Information Visualization
CMSC 838B - Spring 2003
Multidimensional Data Visualization
Benjamin B. Bederson
University of Maryland
www.cs.umd.edu/~bederson

This presentation adapted from John Stasko

Data Sets

- Data comes in many different forms
- Typically, not in the way you want it
- How is stored?

Example

- Cars
- make
- model
- year
- miles per gallon
- cost
- number of cylinders
- weights
- ...

Data Tables

- Often, we take raw data and transform it into a form that is more workable
- Main idea:
- Individual items are called cases
- Cases have variables (attributes)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Metadata

- Descriptive information about the data \qquad
\square Might be something as simple as the type of a variable, or could be more complex \qquad
- For times when the table itself just isn't enough
- Example: if variable1 is " ", then variable3 can \qquad only be 3,7 or 16

How Many Variables?

- Data sets of dimensions 1,2,3 are common \qquad
- Number of variables per class
- 1 - Univariate data
\qquad
- 2 - Bivariate data
- 3 - Trivariate data \qquad
- >3-Hypervariate/Multivariate data

Trivariate Data

- Representations

Multivariate Data \qquad

- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
- line graphs, bar graphs, scatter plots OK \square We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables? \qquad
- Often the interesting ones

Multiple Views \qquad
\qquad
Give each variable its own display

A B C D E					
1	4	1	8	3	5
2	6	3	4	2	1
3	5	7	2	4	3
		6	3	1	

\qquad
\qquad
\qquad
\qquad
\qquad

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what?
Misses what?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chernoff Faces

Encode different variables' values in characteristics of human face

Cute applets: http://www.cs.uchicago.edu/~wiseman/chernoff http://hesketh.com/schampeo/projects/Faces/chernoff.html

Star Plots | Space out the n |
| :--- |
| variables at equal |
| angles around a |
| circle |

Star Plot examples

http://seamonkey.ed.asu.edu/~behrens/asu/reports/compre/comp1.html

Parallel Coordinates \qquad

- Encode variables along a horizontal row
- Vertical line specifies values

Dataset in a Cartesian graph

Same dataset in parallel coordinates

Parallel Coords Example \qquad
\qquad
\qquad
Basic

\qquad
\qquad
\qquad
Color

Limitations and Issues

- Complexity
- Many of these systems seem only appropriate for expert use
- User testing
- Minimal evidence of user testing in most cases

