
1

Domain Analysis for the Reuse of Software
Development Experiences1

V. R. Basili*, L. C. Briand**, W. M. Thomas*

* Department of Computer Science
University of Maryland

College Park, MD, 20742
USA

** CRIM
1801 McGill College Avenue
Montreal (Quebec), H3A 2N4

1 . Introduction

We need to be able to learn from past experiences so we can improve our software
processes and products. The Experience Factory is an organizational structure designed to
support and encourage the effective reuse of software experiences [Bas94]. This structure
consists of two organizations which separates project development concerns from
organizational concerns of experience packaging and learning. The experience factory
provides the processes and support for analyzing, packaging and improving the
organization's stored experience. The project organization is structured to reuse this stored
experience in its development efforts. However, a number of questions arise:

• What past experiences are relevant?

• Can they all be used (reused) on our current project?

• How do we take advantage of what has been learned in other parts of the
organization?

• How do we take advantage of experience in the world-at-large?

• Can someone else’s best practices be used in our organization with confidence?

This paper describes approaches to help answer these questions. We propose both
quantitative and qualitative approaches for effectively reusing software development
experiences.

2 . A Framework for Comprehensive Software Reuse

The ability to improve is based upon our ability to build representative models of the
software in our own organization. All experiences (processes, products, and other forms of
knowledge) can be modeled, packaged, and reused. However, an organization’s software

1 This research was in part supported by NASA grant NSG-5123, NSF grant 01-5-24845, and CRIM

2

experience models cannot necessarily be used by another organization with different
characteristics. For example, a particular cost model may work very well for small projects,
but not well at all for large projects. Such a model would still be useful to an organization
that develops both small and large projects, even though it could not be used on the
organization's large projects. To build a model useful for our current project, we must use
the experiences drawn from a representative set of projects similar to the characteristics of
the current project.

The Quality Improvement Paradigm (QIP)[Bas85,Bas94] is an approach for improving the
software process and product that is based upon measurement, packaging, and reuse of
recorded experience. As such, the QIP represents an improvement process that builds
models or packages of our past experiences and allows us to reuse those models/packages
by recognizing when these models are based upon similar contexts, e.g., project and
environmental characteristics, relative to our current project. Briefly, the six steps of the
QIP are:

1) Characterize the current project and environment

2) Set goals for successful performance and improvement

3) Choose processes and methods appropriate for the project

4) Execute the processes and the measurement plan to provide real-time feedback for
corrective action

5) Analyze the data to assess current practices, determine problem areas, and make
recommendations for future projects

6) Package the experience in a form suitable for reuse on subsequent projects

The QIP must allow the packaging of context-specific experience. That is, both the retrieval
(Steps 2 and 3) and storage (Step 6) steps need to provide the identification of the context
in which the experience is useful. Step 1 helps determine this context for the particular
project under study. When a project selects models, processes, etc., (step 3), it must
ensure that the chosen experience is suitable for the project. Thus the experience packaging
(step 6) must include information to allow future projects to determine whether the
experience is relevant for use in their context. The problem is that it is not always an easy
task to determine which experience is relevant to which project contexts. We would like to
reuse the packaged experience if the new project context is "similar" to the projects from
which the experience was obtained.

Basili and Rombach present a comprehensive framework for reuse-oriented software
development [BR91]. Their model for reuse-oriented software development is shown in
Figure 1. It includes a development process model, which is aimed at project development,
and a reuse process model, which enables the reuse of the organization’s experiences. The
development process will identify a particular need (e.g., a cost model). The reuse process
model can then find candidate reusable artifacts (e.g., candidate cost models) from the
experience base, selecting (and adapting if necessary) the one most suitable for the
particular project. The artifacts may have originated internally (i.e., was developed entirely
from past projects in the organization, e.g., the meta-model approach to cost estimation
[BB81]), or externally (e.g., the COCOMO cost model [Boe81]). In any event, a
evaluation activity of the reuse process is what determines how well the candidate artifact
meets the needs specified by the development process.

Our focus in this paper is on the selection and evaluation of reusable artifacts. One
approach to do so is to determine “domains” in which a particular experience package may

3

be reusable. Then, by assessing the extent to which a project is a member of the domain,
one can determine whether a given experience package is suitable for that project.

Development
Process

create

Reuse
Process

Experience
Base

transfer into
projects

modifyidentify

Evaluate

record
experience

re-package

Experience
in the world
at large

transfer into
organizational
ownership

identify

Figure 1: Reuse Oriented Software Development model

3. Experience Domain Analysis

We will use experience domain analysis to refer to identifying domains for which reuse of
project experiences can be effective, i.e., identifying types of projects for which:

• Similar development or maintenance standards may be applied, e.g., systems for
which DoD-Std-2167 is applicable in NASA

• Data and models for cost, schedule, and quality are comparable, e.g., projects for
which the productivity can meaningfully be compared within all the branches of
NASA

Once domains have been identified, common processes, standards and databases may be
shared with confidence by various software organizations, e.g., NASA branches within
broader organizational structures such as NASA centers. The problem can be viewed as the

4

need to determine whether an experience package developed in one context is likely to be
effective when reused in a new, different context.

Let us introduce a basic set of definitions to clarify the concepts to be used:

Definition 1: Domain Analysis Goals

The goal(s) of a domain analysis procedure is (are) to assess the feasibility of
reusing or sharing a set of software artifacts within or across organizations, e.g.,
can we use a cost model developed in another organization, based on a different set
of past projects than those of our development organization?

Definition 2: Domains

With respect to a particular domain analysis goal (i.e., a particular artifact to reuse),
domains are "types" of software development projects among which certain
common artifacts may be reused or shared.

Definition 3: Domain Characteristics and Characterization Functions

Domain characteristics represent characteristics that may determine whether or not
one or several artifacts can be reused or shared within or across organizations. The
characterization functions of domains are mappings of projects, described by
characteristics, into domains. For example, in a given organization, large Ada flight
simulators may represent a domain with respect to cost modeling and prediction. In
this case, the project characteristics involved in the domain characterization function
are the project size, the programming language, and the application domain.

It is important to note that for different reuse goals, there are different domains, and as
such, different domain characteristics and characterization functions. In this context, the
first step of domain analysis is to determine the kind(s) of artifacts one wants to reuse. As
an example, someone may want to reuse a cost model or a design inspection procedure
developed in a different development environment.

We present in Table 1 a general taxonomy of software artifacts that can conceivably be
reused (or shared) within or across organizations. It is important to note that the taxonomy
presented here encompasses more than just software products (the usual realm of domain
analysis). Also, one could further refine the taxonomy within each specific organization.

Certain kinds of artifacts are more likely to be reusable or sharable than others because they
naturally have a broader realm of application. For example, many high-level concepts are
universally applicable, e.g., tracking project progress across the development life cycle
through data collection helps monitor the schedule and resource consumption of the system
being developed. Other kinds of artifacts may have a somewhat more restricted realm of
application, e.g., a waterfall process model is applicable as long as the application domain
is well known and the solution space is reasonably understood. Also, some kinds of
artifact have a very narrow realm of application, e.g., artifacts related to application domain
specific programming languages and operating systems (e.g., a real-time UNIX variant for
real-time applications).

5

Data/Models Standards/Processes Products
Descriptive models Requirements Requirements
Predictive models Specifications Specifications
Cost models Design Architecture
Schedule models Coding Design
Reliability growth models Testing Code
Error models Inspections Test plans/data
Change models Change management
Quality evaluation models
Lessons learned
Raw data

Table 1: Taxonomy of Reusable Software Artifacts

After establishing organizational goals for domain analysis, it is necessary to examine the
characteristics of the organization and the projects to help identify appropriate domains. For
example, if one wants to reuse a cost model for a new project, the following questions
become relevant:

• Are the products developed by the new project comparable to the ones on which the
cost model is based ?

• Is the development process similar?

• If not, are the differences taken into account in the model?

• Can the model be imported to this new environment?

The issue is now to determine if the new project belongs to the “same domain” as the
projects on which the cost model is built . In order to do so, the characteristics of these
projects need to be considered and differences across projects need to be analyzed.
Similarly, if one tries to reuse a design inspection process, the following questions are
relevant: is staff training sufficient on the new project? Do budget and time constraints
allow for the use of such inspections? Is the inspection process thorough enough for the
new project reliability requirements?

Table 2 shows a general taxonomy of potentially relevant project characteristics to consider
when reusing or sharing software artifacts. The characteristics are grouped according in
three broad classes, product, process, and personnel. The table is not intended to be a
complete description of all relevant project characteristics, but rather its intent is to provide
some guidance as to the characteristics that should be considered. In some environments
certain characteristics may not be relevant, and others that are not currently in this table will
be. Each organization needs to determine which ones are the most important.

6

Product Process Personnel
Requirements stability Lifecycle/Process model Motivation
Concurrent Software Process conformance Education
Memory constraints Project environment Experience/Training:
Size Schedule constraints • Application Domain
User interface complexity Budget constraints • Process
Programming language(s) Productivity • Platform
Safety/Reliability • Language
Lifetime requirements Dev. team organization
Product quality
Product reliability

Table 2: Potential Characteristics Affecting Reuse

In the following sections we discuss two techniques to support experience domain
analysis, one based on quantitative historical data, and the other based on qualitative expert
opinion. Both techniques will provide models that can be used to assess the risk of reusing
a particular experience package in a new context.

4 . A Quantitative Approach

With sufficient historical data, one can use automated techniques to partition the set of
project contexts into domains relative to various levels of reuse effectiveness for a given
experience package. The goal of partitioning here is to maximize the internal consistency of
each partition with respect to the level of effectiveness. In other words, we want to group
projects according to common characteristics that have a visible and significant impact on
effectiveness.

Such partition algorithms are based on the multivariate analysis of historical data describing
the contexts in which the experience package was applied and the effectiveness of its use.
For example, Classification Trees [SP88] or Optimized Set Reduction [BBH93, BBT92]
are possible techniques. The measured effectiveness is the dependent variable and the
explanatory variables of the domain prediction model are derived from the collection of
project characteristics (Table 2) possibly influencing the reuse of the experience package.

As an example, suppose you want to know whether you can use the inspection
methodology I on project P. The necessary steps for answering that question are as
follows:

• Determine potentially relevant characteristics (or factors) for reusing I, e.g., project
size, personnel training, specification formality, etc.

• Determine the measure of effectiveness to be used, e.g., assume the rate of error
detection as the measure of effectiveness of I. This is used as the dependent variable
by the modeling techniques mentioned above.

• Characterize P in terms of the relevant characteristics, e.g., the project is large and
the team had extensive training.

7

• Gather data from the experience base characterizing past experience with I in terms
of the project characteristics and the actual effectiveness. For instance, we may
gather data about past inspections that have used methodology I.

• Construct a domain prediction model with respect to I based on data gathered in the
previous step. Then, one can use the model to determine to which domain (i.e.,
partition) project P belongs. The expected effectiveness of I on project P is
computed based on the specific domain effectiveness distribution.

Table 3 shows, for each past project with experience with I (A, B, C, D, etc.), the recorded
effectiveness of I on the project, and a collection of characteristics relevant to the effective
reuse of I (Size, the amount of training, the formality of the specifications). The last row in
the table shows the question that need to be answered for the new project P: How effective
is I likely to be if it is applied to project P?

Project Det. Rate KSLOC Training Formality
A .60 35 Low Informal
B .80 10 High Formal
C .50 150 Medium Informal
D .75 40 High Formal
. . .
P ?? 20-30 High Formal

Table 3: Examples for a Quantitative Approach

From such a table, an example of domain characterization that might be constructed by
performing a partition of the set of past projects (more formally: a partition of the space
defined by the three project characteristics):

(KSLOC < 50) & (Training=High) => µ(Detection Rate) = 75%

This logical implication indicates that for projects with less than 50 KSLOC and a high
level of training, the detection rate is expected to be 75 percent.

When a decision boundary is to be used (e.g., if the level of reuse effectiveness is above
75% of the I’s original effectiveness, one reuses I), an alternative form of model is more
adequate:

(KSLOC < 50) & (Training=High) => Probability(Detection Rate > 75%) = 0.9

Here the logical implication indicates that for relatively small projects (less than 50
KSLOC) where there is a high level of training, the detection rate with I is likely to be
greater than 75 percent.

To evaluate the reusability of some experience packages, a quantitative approach to domain
analysis is feasible, mathematically tractable, and automatable. Unfortunately, there are a
number of practical limitations to such an approach. It is not likely to be effective when:

• There is not sufficient data on past experience

• The effectiveness of reuse is not easily measured

• There is significant uncertainty in the characterization of the new project.
In these cases we may wish to resort to a more heuristic, expert opinion based approach.
This is the topic of the next section.

8

5. A Qualitative Approach

Given the practical limitations to the quantitative approach, a qualitative solution based on
expert opinion is needed. As with the quantitative solution, the basic assumption in this
approach is that an experience package will be reusable (with similar effectiveness) in a
new context if the new context is “similar” to the old context. Rather than defining
“similarity” through analysis of historical data, the approach here is to capture and package
expert opinion as to what makes an artifact “similar.” As we previously noted, what the
notion of similarity depends upon the reuse objective. For example, two projects may have
widely different cost characteristics (e.g., in the COCOMO classification, one being
organic and one embedded) but have very similar error characteristics.

When identifying domains without the support of objective data, one can use several
ordinal evaluation scales to determine to what extent a particular characteristic is relevant
and usable given a specific reuse goal. These ordinal scales help the analyst introduce some
rigor into the way the domain identification is conducted. We propose several evaluation
scales that appear to be of importance. The first one determines how relevant is a project
characteristic to the use of a given artifact, e.g., is requirements instability a characteristic
that can affect the usability of a cost model? A second scale captures the extent to which a
characteristic is measurable, e.g., can we measure requirement instability? Other scales can
be defined to capture the sensitivity of the metric capturing a domain characteristic, i.e.,
whether or not a significant variation of the characteristic always translates into a significant
variation of the metric, and the accuracy of the information collected about the domain
characteristics.

These evaluation scales should be used in this order: (1) determine whether the project
characteristic is relevant, (2) assess how well it can be measured, and (3) determine how
sensitive and accurate measurement is. If a characteristic is not relevant, then one need not
be concerned with whether and how it can be measured. We will define only a relevancy
evaluation scale and a measurability evaluation scale here. The two other scales are more
sophisticated and beyond the scope of this document.

The relevance scale is intended to indicate the degree to which a characteristic is important
with respect to the effective reuse of a particular artifact. The following ordinal scale can be
used for this purpose:

1: Not relevant, the characteristic should not affect the use of the artifact of interest in
any way, e.g., application domain should not have any effect on the use of code
inspections.

2: Relevant only under unusual circumstances, e.g., application domain specific
programming language generate the need for application domain specific coding
standards whereas, in the general case, the characteristic application domain does
not usually affect the usability of coding standards.

3: It is clearly a relevant characteristic but the artifact of interest can, to some extent,
be adjusted so it can be used despite differences in the value. For example, size has
an effect on the use of a cost model, i.e., very large projects show lower
productivity. Assume that an organization occasionally developing large scale
projects wants to reuse the cost model of an organization developing mostly
medium-size projects. In this case, the cost model may be calibrated for very large
projects. As another example, consider the Cleanroom process [D92]. If not

9

enough failure data are available during the test phase, the Cleanroom process may
be used without its reliability modeling part.

4: It is clearly a relevant characteristic and if a project does not have the right
characteristic value, the use of the considered artifact is likely to be inefficient. For
example, it may not be cost-effective to use specification standards that require
formal specifications in a straightforward data processing application domain.
Moreover, the artifact is likely to be difficult to tailor.

5: It is clearly a relevant characteristic and if a project does not have the right
characteristic value, the use of the considered artifact is likely to generate a major
failure. For example, if the developed system requires real-time responses to events
occurring in its operational environment, requirement analysis and design
approaches from a non real-time development environment cannot be used.
Moreover, the artifact is likely to be very difficult to tailor.

There are other metrics that are of interest to one interested in the reusability of an artifact.
Some of the characteristics may be quite relevant but very difficult to measure. As such,
there may be increased risk in the assessment of the reusability of an artifact due to the
uncertainty (due to the difficulty in measurement) in the characterization. A measurability
scale for the characteristics can be defined as follows:

1: There is no known measure of the characteristic, e.g., development team motivation
and morale are hard to measure.

2: There are only indirect measures of the characteristic available , e.g., state transition
diagram of a user interface can be measured to offer an approximate measure of
user interface complexity.

3: There are one or more direct measures of the characteristic, e.g., size can be
measured on a ratio scale, programming language on a nominal scale.

Two other issues have to be considered when a project characteristic is to be used to
differentiate domains. First, we cannot ensure that every significant variation of the
characteristic is going to be captured by the measurement, i.e., that the metric is sensitive
enough. As a consequence, it may be hard in some cases to tell whether or not two projects
are actually in the same domain. Second, a metric may be inherently inaccurate in capturing
a characteristic due to its associated data collection process. These two issues should
always be considered.

Table 4 shows an example in which we assess the relevance of a subset of the
characteristics listed in the taxonomy of domain analysis characteristics, i.e., the product
characteristics. Their relevance is considered for the reuse of testing standards, i.e.,
standards, processes, and procedures defining unit, system, and acceptance test.

10

Product
Characteristic

Relevance
Score

Unstable
Requirements 3

Concurrent
Software 4

Memory
Constraints 3

User Interface
Complexity 4

Reliability/Safety
Requirements 5

Long Lifetime
Requirements 3

Product
Size 4

Programming
Language 1

Intermediate
Product Quality 4

Product
Reliability 3

Table 4: Product Characteristic Relevancy Scores for the Reuse of Testing Standards

The following paragraphs provide some justification for the relevancy scores assigned for
the reuse of testing standards. Detailed justification and explanations about scores for other
artifacts will be provided in a subsequent report.

• Unstable or partially undetermined requirements:

There should be a degree of stability achieved by the start of testing. However,
unstable requirements will have a great impact on test planning, and if there are
many changes occurring during the test phase, testing will be impacted. Some ways
to avoid some of these problems is to have more rigorous inspections, focusing on
identifying inconsistencies, and to carefully partition testing activities so that a
somewhat stable base is verified, and the impact of the instability is lessened. Also,
with the large number of changes late in development, better support for regression
test is required. A score of 3 is assigned.

• Concurrent Software:

In the presence of RT constraints, in addition to verifying functional correctness, it
is also needed to verify the necessary performance characteristics of critical threads.
These performance requirements must be validated early to allow more options in
rectifying problems and to lessen the chance of cost and budget overruns if the
requirements are not being met. Also, it would be inefficient for a project that does
have such constraints to apply a process that includes early identification and testing
of critical threads. A score of 4 is assigned.

11

• Memory constraints:

As with real-time constraints, problems in meeting memory constraints should be
identified early. However, it is typically easier to verify memory use than
performance characteristics. It is likely that a standard could be adapted to provide
for an earlier verification of the critical memory use. A score of 3 is assigned.

• User interface complexity:

A user interface with a large number of states requires significant verification effort.
Certain techniques that are well suited to a smaller number of states (e.g., test every
operation in every state) do not scale well to applications with large, complex
interfaces. A score of 4 is assigned.

• High Reliability /Safety Requirements:

In safety-critical software, correctness of the implementation is a primary concern.
Approaches such as formal verification, fault-tree analyses, and extensive testing
are often necessary. A score of 5 is assigned.

• Long Lifetime Requirements:

Testing should be more comprehensive for long-lived software. The goal is not
only to ensure current operational suitability, but to allow for operation long after
development. With the expectation of a number of changes over the product
lifetime, it becomes much more important that the delivered product be thoroughly
tested. For example, to ensure a better test coverage, procedures can be put in place
to require testing of all paths. A score of 3 is assigned.

• Size:

Certain techniques that are well suited to small applications do not scale well to
large applications. More automation and support is likely to be needed. For
example, exhaustive path-testing may be useful in smaller applications, but in large
applications it is not feasible due to the significant resources that would be required.
A score of 4 is assigned.

• Programming Language:

No impact.

• Product quality:

A lesser quality product may be subjected to additional verification procedures so as
to ensure a consistent level of quality prior to beginning a certain test activity. This
additional verification may not be as cost-effective for products that are known to be
of very high quality. For example, applying the same procedures designed for
verification of new code to reused software (known to be of high quality) is likely
to be less cost-effective. A score of 4 is assigned.

• Reliability:

Testing an unreliable product is a difficult task, as the unreliability may result in a
number of changes to correct errors late in development. If one knows that a lower
quality product is to be expected (through modeling or comparison with other
similar projects), procedures can be used to lessen their impact. For example, more
rigorous inspection procedures can be used, targeting the types of defects expected
to in the product. Also, additional support for regression testing can be used to help
re-integrate changed modules into a particular build. A score of 3 is assigned.

12

The table can be used in the following manner. For the experience package (e.g., testing
standard) of interest, one would examine the table to find which characteristics are of
particular importance. Then information about the context of use that characterizes the
reusable package in terms of these important characteristics should be obtained. The current
project must also be characterized in the same way. These two characterizations can be
compared, and a subjective assessment of the risk of reusing the artifact in the context of
the new project can be made. The higher the score for a given characteristic on the
relevancy evaluation scale, the higher the risk of failure if project sharing or reusing
artifacts do not belong to the same domain, i.e., do not show similar values or do not
belong to identical categories with respect to a given relevant characteristic. In situations
where the risk is high, the reuse/sharing of artifacts will require careful risk management
and monitoring[B88]. Sometimes, in order to alleviate the likelihood of failure, the
shared/reused artifacts will have to be adapted and modified. Also, if projects appear to
belong to the same domain based on an indirect measure (see measurability scale) of the
project characteristics, risk can increase due to the resulting uncertainty.

The following example illustrates the approach. The IBM Cleanroom method was
considered by NASA/GSFC, code 550, for developing satellite flight dynamics software.
In the following paragraph, we give examples of characteristics (and their scores according
to the characteristic evaluation scale) that were actually considered before reusing
Cleanroom.

• First, it was determined that not enough failure data (Reliability characteristic in
Table 2) were produced in this environment in order to build the reliability growth
models required by the Cleanroom method. As a consequence, reliability estimates
based on operational profiles could not be used to build such models. So Reliability
gets a relevancy evaluation metric of 3 and a measurability evaluation metric score
of 3.

• There was, despite intensive training, a lack of confidence in the innovative
technologies involved in the Cleanroom method, in particular, regarding the
elimination of unit test (Personnel Motivation in Table 2: relevancy evaluation score
of 3, measurability evaluation score of 1). Therefore, once again, the process was
modified: unit test would be allowed if the developer felt it was really necessary and
requested it. Interestingly, after gaining experience with the method, it was found
that unit test was not being requested, so this change was later removed. Also, there
were doubts about the capability of the Cleanroom method to scale up to large
projects. As such, the technique was first used on a small scale project (Product
Size in Table 2: relevancy evaluation score of 3, measurability evaluation score of
3).

• On the other hand, the use of FORTRAN (versus COBOL in IBM) was not
considered as an issue (Programming language in Table 2: relevancy evaluation
score of 1, measurability evaluation score of 3).

Once tables such as those shown in Table 4 have been defined for all reuse goals of interest
in a given organization, they can be used to help assess whether a software artifact can be
reused. For example, suppose that one wants to reuse design standards from other projects
on which they appeared to be particularly successful. The relevancy table for design
standards may tell us that characteristics such as size and programming language are not
very relevant, but that the level of concurrency and real-time in the system are extremely
important characteristics to consider.

Suppose that the set of projects where these design standards were assessed as effective
can be described as follows: stable requirements, heavy real-time and concurrent software,

13

no specifically tight memory constraints, and very long lifetime requirements (i.e., long
term maintenance). If the project(s) where these standards are to be reused present some
differences with respect to some of these important project characteristics, it is likely that
the design standards will require some level of tailoring in order to be reusable, if reusable
at all. For example, tight memory constraints would generate the need to include in the
design standards some strategies to minimize the amount of memory used, e.g., standard
procedures to desallocate dynamic memory as soon as possible.

There are a number of weaknesses to this qualitative approach. Perhaps the most important
is that it does not adequately express the influence of a factor in a particular context, or, in
other words, the interactions between factors. For example, suppose a particular factor,
such as tight memory constraints, has an impact on the reusability of a testing methods
only in a particular context (e.g., large-scale projects). The table could tell us that tight
memory constraints is an important characteristic, but it would not convey the information
about the specific context in which it is important. In addition, the table does not quantify
the factor’s influence on a ratio scale.

6 . Conclusions

A wide variety of software experiences are available for reuse within and across most
organizations. These experiences may be of local validity (e.g., an error model from
NASA/GSFC Code 550), meaningful in a large organization (NASA), or of some value
across several development environments (e.g., the COCOMO cost model). However, it is
not always clear to what extent the experience package may be reused on a given project. In
this paper we described experience domain analysis as an approach to solve this problem.
We described two distinct approaches, one quantitative and one qualitative.

The quantitative approach is feasible; however, there are likely to be practical limitations to
the approach, primarily due to the difficulty in obtaining sufficient and adequate historical
data. The qualitative approach appears more practical; however, it has some drawbacks that
may limit its effectiveness. We are working towards a solution that will combine the
formality of the quantitative approach with the subjective aspects of qualitative expert
opinion. Ideally, we could express rules, derived from expert opinion, which describe the
reusability of a package in much the same format as the patterns of the quantitative
approach. We are investigating the use of expert systems and fuzzy logic as a means for
capturing and representing expert opinion in such a format. Some of the issues with such
an approach being addressed include:

• How to acquire expertise?

• How to formalize and package the expert opinion so that it is potentially reusable by
other people?

• How to provide a means for dealing with the inherent uncertainty in the expert
knowledge?

• How can we check the consistency and completeness of the acquired knowledge?

• How can we combine several expert opinions?

14

7. References

[B88] B. W. Boehm, Software Risk Management, Prentice–Hall, 1988.

[Bas94] V. Basili et al., “The Experience Factory”, Encyclopedia of Software
Engineering, Wiley&Sons, Inc., 1994

[BB81] J. W. Bailey and V. R. Basili, “A Meta-model for Software Development
Resource Expenditures, Proceedings of the Fifth International Conference on
Software Engineering, San Diego, 1981.

[Boe81] B. W. Boehm, Software Engineering Economics, Prentice–Hall, 1981.

[BR91] V. R. Basili and H. D. Rombach, “Support for Comprehensive Reuse,”
Software Engineering Journal, 6 (5), September, 1991.

[Bas85] V. Basili, “Quantitative Evaluation of Software Methodology”, Proceedings of
the First Pan-Pacific Computer Conference, Australia, July 1985.

[BR88] V. Basili and H. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments”, IEEE Trans. Software Eng., 14 (6), June,
1988.

[BBH93] L. Briand, V. Basili and C. Hetmanski, “Developing Interpretable Models with
Optimized Set Reduction for Identifying High-Risk Software components”,
IEEE Trans. Software Eng., 19 (11), November, 1993.

[BBT92] L. Briand, V. Basili and W. Thomas, “A Pattern Recognition Approach for
Software Engineering Data Analysis”, IEEE Trans. Software Eng., 18 (11),
November, 1992.

[D92] M. Dyer, The Cleanroom Approach to Quality Software Development, Wiley,
1992.

[SP88] R. Selby and A. Porter, “Learning from Examples: Generation and Evaluation
of Decision Trees for Software Resource Analysis”, IEEE Trans. Software
Eng., 14 (12), December, 1988.

