
Use of Peer Ratings in Evaluating
Computer Program Quality

Nancy Anderson
Ben Shneiderman

University of Maryland
College Park, Maryland 20742

INTRODUCTION

Peer review techniques can be useful tools for supplementing
programmer education, improving cooperation and commmication
within progrmmning teams, and providing programmer self-evaluation.
This paper will explore the benefits of peer review for practicing
professional programmers and describe a framework for administration
of an annual or semi-annual peer review process.

Professions which require complex cognitive skills where objective
evaluation of success is difficult have frequently used ratings or
a form of peer review for improving productivity, comnunication
among individuals, and performance self-evaluation. For example,
physicians have peer review boards to discuss successful or unsuc-
cessful treatment policies. Clinical psychologists make case
presentations to assess their therapeutic plans, learn from their
colleagues, and conmunicate new therapy strategies. The academic
research conmunity uses peer review for refereeing papers submitted
for publication. A paper is often refereed by two or more selected
professionals active in similar research. Criticisms and suggestions
for improvement are returned to the author while the editor decides
whether the reviews indicate sufficient grounds for publication.
The author is given specific guidance for improvement and the refer-
ees benefit by being made aware of new research at an early stage.
Furthermore, compelling referees to give detailed critiques requires
them to struggle through the arguments of the paper and hopefully
learn something.

Peer ratings used in private industry and areas of the federal gov-
ernment are often used to educate management and executives about
themselves (Educational Testing Service, 1962) and to predict success
or failure to complete training programs (Doll and Longo, 1962; as
well as Hollander, 1957). Frequently, the majority of individuals
who participate in peer rating programs have reported that it was a
constructive and nonthreatening experience (Roadman, 1964). Thus,
experiences reported in the literature generally support the educa-
tional usefulness of peer ratings.

For programmers, the peer review process would provide an opportunity
to get beyond the annoyance of debugging today's code and consider
more fundamental issues. The kind of peer review that we recomnend
focuses on programming, not systems analysis and design. We are
interested in providing feedback to progrargners on the quality of

218

their product--the programs they wrote. This is necessary because
we have poor metrics of program quality. While Gilb (1976), Boehm
(1976), Halstead (1977), and others have proposed extensive objective
and automatable measures of program code, all of these techniques
fail to capture a measure of the "qualit/' of a program. The execu-
tion time, memory space, number of module linkages, depth of nesting,
or number of operators or operands are important properties of pro-
grams, but these alone may not tell us whether a good algorithm has
been selected, whether the code will be easy to debug or modify,
whether the output is in a natural and comprehensible form, or wheth-
er the modular decomposition was reasonable.

In recent work, Shneiderman (1977) used memorization and recall tasks
as metrics of program quality and comprehension. This approach
remains appealing, but it does not provide comparative feedback to
programmers or necessarily improve con~unication among progranmuers.

A peer review process applied to programs has the potential to
provide feedback to progran~ers, to offer an educational experience
for both the reviewer and the programmer, and to improve commmica-
tion among teammates. In general, communication among individuals
increases when working together in a team. Reported satisfaction
with a rating technique increases when the interactions are similar
to typical tasks the individuals are required to perform.

METHODOLOGY

We propose that a practicing progra~ner in an organization be
designated as the administrator of the peer review. By having a
peer as the administrator, anxiety or mistrust will be reduced. It
must be stressed that the peer review process we propose is not to
be used for promotion or salary increases, but is directed at:

i) programmer education
2) improving cooperation and commtmication in a progrsmming

team
3) self-evaluation.

High level management approval must be obtained since the adminis-
trator will have to contribute at least one full day and progran~er
participants will have to contribute a half day each. Managerial
support of peer review will ensure the highest level of effort from
the participants, but managerial involvement should be prohibited.

Selecting the Participants

The administrator selects six to twenty participants, but the range
could be extended. Fewer participants may destroy the anonymity and
lead to personal discomfort, anxiety, and ego-threatening disagree-
ments. Too many participants may reduce interest, bring together
people of overwhelming diversity, and cause administrative complex-
ities.

219

The p a r t i c i p a n t s should have s imi lar experience, l eve l s of competence,
and i n t e r e s t in common problems. I f the d i v e r s i t y i s too g rea t , the"
p a r t i c i p a n t s wi l l not be able to i n t e l l i g e n t l y review t h e i r co l leagues '
programs. Clear ly , FORTRAN s c i e n t i f i c programmers, COBOL business
progrmmaers, and assembly language systems progranmers should not be
in the same group. Sackman (1972) and others have shown a t l e a s t a
28:1 r a t i o in performance in progran~ning tasks for indiv iduals with
the same job d e s c r i p t i o n - - t h e r e i s no need to seek out d i v e r s i t y by
including individuals with v a s t l y d i f f e r e n t backgrounds.

The participants should be told about the peer review and its goals
and should be given the opportunity to sign up as participants. Co-
ercive measures might alienate potential participants and suggest
management pressure or devious goals. The peer review should be
advertised as an opportunity for self-improvement. The administrator
may or may not be a participant.

Generating the Materials

At l ea s t two weeks before the es tab l i shed peer review day, program-
mers should be asked to s e l ec t two samples of t h e i r programs. The
"bes t" should be an example of what they consider to be t h e i r f i n e s t
work; the "second" should be a program which they themselves per-
ceive as being d e f i n i t e l y poorer in qua l i ty . We wi l l be i n t e r e s t ed
in whether p a r t i c i p a n t s can d i s t i ngu i sh between programs of d i f f e r i n g
qua l i ty . I t w i l I be reassur ing and s t imula t ing for fu ture work i f
people d iscover tha t o thers are able to d i s t i ngu i sh qua l i t y from
second bes t . Two copies of these two programs should be turned in
a t l e a s t one week before the peer review day. The programs should
not have notes ind ica t ing authorship.

An informal survey of a number of large programming sites suggests
that there are a wide variety of program development styles; Some
site managers felt it would be reasonable to ask programmers to
provide a S0 to 200 line PL/I or FORTRAN module of code which was
authored by a single programmer. Other site managers felt that a
600 line COBOL module was typical of the work of an individual pro-
granmer. At other sites, managers felt it would be difficult for
programmers to select modules that they had authored independently:
there was a great deal of teamwork or a large fraction of the work
was maintenance of programs. At these sites, progranmers would be
asked to provide modules they had worked on sufficiently to call
their own, even if they had not been the original author. A final
general category of sites were those that maintained a single, large,
typically transaction-oriented on-line system. Even at these sites,
managers felt that progrmmners could choose a module that they felt
represented their work, even if others had participated in develop-
ment or maintenance. It may be a strong assumption, but it seems
that full-time professional programmers do have some piece of code
which they feel is their own.

Again, every effort should be made to minimize the diversity of the
submissions. Programs should all be of about the same size, Using
the same language, and of similar complexity. As much as possible

220

the problem domains should be similar. Statistical prograrsners
should not be mixed with compiler writers, even if they are all
using the same progrmmning language. The participants should be
similar enough so that they are capable of evaluating their col-
leagues'work. If the differences are great then the participants
may not value the feedback they receive and the ratings may not be
as reliable as when the raters are in a good position to make judg-
ments of performance (Bormsn, 1974). Frequently, individuals who
do not value the feedback may not use it to learn material which
is applicable to their work.

Along with the programs each participant should provide a sheet with
five objective questions of the fill-in-the-blank type, ranging from
simple to very difficult. The questions should be clear and unam-
biguous. Typical questions could be of the form:

How many times is a specific statement executed for a given
input?

How many times is a specific sub-program invoked?
What is the value of a variable at a specific line?
What is the output for a given input?
Give a one-sentence description of the function of the pro-

gram.
What is the result of a specific minor alteration?
Trace execution by line numbers for a given input (the

expected trace should not exceed 15 lines).
What inputs would be required to cause execution of a

specified line?
What inputs would cause a specified variable to attain a

specified value?

The questions should be randomly ordered in difficulty during pres-
entation. The results will provide participants with an indication
of whether their perceived difficulty matches the actual difficulty.

When the two copies of the two programs and the questions have been
collected from each participant the administrator should prepare a
distribution schedule. Each participant will review four programs
for 30 minutes each. The distribution schedule ensures that each
participant sees two "best" and two "second" programs, but never more
than one program from any specific participant. Order effects should
be minimized by the distribution schedule.

Running the Peer Review

Rooms should be reserved for a three-hour period on the peer review
day and sufficient desk space provided for studying programs. It is
not necessary to have all participants in the same room; in fact,
small groups of 3 to 5 per room are preferred. An informal atmos-
phere should be maintained, but participants are to work by them-
selves and not to comment aloud. A relaxed learning and study envir-
onment should be encouraged and interruptions are not allowed.

221

Participants will be asked to spend 30 minutes studying each pro-
gram, filling out the evaluation form (see sample in Appendix i),
and answering the questions. Timing of the four 30 minute sessions
should be done accurately and there should be a i0 minute break at
the halfway point. Participants must work on only one program
during a 30 minute session and cannot go back or forward to other
programs even if they have competed their work early.- The evalua-
tions and question answering are done anonymously. At the end of
the four 30 munute evaluation sessions the participants are to fill
out the sun~nary evaluation sheet (see Appendix 2). The main purpose
here is for the raters to rank the four programs in quality.

When all the evaluations are completed, the question forms should be
returned to the programmers for grading. The administrator keeps the
evaluation forms. Twenty points are assigned to each of the five
objective questions and partial credit may be given. The graded ques-
tions are then returned to the administrator.

Evaluation

The results of the evaluation and the questions should be promptly
keyed and analyzed so that final results can be returned to the
prograr~ner participants as quickly as possible. The original pro-
grams, evaluation sheets, question forms, and printout of results
should be given to the participants for them to keep. Copies should
not be made and the data file should be destroyed. The peer review
process is for the educational benefit of the progranmers, not man-
agement.

If progranvaers are told to expect an annual or semi-annual peer
review then they may be more motivated to produce quality programs
for potential submission. The goal of peer review is to improve
the overall quality of code production. This is facilitated by
compelling people to read other programmers' codes, critiques of
their own codes, and responses to the questions which enable program-
mers to asses how well others can comprehend their own programs. The
peer review process also fosters better interaction since progran~ers
are required to read several pieces of active code from individuals
in the progran~ing team. This may expose new programming techniques
or foster a better understanding of developments by others in progress.

Each participant will receive a one-page printout for each program
including subjective ratings and averages across the entire group
of participants. Participants can see how well they did compared
to their colleagues and can compare the evaluations of their "best"
and "second" programs. Reliability of the "highest quality" and
"lowest quality" rankings from the summary evaluation form as well
as scores on the objective questions will be presented. Each person
will receive an analysis of how well their ratings of other programs
compared with other raters of the same programs.

Some of these rating measures may be compared with the automatable
measures of programs to provide additional insight into what the
quality judgments are based upon.

222

VARIANTS OF THE PROGRAMMER PEER REVIEW

Any o f the parameters of the peer review process t h a t have been
descr ibed can be a l t e r e d to s u i t needs and d e s i r e s . Some fundamental
d i f f e r e n c e s are proposed in t h i s sec t ion .

An o ra l eva lua t ion peer review could be made about each program.
This would leave room fo r d i scuss ion and ques t ions . Although the
b e n e f i t s o f t h i s approach may be s u b s t a n t i a l , there i s r e a l danger
of increased anx ie ty and ego-des t roying conf ron ta t ions . Open d i s -
cussions should probably be held only among groups of programmers
who have a l ready e s t ab l i shed t r u s t and r e spec t . An experienced group
l eader , such as a psycho log i s t or p s y c h i a t r i c soc i a l worker, might be
included to mediate debates and promote product ive ego - l e s s (Weinberg,
1971) d i scuss ion . These open d i scuss ions might be s im i l a r to the
s t r u c t u r e d walk-through technique (IBM, 1973). Walk-throughs are
gene ra l l y appl ied to des ign d i scuss ions ; i t i s not c l e a r t ha t the
complexi t ies o f reviewing progran~ing language code are amenable to
the same techniques.

A promotion related pee 7 review or rating might be conducted by man-
agement. Participation might be required and participants would be
informed of the goals of the evaluation. Other criteria such as a
person's ability to work with colleagues, willingness to adapt to
new problems, dedication, motivation, etcetera, would have to be in-
cluded if the results were to be good predictors of success.

A team evaluation peer review might be established to compare a
group of progran~ners to industry norms. The program samples would
include a set of benchmark programs which had been thoroughly eval-
uated and tested for reliability. Then a comparison of how well
programs from the team did against the benchmarks could be obtained.
Alternatively, batches of program samples could be exchanged between
two programming shops. This would allow a comparison across the
industry and would enable progran~uers to see techniques used outside
of their local environment.

~ Y

The sequence of steps in the progran~uer peer review process can be
sun~uarized as:

i) Administrator announces peer review and invites partic-
ipation--homogeneity of subjects is encouraged.

2) Two programs plus questions collected from participants--
homogeneity of programs is encouraged.

3) Subjective evaluations of programs and question answering
takes p lace anonymously in an informal atmosphere.

4) Questions are graded by o r i g i n a t o r s .
5) Computer-generated eva lua t ion of scores i s performed and

a l l m a t e r i a l s are re turned to p a r t i c i p a n t s . No records
are kept .

223

The prggra~mer peer review process described in this paper is designed
to improve progran~ing skills, build confidence, encourage cooperation,
and boost morale among a homogeneous group of progrmmners. Anonymous
evaluations enable participants to make honest evaluations without
threat of retribution. As much as possible this process has been
designed to benefit the progran~er participants, minimize negative
side effects, and avoid management interference. A field trial is
planned during the coming year.

224

APPENDIX 1

Sample Evaluation Form Program Number
Please make any written conments you wish ~ each question.

Were reasonable variable names used?

Were sufficient and useful conments provided?

Were spaces and blank lines used properly to
produce a program with a pleasing format?

Was the low level logic of the program
comprehensible?

Was the high level design (for example, top-
down or modular) apparent and reasonable?

Was the algorithm a good choice?

Was this program easy to comprehend overall?

Would it be easy for you to modify this program?

Is this program compiler and machine independent?

Would you be proud to have written this program?

Have you ever seen this program before?

Could you have written this program better?

How would you improve this program?
(you may indicate answers directly on the program.)

YES NO
1234567

1234567

1234567

1 2 3 4 5 6 7

1 2 5 4 5 6 7

1 2 5 4 5 6 7

1 2 5 4 5 6 7

1 2 5 4 5 6 7

1 2 5 4 5 6 7

1 2 5 4 5 6 7

1 , 2 3 4 5 6 7

1 2 3 4 5 6 7

General conments about thls program:

APPENDIX 2

Sample Stmmmry Evaluation Sheet

Which program was of the highest quality?

Which program was of the lowest quality?

Which program was second highest in quality?

General cuJ,~.ents about the peer review process:

225

REFERENCES

Boehm, B. W., Brown, J. R., & Lipow, M. Quantitativ e evaluation of
software quality. Proceedings of the 2nd International Conference
on Software Engineering, San Francisco, 1976.

Borman, Walter C. The rat ing of individuals in organizations: An
al ternate approach. Or_ganizational Behavior and Human Performance,
1974, 12, 105-124.

Doll, Richard E., & Longo, Alexander A. Improving the predictive
effectiveness of peer ratings. Personnel Psychology, 1962, 15,
215-220.

Educational Testing Service. The conference on executive study.
Identifying management ta len t . Princeton: Educational Testing
Service, 1962.

Gilb, T. Software metrics. Cambridge, Mass.: Winthrop Publishers,
Inc., 1976.

Halstead, M. Elements of software science. New York: American-
Elsevier, Inc., 1977.

Hollander, E. P. The reliability of peer nominations under various
conditions of administration. Journal of Applied Psychology,
1957, 41, 85-90.

IBM. Structured walk-throughs: A pr0~ect management tool. I~M Data
Processing, Division, August, 1973.

Roadman, Harry E. The industrial use of peer ratings.
Applied Psychology, 1964, 48, 211-214.

Sackman, H. Man-computer problem solving. Princeton:

Journal of

Auerbach, 1970.

Shneiderman, B. Measuring computer program quality and comprehension.
International Journal of Man-Machine Studies, 1977, 9, in press.

Weinberg, G. The psychology of computer programming. New York:
Van Nostrand-ReinholdPublishers, 1971.

Zwany, Abram and Arie Y. Lewim. Peer Nominationsa A Model,
Literature, Critiques and a Paradigm for Research.
Personnel Psycholo~v, 1976, 29, 423-447

