
This article was downloaded by: [University Of Maryland]
On: 10 July 2014, At: 07:54
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Geographical
Information Science
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tgis20

Colour‐coded pixel‐based highly
interactive Web mapping for
georeferenced data exploration
Haixia Zhao Correspongding author a & Ben Shneiderman a
a Human‐Computer Interaction Laboratory and Department of
Computer Science , University of Maryland , College Park, MD
20742, USA
Published online: 20 Feb 2007.

To cite this article: Haixia Zhao Correspongding author & Ben Shneiderman (2005) Colour‐coded
pixel‐based highly interactive Web mapping for georeferenced data exploration, International
Journal of Geographical Information Science, 19:4, 413-428, DOI: 10.1080/1365881051233125120

To link to this article: http://dx.doi.org/10.1080/1365881051233125120

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/1365881051233125120
http://dx.doi.org/10.1080/1365881051233125120
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Research Article

Colour-coded pixel-based highly interactive Web mapping for
georeferenced data exploration

HAIXIA ZHAO* and BEN SHNEIDERMAN

Human-Computer Interaction Laboratory and Department of Computer Science,

University of Maryland, College Park, MD 20742, USA

(Received 19 February 2003; in final form 7 July 2004)

This paper describes a pixel-based technique that enables highly interactive Web

choropleth maps for georeferenced data publishing and visual exploration.

Instead of delivering geographic knowledge to the client in polygon-based vector

formats, we encode geographic object IDs and shape information into highly

compact pixel images (decoding maps). This allows the combination of raster and

vector characteristics while avoiding the problems in the currently existing pixel-

based (raster-image-based) or vector-based techniques. Differing from traditional

pixel-based techniques that are static and allow very little user interaction, our

pixel-based technique allows varieties of sub-second (less than 1 s) interface

controls such as dynamic query, dynamic classification, geographic object data

identification, user-setting adjusting, as well as turning on/off layers, panning and

zooming, with no or minimum server support. Compared with Web GIS

techniques that use vector geographic data, our technique avoids transferring

over the network large vector geographic data. It also avoids the non-trivial

client-side computation to interpret the vector data and render the maps. Our

technique features a short initial download time, near-constant performance

scalability for larger numbers of geographic objects, and download-map-

segment-only-when-necessary which potentially reduces the overall data transfer

over the network. As a result, it accommodates general public users with slow

modem network connections and low-end machines, as well as users with fast

T-1 connections and fast machines. The client-side (browser) is implemented

as lightweight Java applets. YMap, an easy-to-use, user-task-oriented highly

interactive mapping tool for visual georeferenced data exploration is im-

plemented using this technique. The performance comparison of YMap to some

other vector-based Web GIS demonstrates the feasibility and benefits of this

technique.

Keywords: Web GIS; Choropleth map; Universal usability; Information

visualization; Dynamic query

1. Introduction

The Internet has become an important medium for georeferenced data publishing for
public access. The well-documented benefits include distributed access, centralized

control for updates, and modest development cost. Existing mainstream online

mapping techniques can be classified into two categories: pixel-based (raster-

image-based) and vector-based. In a typical pixel-based technique, servers generate

*Corresponding author. Email: haixia@cs.umd.edu

International Journal of Geographical Information Science

Vol. 19, No. 4, April 2005, 413–428

International Journal of Geographical Information Science
ISSN 1365-8816 print/ISSN 1362-3087 online # 2005 Taylor & Francis Group Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/1365881051233125120

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

maps as pictures (display maps) in one of the standard raster graphic formats supported

by graphical Web browsers. Interaction is accomplished by submitting a request to the

server for a new display map. Even simple user actions such as turning on or off display

attributes often require such a ‘round-trip’ and complete screen refreshes. Examples

include multiple Web mapping sites powered by ESRI’s ArcView IMS, MapObjects

IMS, or ArcIMS (ESRI 2000), MapInfo’s MapeXtreme (MapInfo 2000).

This typical pixel-based technique places severe restrictions on the map

interactivity and interface design flexibility. It poses additional limitations such as

slow map update, increased network load, and often poor scalability in terms of

number of simultaneous users (Andrienko and Andrienko 1999, Zaslavsky 2000).

Designs that promote higher levels of interactivity with rapid visual interaction

methods, such as dynamic query and linked brushing, have been proposed and

employed in some desktop mapping tools (Monmonier 1989, Symanzik et al. 1996,

MacEachren and Kraak 1997, Dang et al. 2001). These powerful methods enable

users to explore large data sets, discover trends, and identify key features. However,

these sub-second-response interface controls characterizing desktop environments

are typically missing in the Web environment. Researchers have been exploring the

possibility of highly interactive Web mapping by switching to client-side solutions,

and some excellent examples have already emerged. Client-side solutions typically

ship vector geographic data (in a format such as ESRI shapefile, Vector Markup

Language (VML), Scalable Vector Graphics (SVG) or Geography Markup

Language (GML)) to the client computer, where the data are interpreted and

rendered. The two typical solutions are (1) by software implemented in Java, such as

Descartes (Andrienko and Andrienko 1999) (which later became part of

CommonGIS (CommonGIS Consortium 2002)), DC Maps (Dynamic Choropleth

Maps) (United States EPA 2003), Interactive Map Applet (Sorokine et al. 1998),

and CIESIN’s Demographic Viewer (CIESIN 2002), (2) or with the help of various

specialized browser plug-ins (or special browsers), such as AXIOMAP (Zaslavsky

2000), CDV (Dykes 1997), GeoMedia Web Map (Intergraph Corp. 2000), Autodesk

MapGuide (Autodesk 2000), and Flash Geovisualization prototype (Steiner et al.

2002). Mapping software is either pre-installed on the client computer or down-

loaded each time along with map and data information. Golub and Shneiderman

(2003) described a client-side solution for dynamic query using Dynamic HTML.

Each geographic object is shipped to the client as an individual image with

transparent background. Each image is displayed on an individual DHTML layer

whose visibility can be set. However, these approaches typically face some of the

following problems:

1. Large size of geographic data files to be transmitted over the network. This

causes the initial download time to be very long, especially over modem

network connections. The problem becomes more severe when the number of

geographic objects (states, rivers, etc.) increases. For example, a map of 3140

USA counties is about 1.54 Mb as ESRI Shapefile core components

including .shp and .shx (the third core component .dbf file is excluded here

because its size depends on the number of data attributes). It takes more than

3 min to download over a 56 K modem connection to a Pentium-III 1.0 GHz

CPU, 256 Mb RAM notebook. The long initial download time has a strong

negative effect onThe Internet has become an important medium for

georeferenced data publishing for public access. The well-documented

414 H. Zhao and B. Shneiderman

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

benefits include distributed access, centralized control for updates, and

modest development cost. Existing mainstream online mapping techniques

can be classified into two categories: pixel-based (raster-image-based) and

vector-basedusers, often causing users to give up the attempt. Although more

compact, but lower-quality, vector formats could be defined especially for

Web GIS (such as being employed by DC Maps) to replace the widely used

high-quality standards for desktop mapping, the compression is limited,

considering the impact on image quality. Also, it is costly and hard to

convert the huge amount of geographic data already in use, owned by

government agencies, communities, organizations and the mapping

industry.

2. Unsatisfactory interaction performance scalability to the number of geographic

features, or inability to efficiently render complex maps. For example, with

dynamic queries, users alter query criteria by adjusting sliders and

immediately observe corresponding search result changes graphically.

Such dynamic interaction requires response times to be less than 0.1 s

in order to ensure a smooth animation (Shneiderman 1998). However,

CommonGIS shows significant map update delay for a USA county

view map during dynamic query (with dynamic map update on). AXIOMAP

does not scale up beyond about 200 or so geographic objects using VML.

It can render more using SVG, but still far from enough for complicated

maps such as a USA county view map. Performance scalability problems

are also reported in (Steiner et al. 2002) and (Golub and Shneiderman

2003).

3. Possible incompatibility with a client computer. For example, AXIOMAP

requires Microsoft Internet Explorer 5.0 or the SVG plug-in, and CDV

requires Tcl/Tk plug-in. In terms of client compatibility and platform

independence, Java applets, which can be executed by most Web browsers,

are more suitable (Kahkonen et al. 1999, Brinkhoff 2000).

The above limitations have important social implications. First, one goal of many

Web mapping applications is to share statistics data with the general public. The

above limitations inhibit such data sharing, contradicting the goal of universal

usability, as stated in Hochheiser and Shneiderman (2001). The following issues will

not be solved any time soon for a large portion of public users or users from

developing countries.

1. Slow network connection. Even in the USA, recent data show that most

users still access the Internet via modem connections (56 K and less) (based

on the data by Nielsen//NetRatings 2003), and analysts do not expect the

majority of homes to have broadband access (fast access) for at least five

years (Romero 2002).

2. Home users may not have powerful end machines to meet the compu-

tation demand for handling the interpretation and rendering of the vector

data.

3. Occasional users usually do not have the required plug-ins or special

software (if any) installed and may not want to invest the time or do not have

the knowledge to install them. Second, until consensus is reached on an

acceptable-quality, highly compact map data standard for the Web, it still

Web mapping 415

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

remains infeasible for most map-referenced data publishers to provide highly

interactive mapping services on the Web and make it accessible to

general public users. Even when a consensus is reached, the cost for the

organizations and companies to transform existing map data into the new

standard will be high, enforcing a de-facto ‘digital mapping divide’ (only big

organizations who can afford powerful servers and expensive mapping

packages are able to publish their data) (Zaslavsky 2000).

This paper presents a pixel-based technique that enables highly interactive Web

choropleth maps with sub-second-response interface controls such as dynamic

query, dynamic classification, object data identifying, user-setting adjustments, as

well as turning on/off layers, panning and zooming, with no or minimum server

support. By encoding geographic object IDs and shapes into compact pixel images

(decoding maps), this technique enables flexible client-side map manipulations such

as those enabled by vector geographic data, but avoids the delivery of large vector

geographic data to the client. As a result, it avoids the delivery of large software

components needed for interpreting and rendering the vector data. The client-side

browser is implemented with lightweight Java applets, requiring no special plug-ins,

thus minimizing users’ effort. Short initial download times, rapid rendering, and

minimum need for server support during interactions make real-time interaction

possible even for public users with slow network connections. The technique also

has the benefit of near constant performance scalability, independent of the number

of geographic objects. And it can use geographic data in many formats, with the

assistance of many mapping tools, freeware or commercial, that can interpret the

data and export maps as pixel images. After the basic map images are generated, the

system can run without any external mapping tool support. Using this pixel-based

technique, we developed YMap, a prototype of an easy-to-use, task-oriented, highly

interactive Web choropleth map exploration tool.

The paper is organized as follows: section 2 introduces the key idea of the pixel-

based technique by describing the pixel decoding maps and how geographic object

IDs and shapes are encoded/decoded into/from the decoding maps. Section 3 gives

the overall system architecture, and explains the differences of our technique from

vector-based techniques and traditional pixel-based techniques. Section 4 describes

how varieties of user interactions can be fulfilled under the technique, with our

YMap prototype as an illustration. Section 5 compares the performance of YMap

with vector-based Web GIS techniques. Section 6 concludes and suggests directions

for future work.

2. Pixel decoding maps and geographic object knowledge encoding/decoding

The core idea of our pixel-based technique is to encode geographic object knowledge

(geographic object IDs and shapes) as pixel colours in map pictures that we refer to

as decoding maps. Geographic object knowledge is delivered to the client in the form

of decoding maps, together with an attribute data file containing records of attribute

values related to the geographic objects. To generate display maps (map pictures for

display) from decoding maps, the client decodes the geographic object IDs of the

pixels in the decoding maps, and uses the IDs to refer to the values in the attribute

data file to decide the display colours of the pixels (see figure 2 for an example). The

rules to encode/decode geographic object knowledge into/from decoding maps are

described in the following sections.

416 H. Zhao and B. Shneiderman

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

2.1 Encoding/decoding rules for a small number of geographic objects

At the server-side, a geographic object ID is encoded into a pixel colour in the

decoding maps:

red IDð Þ~ min 28{1,
ID

ng|nb

� �
mod nr

� �
|

28

nr{1

� �� �
ð1Þ

green IDð Þ~ min 28{1,
ID

nb

� �
mod ng

� �
|

28

ng{1

� �� �
ð2Þ

blue IDð Þ~ min 28{1, ID mod nbð Þ| 28

nb{1

� �� �
ð3Þ

At the client-side, the pixel colour is decoded to obtain the geographic object ID:

ID~
redz 28

nr{1ð Þ|2

28

nr{1

$ %
|ng|nbz

greenz 28

ng{1ð Þ|2

28

ng{1

$ %
|nbz

bluez 28

nb{1ð Þ|2

28

nb{1

$ %
ð4Þ

N The result of xb c where x is a number is the largest integer that does not exceed

x.

N ID is the unique ID assigned by the system to a geographic object (state,

county, river, etc.) in a map layer.

N nr is the number of different red colours used in the encoding/decoding rules.

N ng is the number of different green colours used in the encoding/decoding rules.

N nb is the number of different blue colours used in the encoding/decoding

rules.

N red is the red value of the colour used to encode the geographic object ID,

based on the 24-bit colour scale.

N green is the green value of the colour used to encode the geographic object ID,

based on the 24-bit colour scale

N blue is the blue value of the colour used to encode the geographic object ID,

based on the 24-bit colour scale

Figure 1 shows the colour space and illustrates the relationship between the

geographic object IDs and the colours used to encode the IDs (nr5ng5nb54). The

colours at the grid vertices are actually used.

GIF format was chosen as the decoding map format for YMap because of its high

compression rate and excellent image quality for images with many pixels but not

many colours. A GIF image can have a maximum of 256 colours. Theoretically, a GIF

image can store the knowledge of 256 geographic objects. In the Ymap implementa-

tion, only 64 (46464) colours are used, and a colour is rounded to the nearest grid

vertex colour during decoding, considering the quantization errors introduced by the

GIF image compression tool we used. Figure 2 shows a sample decoding map

consisting of 51 USA states (50 states and the District of Columbia) (figure 2(a)), a

georeferenced data file (figure 2(c)), and a sample display map generated from the

decoding map and the data file (figure 2(b)). Each assigned ID is a unique ID assigned

to a geographic object in the map by our pixel-based technique and serves as the link

Web mapping 417

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

between the object in the decoding map and the corresponding attribute record in the

data file. Colour black (RGB value 0x000000) and white (RGB value 0xFFFFFF) are

used for the border and the background, respectively. The geographic objects here are

not restricted to states but can also be of other shapes, such as roads and rivers.

2.2 Hierarchical encoding/decoding for a large number of geographic objects

When the number of geographic objects exceeds the number of colours to be used

(maximum 256 for GIF images. 64 in YMap), a hierarchical encoding/decoding

method is used. For example, in a two-level encoding/decoding scheme, all geographic

objects are divided into groups. Colours are used to encode both the group IDs and the

IDs within each group. Figure 3 illustrates a two-level encoding/decoding for USA

3,140 county view. After reserving black and white for the border and the background

respectively, we use the remaining 62 colours to encode the 3,140 counties, making the

group size 62 instead of 64. Because some states have more than 62 counties, we do not

group the counties by state. Instead, we simply order the counties by their FIPs. We

then assign the first 62 counties to group 1, the second 62 counties to group 2, and so

on. If the border and the background are treated the same as counties, 64 colours can

encode 6466454096 IDs. So, theoretically, two GIF images can store the geographic

knowledge of 2566256565 536 geographic objects.

3. Architecture and the differences from vector-based client-side techniques and

traditional pixel-based server-side techniques

3.1 Architecture

Figure 4(a) shows the architecture of our technique. Upon the client’s request for

new geographic objects (such as states, rivers, etc.) and georeferenced data, decoding

Figure 1. Colour space and the relationship between the geographic object IDs and the
colours used to encode the IDs (nr5ng5nb54). (Colour version available online.)

418 H. Zhao and B. Shneiderman

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

maps that carry the knowledge of geographic shapes are delivered to the client

applet along with the georeferenced attribute data file. Interactions such as dynamic

query and dynamic classification are handled solely by the Java applet by decoding

geographic object IDs (used to locate the records in the attribute data file) out of the

decoding maps and generate display maps from the decoding maps in less than a

second, without communicating with the server.

The round-trip of requesting and delivering happens only when a new set of

attribute data or geographic shapes is needed (explained in more detail in the next

section). Additionally, decoding maps are very small (see section 5), as are the

georeferenced data files (depending on the number of attributes requested and the

number of geographic objects, e.g. ,100 kb for an uncompressed data file with 15

attributes for 3,140 USA counties). As a result, the network transfer load is

relatively low.

GIF decoding maps can be provided in two different ways, depending on how

flexible the zooming needs to be. If zooming levels are pre-defined for the system, as

is often the case with online mapping services, a hierarchical set of GIF decoding

maps can be pre-generated for those zooming levels, residing on the server as

the decoding map repository for client-side use. Any mapping tools, commercial,

(a) (b)

(c)

Figure 2. (a) Sample decoding map of USA states (6.3 KB, 3426224 pixels). (b) Sample
display map shaded by ‘Average income’. To generate the display map, the client raster scans
the decoding map, uses the decode rule to obtain the ID for each pixel in the decoding map,
and uses the ID to obtain the average income value from the data file to decide the pixel’s
display colour in the display map. (c) Corresponding georeferenced data file (columns with an
asterisk are not included in the actual data file). Each assigned ID is a unique ID assigned to a
geographic object in the map by our pixel-based technique, and serves as the link between the
object in the decoding map and the corresponding attribute record in the data file. The
encoding–decoding rules in equations (1)–(4) are used to establish the link.

Web mapping 419

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

freeware or shareware, can be used to pre-generate those decoding maps, as long as

they can read and render the vector geographic shape data of some common

standard, and export the maps as pixel image files. The mapping tool is then not

needed when the service is running. If arbitrary zooming scales are desired, the

mapping tool can generate decoding maps on the fly. However, dynamically

generating a response will increase the response delay and the server burden, as is

true for any Web service.

3.2 Differences from vector-based and traditional pixel-based techniques

Compared with the architecture of vector-based techniques (figure 4(c)) that

demand the client to do all the work of interpreting vector data and generating

display maps, our technique redistributes the workload between the client and the

server, by leaving the work of interpretation and decoding map generation to the

server. As a result, no vector geographic data need to be delivered over the network,

and the client is lightweight. Although the client has no vector geographic data, it

can obtain geographic knowledge (geographic object IDs and object shapes) from

the highly compact colour-coded decoding maps by using the decoding rules. Then,

(a) (b)

(c)

Figure 3. Example of two-level encoding/decoding for USA 3140 county view. Group size is
62 because two of the 64 colours are reserved for the border and the background. The IDs are
assigned by our pixel-based technique. Assigned ID5Group ID6Group size+ID within
group. Assigned ID is used as the link between a geographic object in the decoding maps and
the corresponding record in the attribute data file. (a) Top-level decoding map (10 KB).
(b) Bottom level decoding map (11 KB). Both maps are 3426224 pixels. (c) Data file.

420 H. Zhao and B. Shneiderman

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

it can generate new display maps without communicating with the server. As a

result, our technique has the client-side flexibilities similar to those enabled by the

vector-based technique.

Compared with the architecture of traditional pixel-based techniques (figure 4(b))

that depends on the server to provide every single display map, our technique

enables the client to generate new display maps without server support. This enables

a real-time response to user interactions. In addition, the server workload is reduced,

and the network transfer load declines, enabling improved service for all users.

4. Highly interactive online map manipulation

This section explains how our pixel-based technique enables varieties of common

user interactions that have been introduced and employed in many interactive

choropleth map tools.

N Dynamic query by scrolling sliders. Dynamic query is a very powerful

exploratory interaction method for both open-ended questions (such as ‘where

is a nice place to live?’) and specific tasks (such as ‘which state has the lowest

population density?’). Dynamic query has been employed in a lot of previous

work such as the work by Dang et al. (2001) and CommonGIS Consortium

(2002). Dynamic query requires real-time (less than 0.1 s) acquisition and

update of the result on map in order to ensure a smooth animation

(Shneiderman 1998). Dynamic query will be impossible if any server support

is involved, because of the unpredictable network delay, regardless of the

Figure 4. Architectures of (a) our pixel-based technique, (b) traditional pixel-based server-
side technique, and (c) vector-based client-side technique.

Web mapping 421

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

network bandwidth. In our pixel-based technique, geographic knowledge is

stored in the GIF decoding maps. When the user adjusts a dynamic query

slider, a series of new query ranges are issued. To change the display map

responding to a new query range, the client Java applet raster scans the pixels

in the decoding maps. For each pixel, the applet uses the decoding rule to

obtain the pixel’s geographic object ID from the pixel colour. It then uses the

ID to obtain the attribute values associated with this pixel’s geographic object.

These attribute values are compared with the query range to determine if the

geographic object should be filtered out, and to change the pixel’s display

colour accordingly. This process is done solely by the client Java applet without

communicating with the server. The geographic objects noted here are not

limited to states or counties, but include other common shapes, such as lines

(rivers, roads) and dots (cities).

N Dynamic classification. Dynamic classification is useful in exploring optimal

statistic class breaks. Andrienko and Andrienko (1999) give an excellent

example of it. Our pixel-based technique allows real-time dynamic classifica-

tion on map, using a process similar to that described above for the dynamic

query.

N Scatterplot and linked brushing with the choropleth map. Linked brushing has

appeared in many systems (Monmonier 1989, Dykes 1997, Dang et al. 2001,

Steiner et al. 2001). With the attribute data file on the client, scatter plots can

be easily implemented using the Java graphic package. The mapping between

map colour and data set record index enables real-time linked brushing since

the client can get geographic object IDs from decoding map colours and vice

versa, without server support.

N Multiple thematic layers, background layers and labels. Sometimes, users want

to view a thematic layer on a background layer (e.g. a highly interactive river

layer with the state borders as the background) or view multiple thematic

layers overlapped together. All the thematic or background layers that do not

need to be dynamically manipulable can be generated on the server and sent to

the client as raster images with transparent background, and rendered on top

of the dynamically updated choropleth map layers. Labels can either be part of

the decoding maps or overlaid as a separate layer.

N Zoom. Zooming is important for observing data patterns in smaller or denser

regions. Zooming could be done either by simply enlarging/shrinking the

current available decoding map or having the server deliver a new decoding

map of the desired zoom factor. The first choice does not need server support

but may have aliasing problems during resampling, and does not generate as

good quality map images as the second choice. It can be used alone when the

zooming scale does not jump by more than a factor of 60–80%. The second

choice ensures good map quality. When map tools are used on the server to

generate decoding maps on the fly (for arbitrary zooming), the client simply

notifies the server about the geographic range of the desired decoding map.

The decoding map file size does not vary too much, since the client map

viewport has a fixed size. If a repository of pre-generated decoding maps is

used, the pre-generated decoding maps must be designed carefully, because a

complete decoding map of a close zoom-in may be very large. In order to

minimize network transfer volume and response time, a large complete

decoding map is broken down to several much smaller decoding map segments.

422 H. Zhao and B. Shneiderman

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

Only those segments needed for the current client view will be delivered to the

client. Figure 5 illustrates a case where a decoding map is broken down into

464516 equal-sized segments, and only two segments (row2-col3 and row3-

col3) need to be delivered to the client for the current view. If the size of

segments is the same as the client map viewport size (for both width and

height), then the number of segments that needs to be delivered to the client

(a)

(b)

Figure 5. (a) Large decoding map broken down to several smaller segments. (b) Two
segments loaded. Only segments overlapping with the current view will be fetched to the client
from the server.

Figure 6. YMap screen snapshot.

Web mapping 423

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

varies from 1 to 4 when zooming in, depending on which part the user is

viewing. Since the client viewport size is fixed (and relatively small, no larger

than the screen resolution), the size of GIF decoding maps transferred on the

network is upper-bounded by a small value. This deliver-only-when-needed

mechanism ensures a fast system response upon user zoom-in, and potentially

significantly reduces the total size of decoding maps to be transferred on the

network. Most of the map segments may not need to be delivered at all,

because in many cases, users examine only the overview or only view a small

portion of the map.

N Pan. In panning, the system’s action with the decoding maps is similar to that

in zooming. During panning, only the part of map that changes visibility is

updated in shading and filtering status. The update can be done when users

release the mouse.

N Obtain information on a geographic object or multiple geographic objects. When

users mouse-over a geographic object, its attribute data can be obtained from

the attribute data file in less than a second by using the decoded geographic

object ID as the index.

To demonstrate some of the above concepts/techniques, we have built YMap.

YMap is a Java applet running on a Web browser. Figure 6 shows a screen snapshot

of the YMap applet. The design of YMap applies an important general interface

design methodology for exploring large data sets (Shneiderman 1998): overview

first, zoom and filter, then details-on-demand. YMap gives an overview of the data

distribution via visualization (on the shaded choropleth map and histogram bars on

the sliders), allows dynamic query (by adjusting double-box sliders) to filter out

unwanted entries and to narrow down to the result set of interests, and provides

details-on-demand to further examine individual entries of interests (mouse over a

county to view the associated data, or select counties to compare their data in the

detail information panel). The snapshot shows a county view of continental USA

shaded by the furniture and home furnishing store sale volume in 1992. Counties

with a low number of new private housing units or with median population age out

of range (26, 42) are filtered out (in grey).

5. Performance comparison and benefit analysis

To demonstrate the benefits of our pixel-based technique, we measured YMap

performance and compared it with other Web GIS systems. We chose CommonGIS

(CommonGIS Consortium 2002) to compare with YMap, because CommonGIS is

one of the fastest Web GIS packages that uses vector geographic data, and has

comparable functions. Tables 1 and 2 show some performance data about YMap,

including package and data sizes, the system response time under different network

connection speeds and for maps with different complexities. Since CommonGIS and

YMap do not have exactly the same functionality, it is not our emphasis to compare

their package sizes. Rather, the measurements associated with the package sizes are

to illustrate the effect of the package size on the download time.

From the tables, we can see that both CommonGIS and YMap show a smooth

dynamic query on a map of a small amount of geographic objects (e.g. 51 states).

But when the number of objects increases (e.g. 3,140 counties), CommonGIS shows

a significant delay in dynamic query, while YMap still shows a smooth response.

Actually, YMap has a near-constant performance scalability for dynamic query

424 H. Zhao and B. Shneiderman

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

(also other dynamic features, such as dynamic classification) because the number of

decoding map pixels needed to be checked is bounded by the size of current client map

viewport. The current YMap implementation uses a simple raster scanning method. To

generate a display map, YMap raster scans every decoding map pixel to decide the

pixel’s display colour. While this simple scanning method already provides a fast

enough display update, the display map generation process could be further speeded up

by using polygon-fill methods. For example, the client can pre-process the decoding

maps to detect the boundary pixels of each geographic object. To generate a display

map, the client can simply use polygon-fills based on those boundary pixels.

Under fast network connection (T-1), both CommonGIS and YMap have

reasonable initial download times and a fast response to zoom and pan, though

CommonGIS takes two to seven times longer than YMap to initially download the

data. However, when using a 56 K modem connection, CommonGIS needs more

than 3 min to download the map data on USA counties and 3 min to download the

software, before anything can be rendered onto the screen for the user. In contrast,

YMap only takes about 20 s to download the data and 12 s to download the

software. Zoom and Pan are fast in both CommonGIS and YMap under T-1

connection or for relatively simple maps (e.g. 51 USA states). For a complicated

map of 3140 USA counties, and under a 56 K modem connection, zoom and pan in

YMap usually takes less than 10 s for the first-time zoom/pan. Once a part of the

map has been viewed at a certain zoom scale, the decoding map segments are cached

by the applet and takes less than 1 s for later visits. Sometimes, the initial zoom and

pan will take a longer time (e.g. 40 s), when six to eight decoding map segments (two

level encoding/decoding) need to be downloaded at once, and those segments

contain dense tiny counties. The sizes of decoding map segments are mostly under

5 kb, but they can vary from 0.5 to 33 kb, depending on where the user zooms in/

pans to. For example, a segment of size 3426224 about the north-east part can be

33 kb, a segment of the same size about the middle west part can be 9 kb, a segment

about Hawaii can be only 1 kb, and a background segment of the same size can be

only 0.5 kb. A variety of techniques can be used to reduce the maximum value and

also the deviation of response delay during first-time zoom/pan. These techniques

are not implemented in our current prototype but will be described shortly.

Considering the initial download time, zoom and pan, CommonGIS and YMap

show different Internet delay patterns under slow network connections.

CommonGIS takes a long time to download everything before anything becomes

viewable and available for the user to explore. This could be a serious problem for

occasional first-time public users who are uncertain about the result quality and not

willing to spend a lot of time downloading something that may turn out to be

Table 1. Comparisons of package size and package download time of vector-based
CommonGIS and pixel-based YMap under different network connection speedsa.

CommonGIS YMap

Package size ,1 Mb (.jar) ,60 kb (.jar)

Package down-
load time

56 kbps modem T-1 56 kbps modem T-1

,180 s ,13 s ,12 s ,2 s

aThe data were obtained using Microsoft Internet Explorer 5.0 in Windows 2000 Professional,
on a Pentium III 1.0 GHz CPU, 252 Mb RAM Fujitsu notebook. The modem connection was
running at 31 kbps.

Web mapping 425

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

Table 2. Compare the initial download size, download time, and interaction performance of vector-based CommonGIS and pixel-based YMap under
different network connection speedsa.

51 USA states 3140 USA counties

CommonGIS YMap CommonGIS YMap

Initial downloaded
geographic shape
data size

,223 kb (.shp & .shx) 6.4 kb (.gif) ,1.54 Mb (.shp & .shx) ,20.8 kb (.gif)

56 kbps modem T-1 56 kbps modem T-1 56 kbps modem T-1 56 kbps modem T-1

Initial data download
time (geographic shape
data + a 5-attribute
data file)

,35 s ,5 s ,5 s ,2 s ,190 s ,14 s ,20 s ,2 s

Total initial download
time (package + data)

,115 s ,18 s ,17 s ,4 s ,370 s ,27 s ,32 s ,4 s

Dynamic Query (w/
continuous update)

Smooth Significant delay,
not smooth

Smooth

Zoom and Pan
(First-time view)

,1 s Usually,3 s ,1 s ,1 s ,1 s 2–40 s, mostly
,10 s

,1 s

Zoom and Pan
(once visited and
cached)

,1 s ,1 s ,1 s ,1 s

aThe data were obtained using Microsoft Internet Explorer 5.0 in Windows 2000 Professional, on a Pentium III 1.0 GHz CPU, 252 Mb RAM Fujitsu
notebook. The modem connection was running at 31 kbps.

4
2

6
H

.
Z

h
a

o
a

n
d

B
.

S
h

n
eid

erm
a

n

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

useless. Also, precious network bandwidth could be wasted on transferring large

files that the users ignore and discard. By contrast, YMap responds rapidly,

providing users with an overview of the result, which is also something that users

can use immediately to explore the georeferenced data. Additionally, YMap uses

‘levels of detail’ for map information and defers the map segment transfer until

necessary, which may reduce the overall data transfer volume significantly, because

users may simply discard the result or only be interested in examining a small part of

the map after overview. Although sometimes zoom/pan takes a little longer, a

variety of techniques can be applied to further speed it up:

N Combine the usage of a newly delivered high-quality decoding map with the

usage of an enlarged version of the currently available decoding maps. Upon

zooming, a decoding map already cached on the client can be resampled to

produce a larger/smaller decoding map. This decoding map can immediately be

rendered to respond to the user’s zoom-in request. At the same time, a separate

Java thread fetches a new high-quality decoding map from the server. When

the new decoding map arrives, it is rendered to replace the resampled one. This

way, users can continue their task without waiting, and they feel the response is

immediate.

N Pre-fetching: When users are using other functions such as dynamic query on

the current zoom-level map, the system can predict the user’s next zoom/pan

need and use a separate Java thread to pre-fetch the decoding maps from the

server.

6. Conclusion

We described a pixel-based technique for highly interactive Web mapping for

georeferenced data publishing and visual exploration. Compared with tradi-

tional vector-based techniques, this technique has a significantly shorter initial

download time and near-constant performance scalability, and can potentially

significantly reduce the overall data transfer over precious Internet bandwidth.

It can accommodate general public users with slow network connections and

low-end machines. Extensions of this technique could be used for any highly

interactive Web application in which shape data for visualization and dynamic

update are large.

Acknowledgements

This work is partially supported by a grant from the US Census Bureau and a grant

from the National Science Foundation (grant no. ITR-0086143). Also, we thank Dr

Gennady L. Andrienko, German National Research Center for Information

Technology, and Dr Ilya Zaslavsky, University of California, San Diego

Supercomputer Center, for providing information and help with their systems

(CommonGIS and AXIOMAP respectively). We thank Dr Catherine Plaisant, Ann

Rose, Human–Computer Interaction Lab, University of Maryland, and Dr Evan

Golub, Department of Computer Science, University of Maryland, for their

suggestions and comments during the work.

References
ANDRIENKO, G.L. and ANDRIENKO, N.V., 1999, Interactive maps for visual data exploration.

International Journal of Geographical Information Science, 13, pp. 355–374.

Web mapping 427

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

AUTODESK, INC. 2000, Autodesk MapGuide. Available online at: http://www.autodesk.com.

BRINKHOFF, T., 2000, The impacts of map-oriented internet applications on Internet clients,

map servers and spatial database systems. In Proceedings of the 9th International

Symposium on Spatial Data Handling, 10–12 August 2000, Beijing, China.

CIESIN (Center for International Earth Science Information Network), 2002, Demographic

data viewer. Available online at: http://www.ciesin.org, http://plue.sedac.ciesin.org/

plue/ddviewer/ddv20/index.html (demo) (accessed 8 November 2002.

COMMONGIS CONSORTIUM, 2002, The CommonGIS project. Available online at: http://

www.commongis.com

DANG, G., NORTH, C. and SHNEIDERMAN, B., 2001, Dynamic queries and brushing on

choropleth maps. In Proc. International Conference on Information Visualization 2001,

IEEE Press, Los Alamotos, pp. 757–764.

DYKES, J.A., 1997, Exploring spatial data representations with dynamic graphics. Computers

& Geosciences, 23, pp. 345–370.

ESRI, 2000, www.esri.com/software/arcgis/arcims

GOLUB, E. and SHNEIDERMAN, B., 2003, Dynamic query visualizations on World Wide Web

clients: a DHTML solution for maps and scattergrams. International Journal of Web

Engineering Technology, 1, pp. 63–78.

HOCHHEISER, H. and SHNEIDERMAN, B., 2001, Universal usability statements: marking the

trail for all users. In ACM Interactions 8(2) March–April, pp. 16–18.

INTERGRAPH CORP. 2000, GeoMedia Web Map. Available online at: imgs.intergraph.com/

geomedia

KAHKONEN, J., LEHTO, L., KILPELAINEN, T. and SARJAKOSKI, T., 1999, Interactive

visualization of geographical objects on the Internet. International Journal of

Geographical Information Science, 13, pp. 429–438.

MACEACHREN, A. and KRAAK, M., 1997, Exploratory cartographic visualization: advancing

the agenda. Computers and Geosciences, 23, pp. 335–344.

MAPINFO 2000, Mapextreme. Available online at: extranet.mapinfo.com/products/overview.

cfm.

MONMONIER, M., 1989, Geographic brushing: enhancing exploratory analysis of the

scatterplot matrix. Geographical Analysis, 21, pp. 81–84.

NIELSEN//NEtRATINGS, 2003, Available online at http://www.nielsen-netratings.com/pr/

pr_030618_us.pdf

ROMERO, S., 2002, Price is limiting demand for broadband. The New York Times. 5 December

2002.

SHNEIDERMAN, B., 1998, Designing the User Interface. 3rd ed. (Reading, MA: Addison-

Wesley Longman).

SOROKINE, A. and MERZLIAKOVA, I., 1998, Interactive map applet for illustrative purpose. In

Proceedings of the 6th International Symposium on Advances in Geographic Information

Systems, 6–7 November 1998, Washington DC, pp. 46–51 (Kansas City, MO: ACM

Press).

STEINER, E.B., MACEACHREN, A.M. and GUO, D., 2001, Developing and assessing

lightweight data-driven exploratory geovisualization tools for the Web. In

Proceedings of the 20th International Cartographic Conference, 6–10 August 2001,

Beijing, China.

SYMANZIK, J., MAJURE, J. and COOK, D., 1996, Dynamic graphics in a GIS: a bidirectional

link between ArcView 2.0 and Xgobi. Computing Science and Statistics, 27, pp.

299–303.

UNITED STATES EPA (Environmental Protection Agency), 2003, http://www.epa.gov/. The

Dynamic Choropleth Maps. Available online at: http://users.erols.com/turboperl/

dcmaps.html (last accessed on 4 April 2004).

ZASLAVSKY, I., 2000, A new technology for interactive online mapping with vector markup

and XML. In Proceedings of the 8th International Symposium on Advances in

Geographic Information Systems, 2000.

428 Web mapping

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 O

f
M

ar
yl

an
d]

 a
t 0

7:
54

 1
0

Ju
ly

 2
01

4

