CMSC427/828E Spring 2000 Homework \# 5

March 15, 2000

Assume the following notation: R_{θ} means rotation counterclockwise with angle θ, T_{i} means translation to the location $\left(x_{i}, y_{i}\right), T_{i+j}$ means translation to the location of $\left(x_{i}+x_{j}, y_{i}+y_{j}\right), T_{(x, y)}$ means translation to the location $(x, y), S_{c}$ means uniform scaling with factor c, and $S_{\left(c_{1}, c_{2}\right)}$ means that non-uniform scaling with c in the x direction, and c_{2} in the y direction. This notation will be used through out the homework.

Figure 1: Problem 1 Outline
1.

$$
\begin{align*}
x & =x^{\prime}+x^{\prime \prime} \\
& =a_{1} \cos \theta+a_{2} \sin \left(\phi+\theta-\frac{\pi}{2}\right) \\
& =a_{1} \cos \theta-a_{2} \cos (\phi+\theta) \tag{1}\\
y & =y^{\prime}-y^{\prime \prime} \\
& =a_{1} \sin \theta-a_{2} \cos \left(\phi+\theta-\frac{\pi}{2}\right) \\
& =a_{1} \sin \theta-a_{2} \sin (\phi+\theta) \tag{2}
\end{align*}
$$

The previous method is straightforward, but as this is a graphics course, it is better to solve using transformations. It is a transformation of the origin to the point P.

$$
\begin{aligned}
P & =R_{\theta} T_{\left(a_{1}, 0\right)} R_{\phi} T_{\left(-a_{2}, 0\right)} \hat{O} \\
& =\left[\begin{array}{c}
a_{1} \cos \theta-a_{2} \cos (\phi+\theta) \\
a_{1} \sin \theta-a_{2} \sin (\phi+\theta) \\
1
\end{array}\right]
\end{aligned}
$$

2. (a)

$$
\begin{align*}
R_{\theta} S_{a} & =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a \cos \theta & -a \sin \theta & 0 \\
a \sin \theta & a \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \tag{3}\\
S_{a} R_{\theta} & =\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a \cos \theta & -a \sin \theta & 0 \\
a \sin \theta & a \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \tag{4}
\end{align*}
$$

From equation 3 and equation 4, we reach $R_{\theta} S_{a}=S_{a} R_{\theta}$. Thus, uniform scaling, and rotation are commutative.
(b) Now consider two rotations around θ and ϕ respectively,

$$
\begin{align*}
R_{\phi} R_{\theta} & =\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \phi \cos \theta-\sin \phi \sin \theta & -(\sin \phi \sin \theta-\cos \phi \cos \theta) & 0 \\
\sin \phi \cos \theta-\sin \theta \sin \phi & \cos \phi \cos \theta-\sin \phi \sin \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos (\phi+\theta) & -\sin (\phi+\theta) & 0 \\
\sin (\phi+\theta) & \cos (\phi+\theta) & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =R_{(\phi+\theta)} \tag{5}
\end{align*}
$$

Since addition is commutative $\Longrightarrow R_{(\phi+\theta)}=R_{(\theta+\phi)}$.

$$
\begin{equation*}
R_{\phi} R_{\theta}=R_{\theta} R_{\phi} \tag{6}
\end{equation*}
$$

(c) Now consider two translation T_{1} followed by T_{2} :

$$
\begin{align*}
T_{2} T_{1} & =\left[\begin{array}{lll}
1 & 0 & x 2 \\
0 & 1 & y 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & x 1 \\
0 & 1 & y 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & x_{2}+x_{1} \\
0 & 1 & y_{2}+y_{1} \\
0 & 0 & 1
\end{array}\right] \\
& =T_{2+1} \tag{7}
\end{align*}
$$

Since addition is commutative $\Longrightarrow T_{2+1}=T_{1+2}$.

$$
\begin{equation*}
T_{2} T_{1}=T_{1} T_{2} \tag{8}
\end{equation*}
$$

3. In order to reflect along line $y=m x+h$, We need to do the following: $T_{(0, h)} \Rightarrow$ $R_{-\theta} \Rightarrow$ reflect $\Rightarrow R_{\theta} \Rightarrow T_{(0 .-h)}$, where $\theta=\arctan m$. Reflection is done by $S_{(1,-1)}$.

$$
\begin{aligned}
P_{\text {ref }} & =T_{(0,-h)} R_{\theta} S_{(1,-1)} R_{-\theta} T_{(0, h)} P \\
& =\left[\begin{array}{ccc}
\cos (2 \theta) & \sin (2 \theta) & h \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta) & -h(1+\cos (2 \theta)) \\
0 & 0 & 1
\end{array}\right] P
\end{aligned}
$$

There are many other solutions. For example, one can calculate the perpendicular to the line, and then double the distance of that perpendicular.
4. We need two functions, one to check the collinearity of three points, wheras the other checks if there are any three points in a set of points which are collinear.

```
boolean ptsCollinear ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\mp@subsup{p}{3}{})
    if }\quad(\mp@subsup{p}{2}{}-\mp@subsup{p}{1}{})\times(\mp@subsup{p}{3}{}-\mp@subsup{p}{1}{})=
        then return true;
        then return false;
}
boolean setCollinear ( }\mp@subsup{p}{i=1,2,\ldots,n}{}
for i = 1 }->n-
    for }j=i+1->n-1
        for }k=j+1->
            if checkCollinear ( }\mp@subsup{p}{i}{},\mp@subsup{p}{j}{},\mp@subsup{p}{k}{}
            return true;
return false;
```

5. In the left-handed system, positive rotations are clockwise when looking from a positive axis toward the origin. This definition of the positive rotations allows the same matrices of the right-handed system to be used in the left-handed system without any modifications.
6. Let's find the matrix representation of a rotation followed by a translation:

$$
T_{(x, y)} R_{\phi}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & x \tag{9}\\
\sin \phi & \cos \phi & y \\
0 & 0 & 1
\end{array}\right]
$$

Now let's represent a translation followed by a rotation:

$$
R_{\phi} T_{(x, y)}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & x \cos \phi-y \sin \phi \tag{10}\\
\sin \phi & \cos \phi & x \sin \phi+y \cos \phi \\
0 & 0 & 1
\end{array}\right]
$$

From equations 9 and $10, R T$ can be represented by by a rotation followed by translation where

$$
\begin{align*}
R_{\phi} T_{(x, y)} & =T_{\left(x^{\prime}, y^{\prime}\right)} R_{\phi} \\
& =\left[\begin{array}{lll}
1 & 0 & x \cos \phi-y \sin \phi \\
0 & 1 & x \sin \phi+y \cos \phi \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & x^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \tag{11}
\end{align*}
$$

where $x^{\prime}=x \cos \phi-y \sin \phi$, and $y^{\prime}=x \sin \phi+y \cos \phi$.
Also, recall from problem \# 2 that a sequence of rotations can be replaced by a single rotation, and also, a sequence of translations can be replaced by a single translation. Note that in the following, T and R represent abstract translation, and abstract rotation, respectively.
So assume that there is a general sequence $S_{1}, S_{2}, \ldots, S_{n}$, where each S_{i} can be either a R or a T. We want to prove that $M=S_{n} S_{n-1} \ldots S_{1}=T R$. The proof will be done by induction.
At $t=0, M=I$, where I is the identity matrix. $M=I=T R$ where the rotation is by angle 0 , and the translation to the origin $(0,0)$.
At $t=1, M=S_{1} M_{\text {old }}=S_{1} T R$, if $S_{1}=T \Longrightarrow M=T T R=T R$ due to equation 7. Else, if $S_{1}=R \Longrightarrow M=R T R=T^{\prime} R R=T R$ due to equation 11.
Assume proof is held for $t=n$, i.e.; $M=S_{n} S_{n-1} \ldots S_{1}=T R$, then at $t=n+1$, If $S_{n+1}=T \Longrightarrow M=T T R=T R$, and similarly, if $S_{1}=R \Longrightarrow M=R T R=$ $T^{\prime} R R=T R$ due to equation 11. So, it holds for $t=n+1$.

Thus, any sequence of rotations, and translations can be represented by a rotation followed by a translation.

