
International Journal o f Computer and Information Sciences, Vol. 5, No. 1, 1976

Toward a Theory of Encoded Data

Structures and Data Translation

Ben Shneiderman 1 and Stuart C. Shapiro 1

Received March 1975," revised June 1975

Several models of data base systems have distinguished levels of abstraction
ranging f rom the high-level entity set model down to the low-level physical
device level. This paper presents a model for describing data encodings, an
intermediate level which focuses on the relationship among data items as
demonstrated by contiguity or by pointer connections. Multiple data en-
codings for a file are shown and t ransformation functions that describe the
translation between data encodings are discussed.

KEY W O R D S : Data encoding; data translation; data base systems;
data description.

1. I N T R O D U C T I O N

Numerous attempts have been made to develop a theoretical foundation for
describing data base systems. Recent work has suggested a multileveled
approach which clearly separates the logical aspects from the physical
aspects.

The well-thought-out DIAM model t1~ provides a comprehensive four-
level view of data base systems. The highest level, the entity set model,
reflects the user's view of the data and is heavily influenced by Codd's
work r on the relational model. The next level, the string model, describes
the logical access path structure and draws heavily on graph-theoretic
notions, ca,4~ More closely related to the implementation details is the encoding
model, which focuses on the internal representation and encoding of storage
structures. Finally, the physical device model deals with the placement of
encoded data on the physical storage media.

1 Depar tment of Computer Science, Indiana University, Bloomington, Indiana.

33

�9 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011~ No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission of
the publisher.

34 Shneiderman and Shapiro

Earley's work 15,hI distinguishes relational level, access path level, and
an implementation level. He envisions programming languages at each level
and the progression through stepwise refinement from abstract to concrete
algorithms. (7) The lower-level languages enable the user to carefully specify
more implementation details, with the goal of improving efficiency.

Child's early work ~8) on set-theoretic models to describe the high-level
logical view has been supplemented by work on extended set theory (9) to
describe the implementation details.

These multilevel approaches provide useful divisions for dealing with the
complexity of a sophisticated data base system. Psychologists can be
employed to assist in the selection of high-level models and languages, while
experts in the operation of physical devices can focus their attention on the
machine-oriented aspects.

2. M A P P I N G T H E E N T I T Y SET M O D E L I N T O
D A T A E N C O D I NGS

This paper addresses the problem of describing the static relationships
among data and provides the basis for mappings that describe the translation
from one data encoding to another. The dynamics of insertion, deletion, and
updating are beyond the scope of this work.

We adopt the abstract perspective that the entity set model can be
mapped into one or more data encodings. Each of these mappings is an
implementation of the logical view of the data (see Fig. 1), that is, I: f_, ~ / ~ ,
where I is the implementation, L is the space of logical data structures, and/~
is the space of data encodings.

To clarify this basic notion, consider a one-way list. The implementation
might be by a linked list strategy within the high-speed storage, by a linked
list stretching over several disk blocks, by contiguous allocation within a
block, by contiguous allocation plus links to overflow blocks, and so on.
For a more complex case, consider the logical view put forth by Codd's

LOGICAL DATA STRUCTURES

(ENTITY SET MODEL)

~Til(a) d (if(d)) TRANSLATION

--.~l~Ia(a)

IMPLEMENTATIONS

ENCODED DATA STRUCTURES

(ENCODING MODEL)

Fig. 1

Toward a Theory of Encoded Data Structures and Data Translation 35

relational model. A number of widely varying implementations can be
envisioned for this logical view.

While a number of formulations have been proposed for dealing with
the logical view of data structures, there is a dearth of techniques for
describing data encodings produced by a specific implementation. Although
the present model does not completely describe the machine level details,
it does serve as an intermediate descriptive model.

3. T H E M O D E L

The basic components of a data encoding are blocks. A Mock is an
addressable, contiguous segment of storage. A block is divided into elements,
each of which is fieM or a block. A field is a contiguous segment of storage
and is the smallest meaningful unit of a data encoding. There are two kinds
of fields: datafields and pointer fields. The contents of a data field are data
items; each data item is an encoding of some piece of information from the
entity set model. The contents of a pointer field are pointers; each pointer
addresses a block. For example, [fl ,f2 ,f8 ,f4] represents four fields in a
single block which are contiguous in the specified sequence, and
[[fl ,f2], If3 ,f4]] represents a block consisting of two contiguous subblocks,
each of which contains two fields.

Definition I. We define how blocks may be constructed from fields.
Let A be the null block. Let F be some set of fields. We now define Be,
which is the set of blocks using the fields in F. BF does not include A.

(i) If f l fn for n ~> 1 are inF, then [ft , . . . , f ,] is in B~. This shows
how fields can be combined to form a block.

(ii) I f *1 s for n > 1 are in F or in By, [e~ , en] is in BF" This
shows how blocks and fields may be combined to form a block. Note that a
block that contains only a block is not valid.

(iii) That is all that is in BF.

Now, l e t /)v = By w {A}. /)F is the set of all blocks that can be con-
structed from the fields in F plus the null block.

I f b = [~1 ,-.., ~,] is in /)F, we call ~i, 1 ~< i ~< n, the elements of b.
We will want to talk about the number of elements in a block.

Definition 2. If b = [~ ~1 is in /)v for some F, then T b [~ = n.

We will also need projection functions which select an element from a
block.

Definition 3. If b = [ez , e ,] is in /)F for some F and 1 ~ i ~ n ,
then rri(b) = ~ .

36 Shneiderman and Shapiro

Definition 4. We will use the symbol [1~=~ for a sequence in the same
way that ~i=~ is used for a sum. Thus, [ll~=a ~i] is the same as [~ ,..., t,~].

To describe a particular data encoding E we must describe:

1. D, the set of data fields.

2. P, the set of pointer fields (sometimes empty).

3. B, the set of blocks. B will be subset of/3Due �9

4. g, a function from P into B, which describes the pointer relationships
among the blocks.

4. E X A M P L E S OF D A T A E N C O D I N G S

At this point a clarifying example to contrast four possible implemen-
tations is useful. Consider the representation of a file a consisting of records
b~, where 1 ~ i ~ N, which in turn consist of a student number field d~0
and three exam grade fields: d i l , d iz , and dia.

(A) The first implementation shows the records to be arranged
sequentially with contiguous fields within each record (see Fig. 2a):

D = { d ~ l l ~ i < ~ N , 0 ~ j ~ < 3)

P = ~ , the empty set

B = { a } t d { b , I1 ~< i~<N)

a=[l]~=zbd, i.e., [a l , = N and zr~(a)=bl

For eachi, 1 ~<i~<N,

bi = [dio, dil , di2 , d~3]

i.e., [bi 1, = 4 and for 0 ~ j ~ 3, 7rj+l(b~) = dis. g is empty.

(B) The second implementation shows each record as a one-way list.
The records are sequentially arranged (see Fig. 2b):

D : { d ~ j l l ~ i ~ N , 0 ~ j ~ < 3 }
P : (p i 3 1 1 ~ i ~ N , 0 ~ < j ~ 3 }
B = {a} u {b,jl 1 ~ i ~< N, 0 ~ j ~< 3) u {A}

F o r l ~ i <~ N , O <~ j <~ 3, and O <~ k <~ 2,

a = [H~=z bio], I a 1, : N , ~i(a) : bio

bij = [dij , PiJ], I b~j I, = 2, ~'l(bi~) = di~ , rr~(bij) = Pit

g(P~k) : bg~+~, g(P~z) : A

Toward a Theory of Encoded Data Structures and Data Translation 37

Ca)

(b)

(e)

(d)

Fig. 2

(c)
technique for the grades within each record (see Fig. 2c):

D = { d i j l l < ~ i ~ N , 0 ~ < j ~ 3 }

P = { P l k l l < ~ i < ~ N , 1 ~ k ~ < 3 }

B={a}~2{bi[1 ~ i ~ N } U { c i k [1 ~ i ~ N ,

a = [I1~=1 hi]

F o r l ~<i ~<N, 0 ~ j ~ 3, and l ~<k~<3,

l a F~ = N ~ i (a) = bi
bi = [clio, Pil , Pi2 , Pia]

t bi f~ = 4, ~rl(bi) = dio,

c i~ = [dM, I c i k is = 1,

g(Pik) = cik

(D)
each record from the remaining three (see Fig. 2d):

D={d~-j l l ~ i < ~ N , 0~<j~<3}
P = { p ~] l <~ i <~ N }
B={a}u{b~ l 1 ~ i ~ N } w { c i [1 ~<i~<N}

The third implementation is by the use of the pointer array

1 ~ < k ~ < 3 }

r = Pik

The fourth implementation simply splits the first data field in

38 Shneiderman and Shapiro

For 1 ~< i ~ N , and 1 ~ k ~ 3,

a = [[[~u=z b d, I a 1, = N, Try(a) = bi

b, = [d,o, Pal, I bi [, = 2, ~ (b 3 = d~o, =,(b,) = p~

g(Pi) = ci

A final example describes the D B T G Repor t concept of a set
implemented by chain with next and prior pointers. The set S consists of an
owner record with three data fields, r, s, and t, and N member records each
with two data fields, u and v (see Fig. 3):

"rrl(a) = r, ~'2(a) = s,

For 1 ~ i ~< N,

bi = [ui , vi , h i , Pi],

7rl(bi) = ui ,

tbi+l, g(ni) : - ~a,

I hi-1 '

: t ; ; ,

D = { r , s , t) u { u i , v i [i < ~ 1 ~ N }

P : {ni , pi [O ~ i ~ N }

B : {a) vo {b~ [1 <~ i <~ N)

a : [r,s ,t , no,Po], l a l , : 5

7rz(a) = t, rq(a) = n0,

I b ~ 1 , = 4

~ (b 3 = v~, ~ (b~) = . , .

O ~ i < N
i = N

l < i ~ N
i = l
i = O

)
Fig. 3

7rs(a) : Po

7r4(bi) ---- Pi

Toward a Theory of Encoded Data Structures and Data Translation 39

5. P R E S C R I P T I V E M O D E L

The descriptive model presented thus far is useful as a formal tool for
communication among implementers and serves as a basis for a component
of the total data description task. Such data description facilities are needed
by those attempting to improve data structure implementations, c11,1~) create
data base systems simulators, (13,a4~ and construct data translation
systems.{15,22

The data translation paradigm is to develop a description of source
and target data encodings and a procedural translation facility to describe
the mapping. We elaborate on the data encoding model by adding transfor-
mation functions which describe translations from one data encoding to
another.

Keep in mind that the prescriptive model describes the relationship
between a source and a target data encoding; it is not a program for doing
the translation.

In the following definitions, E is some particular data encoding.

Definition 5. If d is a piece of information from some data that E
encodes, encodeE(d) is the data item in E that encodes d. Recall that data
items are the contents of a data field.

Definition 6. I f f is a data field in E, meaninge(f) is the meaning of the
contents of f That is, encodeE(meaningE(f)) is the data item that is the
content of the data field f

Definition 7. I f f i s a data field in a data encoding E' such that E' encodes
the same data as E, transE'E(f) = encodeE(meaningE,(f)) = the translation
into E of the contents o f f

Definition 8. I fb is a block in E, refE(b) is a pointer to b. I fp is a pointer
to b, ferE(p) = b.

Definition 9. I f f is a data field in E, valE(f) is the data item contained
i n f I f p is a pointer field in E, valE(p) is the pointer contained in p. If b is
a block in E, va lE(b)= b. Note: If p is a pointer field in E, g (p) =
fetE(valE(p)). If b is a block in E and pz and P2 both point to b,
valE(p0 = val~(p~) = refE(b).

Definition 10. If ~1 ~, are data items, pointers, or blocks in E, then
consE(*l , ~,) is a block b in E such that valE(zr~(b))----*i. That is,
b = If1 , f ,] , where for 1 ~ i ~< n, valE(f,-) = , i .

We will now show how data encodings (A)-(D) above are related. In
what follows, we will use superscripts to show what data encoding is being

40 Shneiderman and Shapiro

used. We will show how to derive (B) f rom (A), (C) from (B), (D) from (C),
and (A) from (D).

(A) - + (B) . N B = N A = N. For 1 ~<i ~ < N and 0 ~ j ~<3,
meaning~(d~) = meaninga(d~). We have

bi~ = A

bi~" = cons(transAB(rr;+l(~ri(aa))), ref(b•+0)

a s = cons(llN=z biB0)

(B) --~ (C). N c ~- N B = N. For 1 ~ i ~ N and 0 ~ j ~ 3,

meaningc(d c) = meaning~(d~)

a c = cons([IiN] cons(trans,c(Tq(zri(a~))),

refc(consc(transBc(~z(gB(Tr~(~ri(aB))))),

refc(cOnsc(transBc(Tq(g"(Tr2(gB(~-2(zr~(aB))))))),

refc(consc(transBc(Th(gB(zr2(gB(zr2(gB(zr2(~i(a~)))))))))))))))))

(C)--+(D). N D = N c = N . F o r l ~ i ~ N a n d 0 ~ j ~ 3 ,

meaningD(d~) = meaningc(d c)

aD = cOnSD(I[iN=] cons(transcD(rq(~ri(aC))),

refD(consD(transcD(Th(gC(~r~(Tri(aC))))),

transcD(rrz(gC(~ra(lh(aC))))),

transcD(~z(gC(~4(~ri(aC)))))))))

(O) --~ (A). N A = N D = N. For 1 ~ i ~ N and 0 ~ j ~ 3,

meaningA(d A) = meaningD(d D)

a A = cons(tI~=~ cons(transDA(~i(Iri(aO))),

transDA(~rz(gD(Tr~(Tri(aD))))),

transDg(~r2(gD(~r~(Tri(aO))))),

transDA(~a(gD(~r~(~r~(aD)))))))

Toward a Theory of Encoded Data Structures and Data Translation 41

Strong Equivalence

Two encodings are strongly equivalent if they have the same block
structure, pointer structure, and the value of each of the data fields in one
encoding is equal to the value of the corresponding data fields in the other
encoding. Thus two copies of a record on the same or a different disk pack
are strongly equivalent.

Weak Equivalences

Two encodings are weakly equivalent if they have the same block
structure and pointer structure but the values of the data fields differ in
value. Thus, two DBTG record occurrences of the same DBTG record type
are weakly equivalent. If the fields had identical values, the records would be
strongly equivalent.

6. E N H A N C E M E N T S T O T H E D E S C R I P T I V E M O D E L

This basic descriptive notation can be enhanced in numerous ways.
To evaluate the efficiency of a particular encoding, a cost function can be
associated with each pointer, C: P - + T, where C is the cost function,
P is the set of pointers, and T is the cost, typically in units of time or money.
The cost of traversing a pointer within a block is generally less than inter-
block traversals. The contiguous fields within a block are assumed to be
available at zero cost. A probability of request may be associated with each
field to further refine the evaluative model.

The storage space required can be determined by a simple count of the
number of fields. We write r b Ii to indicate the number of fields in a block.

~Z

l f !1 = 1 i f f i s inF, and i fb = [~1 ""*~], then [b 1i = Z~=I[~ 1i.
To attach more meaning to the fields, that is, to provide an interpretation

for the abstract encoded data structure, a value function can be invoked.
For example, to show that data fields all0 "'" d~v0 are in ascending order,
we write

val(d~o) ~ val(d~+l,O) , 1 ~ i ~ N

Finally, we may consider inclusion of undefined fields. An undefined
field is different from a null pointer field. Undefined fields are useful in
describing space in a block that has been reserved for future entries. This
allows for descriptions of partially filled tables or available space lists which
contain pointer fields and undefined fields. Garbage collection, compaction,
and reorganization become special kinds of translations.

42 Shneiderman and Shapiro

7. C O N C L U S I O N

The material in this paper provides the basis for developing a model of
encoded data structures. The fundamental motive has been to characterize
the contiguous and pointer-based relationship among fields in a storage
facility. The model avoids issues related to physical devices and the details
of pointer implementation, such as whether pointers indicate absolute or
relative storage addresses or disk region addresses.

Other data description models pursue a more reductionist approach:
Starting from high-level logical data constructs, they show how these
constructs might be represented in the storage space. Our constructive
approach to data description starts with a more precise low-level view and
seeks to carefully model the data as they appear in the storage space. This
more formal approach distinguishes between data fields and their contents,
the data items.

The model serves as a useful basis for describing part of the data - trans-
lation task. The source and target data encodings can be described and then
the prescriptive model can be used to show the relationship between them.

We have not attempted to present a language or operators for data
translation, but a prescriptive model which formally demonstrates a mapping
between two data descriptions. This formal model is necessary if we are to
prove the correctness of a translation and to show that no information has
been lost.

Further investigations are proceeding to describe hierarchically organized
collections, implicit pointer techniques such as hash coding, and specific
transformations such as the permutation of elements in a block or the
replacement of a block by a pointer.

REFERENCES

1. M. E. Senko, E. B. Altman, M. M. Astrahan, and P. L. Fehder, Data structures and
accessing in data-base systems (three parts), I B M Syst. J. 12(1):30-93 (1973).

2. E. F. Codd, A relational model of data for large shared data banks, Comm. A C M
13(6):377-387 (1970).

3. D. Hsiao and F. Harary, A formal system for information retrieval from files, Comm.
A C M 13(2):67-73 (1970).

4. Ben Shneiderman and Peter Scheuermann, Structured data structures, Comm. A C M
17 (October 1974).

5. J. Earley, Towards an understanding of data structures, Comm. A C M 14(10):617-618
(1971).

6. J. Earley, Relational level data structures for programming languages, Acta Informatica
2:293-309 (1973).

7. J. T. Schwartz, Abstract and concrete problems in the theory of files, in Data Base
Systems, R. Rustin, ed. (Prentice-Hall, 1972), pp. 1-22.

8. D. L. Childs, Feasibility of a set-theoretical data structure--a general structure based

Toward a Theory of Encoded Data Structures and Data Translation 43

on a reconstituted definition of relation proceedings, in IFIP Congress (North-Holland,
1968).

9. D. L. Childs, Extended set theory: a formalism for the design implementation and
operation of information systems, Unpublished manuscript.

10. CODASYL, Data Base Task Group Report (April 1971) [Available from ACM, 1133
Avenue of the Americas, New York, NY 10036].

11. Ben Shneiderman, Data structures: description, manipulation, evaluation, Ph.D.
Thesis, State University of New York at Stony Brook (May 1973).

12. D. G. Severance, Some generalized modeling structures for use in the design of file
organizations, Ph.D. Thesis, University of Michigan (1971).

13. Peter Scheuermann, A simulation model for data base management systems, Un-
published Doctoral Proposal, State University of New York at Stony Brook (May
1974).

14. A. F. Cardenas, Evaluation and selection of file organization--a model and a system,
Comm. A C M 16 (September 1973).

15. Edgar H. Sibley and Robert W. Taylor, A data definition and mapping language,
Comm. A C M 16(12):750-759 (1973).

16. J. P. Fry, D. P. Smith, and R. W. Taylor, An approach to stored data definition and
translation, in Proe. A C M SIGFIDET Workshop on Data Description, Access and
Control (November-December 1972), pp. 13-55.

17. J. P. Fry, R. L. Frank, and E. A. Hershey, A developmental model for data translation,
in Proe. A C M SIGFIDET Workshop on Data Description, Access and Control (Novem-
ber-December 1972), pp. 77-106.

18. D. P. Smith, A method for data translation using the stored data definition and trans-
lation task group languages, in Proe. A C M SIGFIDET Workshop on Data Descrip-
tion, Access and Control (November-December 1972), pp. 107-124.

19. J. P. Fry and Alan G. Merten, A data description language approach to file translation,
in A C M SIGFIDET Workshop on Data Description, Access and Control (1974).

20. N. C. Shu, B. C. Housel, and V. Y. Lum, CONVERT: a high-level translation
definition language for data conversion. Comm. A C M 18 (October 1975).

21. A. Shoshani, A logical-level approach to data base conversion, in Proe. ACM-SIGMOD
International Conference on Management o f Data (1975).

22. Stored Data Definition and Translation Task Group Report (to appear).

