# CMSC427/828E Spring 2000 Homework \# 4 

March 8, 2000

1. First state the equations of $Q_{1}, Q_{2}$ and $R$ :

$$
\begin{align*}
Q_{1} & =P_{1}+t\left(P_{2}-P_{1}\right)  \tag{1}\\
Q_{2} & =P_{2}+t\left(P_{3}-P_{2}\right)  \tag{2}\\
R & =Q_{1}+t\left(Q_{2}-Q_{1}\right) \tag{3}
\end{align*}
$$

Now, substitute $Q_{1}, Q_{2}$ in equation 3 by equations 1 and 2

$$
\begin{align*}
R & =P_{1}+t\left(P_{2}-P_{1}\right)+t\left(P_{2}+t\left(P_{3}-P_{2}\right)-P_{1}-t\left(P_{2}-P_{1}\right)\right) \\
& =P_{1}+t\left(P_{2}-P_{1}\right)+t\left(P_{2}-P_{1}\right)+t^{2}\left(P_{3}-P_{2}-P_{2}+P_{1}\right) \\
& =P_{1}+2 t\left(P_{2}-P_{1}\right)+t^{2}\left(P_{3}-2 P_{2}+P_{1}\right) \tag{4}
\end{align*}
$$

The outline of R is a parabola as in fig 1 .
2. In this question, we want map the point $(x, y)$ to $\left(x_{S}, y_{S}\right)$ as in figure 2 :

Looking on the x -axis, we will notice that $\frac{c}{d}=\frac{a}{b}$, and thus :

$$
\begin{equation*}
\frac{\left(x_{S}-u_{\min }\right)}{\left(u_{\max }-u_{\min }\right)}=\frac{\left(x-x_{\min }\right)}{\left(x_{\max }-x_{\min }\right)} \tag{5}
\end{equation*}
$$

multiply by $\left(u_{\max }-u_{\min }\right)$, and getting $u_{m}$ in to the right hand side results in :

$$
\begin{equation*}
x_{S}=u_{\min }+\frac{\left(u_{\max }-u_{\min }\right)}{\left(x_{\max }-x_{\min }\right)}\left(x-x_{\min }\right) \tag{6}
\end{equation*}
$$

and similarly, we can derive $y_{S}$, as:

$$
\begin{equation*}
y_{S}=v_{\min }+\frac{\left(v_{\max }-v_{\min }\right)}{\left(y_{\max }-y_{\min }\right)}\left(y-y_{\min }\right) \tag{7}
\end{equation*}
$$



Figure 1: Outline for solution


Figure 2: Mapping question
3. Suppose that the polygon consists of $n$ points, where $n>3$, so the following algorithm can detect whether the polygon is convex or not.

Algorithm

for $(i=1 ; i \leq n ; i++)\{$
draw line from point i to $\bmod (\mathrm{i}+2, \mathrm{n})$;
check if the midpoint of line $(i, i+2)$ lies within the polygon;
if not then return the polygon is not convex and exit;
\}
The polygon is convex;
4. (a) Yes. The vector $k=-i$ satisfies the two equations.
(b) No.
(c) In the 3D, the answer to both parts is Yes, where $k=i \times j$.
5. We know that cross reference equation

$$
u \text { timesv }=\left[\begin{array}{c}
u_{2} v_{3}-u_{3} v_{2}  \tag{8}\\
-\left(u_{1} v_{3}-u_{3} v_{1}\right) \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

By applying the previous equation, we can reach $(1,2,3)$ by substituting $u$ by $e_{1}$ and $v$ by $e_{2}$, and the answer will be $e_{3}$. The $(3,2,1)$ can be proved in the same way.
The previous part depends on mathematics. If we apply the right-hand-rule to $(1,2,3)$, we will reach $e_{1} \times e_{2}=e_{3}$. Whereas, applying the left-hand-rule to $(3,2,1)$ results in $e_{3} \times e_{2}=e_{1}$.
6. $n$ is the vector orthogonal to the plane consists of the three points $p_{1}, p_{2}, p_{3}$ (assume these points are no collinear).

We know that n is perpendicular to plane ( $p_{1}, p_{2}, p_{3}$ ), and thus is perpendicular to any line in this plane. Since, line $\left(p-p_{1}\right)$ belongs to the plane, then n is orthogonal to $\left(p-p_{1}\right)$. So, the following equation is satisfied:

$$
\begin{equation*}
n \cdot\left(p-p_{1}\right)=0 \tag{9}
\end{equation*}
$$

