"), or additional concept
properties in Step 4 (as is the case of "distance").

Discussion

At this point, several sets of consistent assumptions could be defined. This
would lead to multiple categories of metrics, reflecting the inherent
uncertainty associated with the assumptions. In Step 6, experimental
results will eventually help us select the best category of metrics for each
concept. For example, we could assume that when a condition expression
CE (as opposed to a definition) depends on a definition D, this increases the
probability of misunderstanding and ripple effect between D and CE. This
stems from the fact that condition expressions also have an implicit effect
on the definitions in the block they control. This additional assumption
(referred to as Assumption 5) affects the metric definition approach, as we
show in the following steps.

5. Formalize Relevant Measurement Concepts (Step 3)

Definition

The relevant measurement concepts are defined by specifying the
mathematical properties that are believed to characterize them. In our
framework, these properties should be used to constrain and guide the
search for new metrics. In addition, as shown in [BMB94(b)], intuition may
lead to properties showing awkward mathematical properties1. One should
always make sure that a metric exhibits properties that are essential for its
technical soundness. These properties are independent from both any
specific product abstraction and any future instantiation of the concept into
any specific metric. Therefore, they are called generic.

1The authors of this paper were several times misled in the definition of software metrics
that were intuitively appealing, but, after a more thorough analysis, showed inconvenient
and unsubstantiated properties.

University of Maryland, CS-TR-3346 - 12

A measurement concept is a class of metrics characterized by a set of
mathematical properties (i.e., generic concept properties) and associated
with an intuitive software product characteristic, e.g., size.

The generic properties associated with a measurement concept should not
be contradictory—there must be at least one metric that satisfy them.
Moreover, these properties should hold for the admissible transformations
[Z90] of the scale of measurement (i.e., nominal, ordinal, interval, ratio,
absolute) on which it is intended to define metrics. In other words, there
should not be any contradiction between the scale of measurement which is
assumed while using and interpreting a defined metric and its generic
properties.

Examples of concepts and their generic properties

In this example, we provide properties that are, in our opinion, generic for
metrics related to size and complexity. These concepts are believed to be
relevant with respect to many experimental goals and applications, and in
particular with respect to the goal defined above. As for complexity, the
properties we define are related to the properties several authors have
already provided in the literature (see [LJS92, TZ92, W88]). However, since
we may want to use these properties on artifacts other than software code
and on abstractions other than control-flow graphs, we formalized them in
a more general manner. A thorough discussion of these properties—which
is beyond the scope of this paper—can be found in [BMB94(b)]. These
properties are provided as an example. Nevertheless, in the metric
definition approach we outline in this paper, other sets of properties [TZ92]
[W88] may be used, since the selection of properties is, to some extent,
subjective.

Size and complexity are concepts related to systems, in general, i.e.,
one can speak about the size of a system and the complexity of a system. In
our general framework—recall that we want these properties to be as
independent as possible from any specific product abstraction—, a system
is characterized by its elements and the relationships between them.

Definition 1: Representation of Systems and Modules
A system S will be represented as a pair <E,R>, where E represents the set
of elements of S, and R is a binary relation on E (R ⊆ E × E) representing the
relationships between S's elements.

Given a system S = <E,R>, a system m = <Em,Rm> is a module of S if
and only if Em ⊆ E, Rm ⊆ E × E, and Rm ⊆ R. This will be denoted by m ⊆ S.

◊
As an example, E can be defined as the set of code statements and R as the
set of control flows from one statement to another. A module m may be a
code fragment or a subprogram.

University of Maryland, CS-TR-3346 - 13

Concept: Size

Intuitively, size is recognized as being an important measurement concept.
According to our framework, size cannot be negative (property Size.1), and
we expect it to be null when a system does not contain any elements
(property Size.2). When modules do not have elements in common, we
expect size to be additive (property Size.3).

Definition 2: Size
The size of a system S is a function Size(S) that is characterized by the
following properties Size.1 - Size.3.

◊

Property Size.1: Non-negativity
The size of a system S = <E,R> is non-negative

Size(S) ≥ 0 (Size.I)

◊

Property Size.2: Null Value
The size of a system S = <E,R> is null if E is empty

E = ∅ ⇒ Size(S) = 0
(Size.II)

◊

Property Size.3: Module Additivity
The size of a system S = <E,R> is equal to the sum of the sizes of two of its
modules m1 = <Em1,Rm1> and m2 = <Em2,Rm2> such that any element of S
is an element of either m1 or m2

(m1 ⊆ S and m2 ⊆ S and E = Em1 ∪ Em2 and Em1 ∩ Em2 = ∅)
⇒ Size(S) = Size(m1) + Size(m2) (Size.III)

◊

The last property Size.3 provides the means to compute the size of a system
S = <E,R> from the knowledge of the size of its—disjoint—modules
me = <{e},Re> whose set of elements is composed of a different element e of
E2.

Size(S) = ∑
e∈ E

Size(me) (Size.IV)

Therefore, adding elements to a system cannot decrease its size

2For each me, it is either Re=∅ or Re={<e,e>}.

University of Maryland, CS-TR-3346 - 14

(S' = <E',R'> and S" = <E",R"> and E' ⊆ E") ⇒ Size(S') ≤ Size(S") (Size.V)

From the above properties Size.1 - Size.3, it also follows that the size of a
system S = <E,R> is not greater than the sum of the sizes of any pair of its
modules m1 = <Em1,Rm1> and m2 = <Em2,Rm2>, such that any element of S
is an element of m1, or m2, or both, i.e.,

(m1 ⊆ S and m2 ⊆ S and E = Em1 ∪ Em2) ⇒ Size(S) ≤ Size(m1) + Size(m2)
(Size.VI)

The size of a system built by merging such modules cannot be greater than
the sum of the sizes of the modules, due to the presence of common
elements (e.g., lines of code, operators, class methods).

Properties Size.1-Size.3 hold when applying the admissible transformation
of the ratio scale [F91]. Therefore, there is no contradiction between our
concept of size and the definition of size metrics on a ratio scale.

Concept: Complexity

Intuitively, the complexity of a product is a measurement concept that is
considered extremely relevant to system properties. It has been studied by
several researchers [BMB94(b)]. In our framework, we expect product
complexity to be non-negative (property Complexity.1) and to be null
(property Complexity.2) when there are no relationships between the
elements of a system. However, it could be argued that the complexity of a
system whose elements are not connected to each other does not need to be
necessarily null, because each element of E may have some complexity of
its own. In our view, complexity is a system property that depends on the
relationships between elements, and is not an isolated element's property
[BMB94(b)].

Complexity should not be sensitive to representation conventions with
respect to the direction of arcs representing system relationships (property
Complexity.3). A relation can be represented in either an "active" (R) or
"passive" (R-1) form. The system and the relationships between its elements
are not affected by these two equivalent representation conventions, so a
complexity metric should be insensitive to this.

Also, the complexity of a system S should be at least as much as the
sum of the complexities of any collections of its modules, such that no two
modules share relationships, but may only share elements (property
Complexity.4). We believe that this property is the one that most strongly
differentiates complexity from the other system concepts. Intuitively, this
property may be explained by two phenomena. First, the transitive closure
of R is a larger graph than the graph obtained as the union of the transitive
closures of R' and R'' (where R' and R'' are contained in R). As a
consequence, if any kind of indirect (i.e., transitive) relationships between
elements is considered in the computation of complexity, then the
complexity of S may be larger than the sum of its modules' complexities,
when the modules do not share any relationship. Otherwise, they are equal.

University of Maryland, CS-TR-3346 - 15

Second, merging modules may implicitely generate relationships (note
R' ∪ R" ⊆ R in formula Complexity.IV's premise) between the elements of
each module (e.g., definition-use relationships may be created when blocks
are merged into a common system). As a consequence of the above
properties, system complexity should not decrease when the set of system
relationships is increased (property Complexity.4).

Last, the complexity of a system made of disjoint modules is the sum
of the complexities of the single modules (property Complexity.5).
Consistent with property Complexity.4, this property is intuitively justified
by the fact that the transitive closure of a graph composed of several disjoint
subgraphs is equal to the union of the transitive closures of each subgraph
taken in isolation. Furthermore, if two modules are put together in the
same system, but they are not merged, i.e., they are still two disjoint
module in this system, then no additional relationships are generated from
the elements of one to the elements of the other.

Definition 3: Complexity
The complexity of a system S is a function Complexity(S) that is
characterized by the following properties Complexity.1 - Complexity.5.

◊

Property Complexity.1: Non-negativity
The complexity of a system S = <E,R> is non-negative

Complexity(S) ≥ 0 (Complexity.I)

◊

Property Complexity.2: Null Value
The complexity of a system S = <E,R> is null if R is empty

R = ∅ ⇒ Complexity(S) = 0 (Complexity.II)

◊

Property Complexity.3: Symmetry
The complexity of a system S = <E,R> does not depend on the convention
chosen to represent the relationships between its elements

(S = <E,R> and S-1 = <E,R-1>) ⇒ Complexity(S) = Complexity(S-1)
(Complexity.III)

◊

Property Complexity.4: Module Monotonicity
The complexity of a system S = <E,R> is no less than the sum of the
complexities of any two of its modules with no relationships in common

University of Maryland, CS-TR-3346 - 16

(S = <E,R> and m1 = <Em1,Rm1> and m2 = <Em2,Rm2>
and Em1 ∪ Em2 ⊆ E and Rm1 ∪ Rm2 ⊆ R and Rm1 ∩ Rm2 = ∅)

⇒ Complexity(S) ≥ Complexity(m1) + Complexity(m2)
(Complexity.IV)

◊

Property Complexity.5: Disjoint Module Additivity
The complexity of a system S = <E,R> composed of two disjoint modules
m1 = <Em1,Rm1>, m2 = <Em2,Rm2> is equal to the sum of the complexities of
the two modules

(S = <Em1 ∪ Em2,Rm1 ∪ Rm2> and Em1 ∩ Em2 = ∅ and Rm1 ∩ Rm2 = ∅)
⇒ Complexity(S) = Complexity(m1) + Complexity(m2)

(Complexity.V)

◊

As a consequence of the above properties Complexity.1 - Complexity.5, it can
be shown that the complexity of a system is no less than the complexity of
any of its modules, i.e., adding relationships between elements of a system
does not decrease its complexity

(S' = <E,R'> and S" = <E,R"> and R' ⊆ R")
⇒ Complexity(S') ≤ Complexity(S")

(Complexity.VI)

Properties Complexity.1 - Complexity.5 hold when applying the admissible
transformations of the ratio scale. Therefore, there is no contradiction
between our concept of Complexity and the definition of Complexity metrics
on a ratio scale.

Discussion

The paragraphs above, stating the motivations and justifications for size
and complexity concepts, illustrate the subjectivity of the metric definition
approach. However, it is important that all concept properties be explicitly
justified and motivated so that their limitations may be understood and the
discussion on their validity may be facilitated.

6. Define Product Abstractions and Refine Concept Properties
(Step 4)

Definition

We first need to define an abstraction that helps us precisely capture and
define all the concepts involved in the stated assumptions. Abstractions are
mathematical representations of the product(s) (usually graphs). Products
have to be mapped into abstractions so they become analyzable and some of

University of Maryland, CS-TR-3346 - 17

their attributes become quantifiable [MGBB90]. The choice should be
entirely guided by the experimental goals (i.e., the object of study and the
quality focus) and the set of assumptions, that is, the abstractions must
capture all the concepts involved in the set of assumptions related to the
object of study. The mapping from the product to the abstraction needs to be
checked for completeness, i.e., Does the abstraction contain all the
relationships between nodes that one wants to capture? Is the level of
granularity of the abstraction nodes sufficient to represent accurately the
product? One way of assessing the suitability of an abstraction is to study
the effect of relevant modifications in the product and assess its impact on
the abstraction, e.g., number of nodes and edges added or removed, change
of topology in a graph. Several abstractions capturing control flow, data
flow and data dependency information are available in the literature [M90,
BBC88, O80]. However, an even larger variety of abstractions can be derived
from software products.

The set of properties associated with each concept is expanded so as
to formalize the order existing on the set of abstractions with respect to each
concept as defined by the assumptions. Therefore, the order formalized by
the newly introduced properties is intended to preserve the order defined by
the assumptions so that concepts have a monotonic relationship with the
quality focus of interest. For example, given that the quality focus is error-
proneness and that a Definition-Use (D-U) graph DUG1 is defined as more
complex than another graph DUG2 and assuming that there is a
monotonic relationship between error-proneness and complexity, we expect
the assumptions to state that the product corresponding to DUG1 is more
error-prone than that of DUG2.

These properties are specific to a given context of measurement (i.e.,
goal, concept, assumptions, abstractions) and are referred to as context-
dependent properties. They will, most of the time, capture effects on the
ordering of abstractions when modifications are performed on these
abstraction. These modifications will often be what is referenced as atomic
modifications in [Z90], adding / removing / moving / substituting an
edge/node. They will be useful in order to constrain and guide the search
for metrics (Step 5).

Examples

In our example, D-U graphs are a suitable abstraction since they capture
concepts such as definitions, condition expressions, uses. D-U graphs are
directed graphs where nodes are statements or conditions and arcs are
definition-use clear paths [RW82]. Moreover, concepts such as
"dependencies" or "distance" can be derived from such graphs. A definition
or a condition expression "depends" on a definition when the
variable/constant defined in the latter is used in the former. A suitable
definition of "distance" between two definitions will be provided in the next
section.

University of Maryland, CS-TR-3346 - 18

Concept: Size

Property CD1: Count of definitions
If a graph DUG1 has at least as many definitions and condition expressions
as another graph DUG2, then Size(DUG1) ≥ Size(DUG2).

◊

The above property CD1 is not implied by the generic properties Size.1-
Size.3, since DUG1 and DUG2 have nothing to do with each other, i.e., they
are not related by any inclusion relationship (DUG2 is not necessarily
included in DUG1).

Concept: Complexity

Property CD2: Sum of distances
Let DUG1 and DUG2 be two Definition-Use graphs. If the sum of the
distances between all pairs of nodes in DUG1 is greater than the sum of
distances between all pairs of nodes in DUG2, then Complexity(DUG1) >
Complexity(DUG2).

◊

The distance between two nodes is the number of arcs in the longest path
between the two nodes that contains no repetitions of elementary cycles
(cycles that do not traverse the same arc twice). As an example, the
distance between nodes b and c in the D-U graph of Figure 2 is 4, i.e., the
number of arcs of the path {<b,c>,<c,e>,<e,b>,<b,c>}. In this path, the arc
<b,c> is traversed twice, but it is only traversed once in the cycles
{<b,c>,<c,e>,<e,b>} and {<c,e>,<e,b>,<b,c>} contained in the path. When
several paths exist between two nodes, we select the longest one because the
shortest or average path distance would not satisfy the monotonicity
property (Complexity.4). For instance, adding an arc in a graph may
decrease the length of the shortest path between two nodes. The distance
between two unrelated nodes is zero because the absence of relation does not
add any complexity, consistent with the generic property Complexity.2.
This shows how generic properties constrain the definition of metrics and
help make the right decisions. As an example of distance calculations,
consider the D-U graph in Figure 2.

If Assumption 5 is considered, a different abstraction is necessary:
Data-Dependency (D-D) graphs [BBC88]. This abstraction captures the links
between condition expressions and the definitions they can affect. In this
case, the following property holds:

Property CD3: Definitions versus condition expressions
Let DDG1 and DDG2 be two Data Dependency graphs. If DDG2 is identical
to DDG1 except for the fact that one of the condition expressions of DDG1
has been substituted with a definition to form DDG2 , then
Complexity(DDG1) > Complexity(DDG2). In other words, a condition
expression is the source of more complexity than a definition.

◊

University of Maryland, CS-TR-3346 - 19

a

b

c

e

d

Figure 2. Example of D-U graph

The distances between the nodes in Figure 2 are computed in Table 1.

a b c d e
a 0 5 6 0 6
b 0 3 4 0 5
c 0 5 3 0 4
d 0 5 6 0 4
e 0 4 5 0 3

Table 1. Distances between the nodes of the D-U graph in Figure 2

Discussion

According to the GQM paradigm, questions must be derived from goals. In
our particular framework, questions about product characteristics (e.g.,
what is the complexity of a component?) are not necessary and the outputs
of Steps 2, 3, and 4 may be seen as a more rigorous substitute to questions.
Thus, metrics are not intended to answer questions but to validate
assumptions. However, as we have shown, there may be aspects of the
relevant environmental characteristics that cannot be explicitly modeled,
e.g., the quality of the data and the validity of the assumptions, so questions
may still be necessary to support the full interpretation of the metrics.

As pointed out in [FM90, F94], not all abstractions may be comparable
with respect to a particular measurement concept. In such cases, it
appears difficult to define a total order on the set of abstractions and only a
partial order can be obtained [MGB90]. Ultimately, statistical analysis can
only be conducted independently on comparable subsets of abstractions.

University of Maryland, CS-TR-3346 - 20

One of the main difficulties of this step is to ensure that the set of
context-dependent properties is complete. Completeness is reached when
the properties can fully describe the ordering of abstractions, i.e., when any
pair of comparable abstractions can be ordered by using the stated
properties or their combination.

It is also necessary to verify that the newly introduced context-
dependent properties define metrics whose scales are consistent with those
defined by the generic properties, i.e., ratio, interval, ordinal, nominal.

7. Define Metrics (Step 5)

Definition

For each concept, metrics are defined by using the abstractions' elements
and relationships and are checked against the concepts' generic and
context-dependent properties. Management and resource constraints are
taken into account at this point for defining convenient metrics. This step
may require approximations which must be performed explicitly, based on
a solid theory, and in a controlled manner. At this stage, we are not able to
select the best among alternative metrics satisfying generic and context-
dependent properties. Experimental validation (Step 6) will help us perform
such a selection. As a necessary precondition to carrying out a meaningful
experimental validation, the measurement scale (i.e., nominal, ordinal,
interval, ratio, absolute [FM90], [Z90]) of the metrics must be clearly
identified. This prevents metrics from being misused (e.g., taking the
average value of an ordinal metric, which is meaningless).

Examples

Concept: Size

A simple size metric is given by the number of definitions and condition
expressions, i.e., the number of nodes in the Definition-Use graph. Other
size metrics can be devised, by associating a weight with each node.
However, this would require that additional assumptions be made.

Concept: Complexity

The most straightforward metric that comes to mind is the number of arcs
in the graph. However, this does not take into account Assumption 4 since
distances between pairs of nodes may not have an impact on the metric. In
this context, a complexity metric that seems relevant and that satisfies the
generic and context-dependent properties is the sum of distances between
every pair of nodes in the DUG graph.

University of Maryland, CS-TR-3346 - 21

Cplx(DUG)=∑
i=1

|E|

 ∑
j=1

|E|

Distance(Nodei,Nodej) (1)

where Nodei, Nodej ∈ E.

If Assumption 5 and Property CD3 are taken into account, then another
complexity metric can be defined as follows

Cplx(DDG)=∑
i=1

|E|

 ∑
j=1

|E|

Distance(Nodei,Nodej) (2)

Note that the formula is identical but the abstraction used is different, i.e.,
Data-Dependency Graphs (DDG). This metric is therefore different from the
one in (1). The weight of condition expressions in formula (2) has increased
since path distances are made longer by the link between condition
expressions and the definitions that belong to the block they control.

Discussion

Once metrics have been defined, it must be proven that they are consistent
with the generic and context-dependent properties. With reference to our
examples, it can be easily shown that the metrics we define for size and
complexity satisfy their respective sets of generic and context-dependent
properties. Thus, they can be shown to preserve the intuitive order defined
on the abstractions with respect to the quality focus.

8. Experimental Validation of the Metrics (Step 6)

After defining metrics in Step 5, the data collected on actual software
products and processes must be used to validate the metrics
experimentally. This is done differently according to the purpose of
measurement. With respect to prediction, it is required to validate the
assumptions on which the product metrics are based. In other words,
significant statistical relationships must be identified between the product
metrics and the quality focus (or rather a particular descriptive model of
the quality focus) and, furthermore, these relationships must be consistent
with what is specified by the assumptions. Validation procedures for other
measurement purposes (e.g., characterization) will not be discussed here.

University of Maryland, CS-TR-3346 - 22

With respect to prediction, experimental validation may be seen as a search for statistical

relationships between metrics of the object of study and a descriptive models of the quality

focus (e.g., # error for Error-proneness).

Numerous analysis techniques, both univariate and multivariate
[S92, BBH93, DG84], exist in the statistical and machine learning
literature. If such assumptions and properties are not validated, we need to
repeat from Step 2, re-consider the assumptions and properties, then re-
define new metrics. This metric definition/validation cycle is iterated until
the metric validation yields satisfactory results. Since extensive material is
available on the subject, we will not describe this step any further.

9. Conclusions and Future Work

Product metrics need to be defined in a rigourous and disciplined manner
based on a precisely stated experimental goal, assumptions, properties, and
a thorough experimental validation. In order to do so, we propose a
definition approach that is intended to help analysts develop product
metrics. This approach integrates many contributions from the literature
and is intended to be the starting point for a practical product metric
definition approach to be discussed by the software engineering
community, on both the academic and industrial sides. This approach is
the result of our past experience [BMB93, BBH93, BMB94(a)] and is
validated through realistic examples.

Our future work encompasses a more detailed study and validation of
each of the steps involved in the metric definition approach. In this
framework, we proposed definitions for the measurement concepts usually
encountered in software engineering, such as complexity, size, coupling,
cohesion, etc [BMB94(b)]. Such a work aims at building a formal,
unambiguous, and comprehensive theory. Also, we need to better
understand how experimental results can be used to guide the refinement
of metric. The refinement process of metrics needs to be better understood
and defined so that metrics can evolve with the increase in understanding
and refinement of the studied development processes. Last, we need to
better identify what can be reused across environments and projects, e.g.,
metrics, assumptions, measurement concepts, product abstractions.

Acknowledgments

We would like to thank William Agresti, Dieter Rombach, Yong-Mi Kim,
Bryan Hsueh, Wolfgang Heuser, Oliver Laitenberger, and Manoel
Mendonça for their help in reviewing the early drafts of this paper.

University of Maryland, CS-TR-3346 - 23

References

[B92] V. Basili, "Software Modeling and Measurement: The
Goal/Question/Metric Paradigm" University of Maryland,
Department of Computer Science, Tech. Rep. CS-TR-2956, 1992.

[BBC88] J. Bieman et al, "A Standard Representation of Imperative
Language Programs for Data Collection and Software Measures
Specification", J. Syst. Software, vol. 8, pp. 13-37, 1988.

[BBH93] L. Briand, V. Basili and C. Hetmanski, "Developing Interpretable
Models with Optimized Set Reduction for Identifying High Risk
Software Components," IEEE Trans. Software Eng., 19 (11),
November, 1993.

[BBK94] L. Briand, V. Basili, Y. M. Kim and D. Squier, "A Change
Analysis Process to Characterize Software Maintenance
Projects," IEEE Conference on Software Maintenance, September
1994, Victoria, British Columbia, Canada.

[BMB93] L. Briand, S. Morasca, V. Basili, "Assessing Software
Maintainability at the End of High-Level Design”, IEEE
Conference on Software Maintenance, September 1993, Montreal,
Quebec, Canada.

[BMB94(a)] L. Briand, S. Morasca, V. Basili, "Defining and Validating
High-Level Design Metrics", CS-TR 3301, UMIACS-TR 94-75,
University of Maryland, College Park

[BMB94(b)] L. Briand, S. Morasca, V. Basili, "Property-based Software
Engineering Measurement," CS-TR 3368, UMIACS-TR 94-119,
University of Maryland, College Park

[BR88] V. Basili and D. Rombach, "The Tame Project: Towards
Improvement-Oriented Software Environments," IEEE Trans.
Software Eng., vol. 14, no. 6, pp. 758-773, June 1988.

[DG84] W. Dillon and M. Goldstein, Multivariate Analysis: Methods and
Applications, Wiley and Sons, 1984.

[F91] N. Fenton, "Software Metrics, A Rigorous Approach,"
Chapman&Hall, 1991.

[F94] N. Fenton, "Software Measurement: A Necessary Scientific
Basis", IEEE Trans. Software Eng., vol. 20, no. 3, pp. 199-206,
March 1994.

[FM90] N. Fenton and A. Melton, "Deriving Structurally Based Software
Measures", J. Syst. Software, vol. 12, pp. 177-187, 1990.

University of Maryland, CS-TR-3346 - 24

[IS88] D. Ince, M. Shepperd, "System Design Metrics: a Review and
Perspective," Proc. Software Engineering 88, pages 23-27, 1988

[K88] B. Kitchenham, "An Evaluation of Software Structure Metrics,"
Proc. COMPSAC 88, 1988

[LJS91] K. B. Lakshmanan, S. Jayaprakash, and P. K. Sinha, "Properties
of Control-Flow Complexity Measures," IEEE Trans. Software
Eng., vol. 17, no. 12, pp. 1289-1295, Dec. 1991.

[M90] L. Moser, "Data Dependency Graphs for Ada Programs", IEEE
Trans. Software Eng., vol. 16, no. 5, pp. 498-509, May 1990.

[MGB90] A. C. Melton, D.A. Gustafson, J. M. Bieman, and A. A. Baker,
"Mathematical Perspective of Software Measures Research," IEE
Software Eng. J., vol. 5, no. 5, pp. 246-254, 1990.

[O80] E. I. Oviedo, "Control Flow, Data Flow and Program Complexity,"
Proc. COMPSAC, Nov. 1980, pp. 146-152.

[RW82] S. Rapps and E. Weyuker, "Data flow analysis test techniques for
program test data selection", in Proc. 6th Int. Conf. on Software
Engineering, Sept. 1982, pp. 272-278

[S92] N. F. Schneidewind, "Methodology for Validating Software
Metrics," IEEE Trans. Software Eng., vol. 18, no. 5, pp. 410-422,
May 1992.

[TZ92] J. Tian and M. V. Zelkowitz, "A Formal Program Complexity
Model and Its Application," J. Syst. Software, vol. 17, pp. 253-266,
1992.

[W88] E. J. Weyuker, "Evaluating Software Complexity Measures,"
IEEE Trans. Software Eng., vol. 14, no. 9, pp. 1357-1365, Sept. 1988.

[Z90] H. Zuse, Software Complexity: Measures and Methods.
Amsterdam: de Gruyter, 1990.

