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Abstract
A semantic substrate is a spatial template for a network, where nodes are
grouped into regions and laid out within each region according to one or more
node attributes. This paper shows how users can be given control in designing
their own substrates and how this ability leads to a different approach to
network data exploration. Users can create a semantic substrate, enter their
data, get feedback from domain experts, edit the semantic substrate, and
iteratively continue this procedure until the domain experts are satisfied
with the insights they have gained. We illustrate this process in two case
studies with domain experts working with legal precedents and food webs.
Guidelines for designing substrates are provided, including how to locate,
size, and align regions in a substrate, which attributes to choose for grouping
nodes into regions, how to select placement methods and which attributes
to set as parameters of the selected placement method. Throughout the
paper, examples are illustrated with NVSS 2.0, the network visualization tool
developed to explore the semantic substrate idea.
Information Visualization advance online publication, 22 November 2007;
doi:10.1057/palgrave.ivs.9500162
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Introduction
Successful network visualization tools enable domain experts to carry out
key tasks such as recognizing clusters, identifying interesting nodes, discov-
ering patterns of links, and detecting unusual relationships. The diversity
of network types has inspired a rich variety of network visualization tools,
often based on force directed layouts.1 However, many of these produce
network visualizations with numerous link crossings, occluded nodes, clut-
tered displays, and unreadable labels, all of which decrease comprehensi-
bility and interfere with task completion.2 To reduce these problems, many
algorithm designers place nodes to minimize link crossings, minimize the
longest link, or maximize the minimum angle between links.3 As a result,
their algorithms position nodes in what seems like an arbitrary location on
the display.
The desire to place nodes in a way that was comprehensible to users led

to the idea of semantic substrates for node layout. These algorithms use
attribute values to place nodes in meaningful stable locations that facil-
itate discovery by enabling users to see patterns, outliers, and gaps (see
Shneiderman and Aris4 and Lee et al.5 for taxonomies of network visual-
ization tasks). We were inspired by the clear benefits of map-based layouts,
such as cities on a familiar map of the United States, so we sought to create
meaningful spatial layouts in which users could understand node place-
ment, spot relationships among nodes, and notice regions where nodes
were absent or sparse.
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Semantic substrates require two conceptual steps to
organize nodes. First, nodes are grouped into rectangular
regions according to one of their attributes. Second,
nodes are placed in each region according to one or more
other attribute values. Once the nodes are organized, user
control of link visibility according to their source and
destination regions reduces the cluttered displays that
exist in many implementations. The utility of semantic
substrates was illustrated in the legal precedent domain
where nodes were court decisions and links were legal
precedents.4

This paper introduces the Substrate Designer, a tool
for users to specify rectangular regions, attributes for
grouping nodes into regions, and attributes for placing
them within regions. In addition, users can specify the
placement algorithm and decide on additional visual
parameters, such as node and region colors to complete
the design of a substrate. Different data sets and tasks
influence the design of effective substrate features such
as the number of regions, their spatial relationship, their
size, and the type of filters to provide. This paper shows
how to leverage user control on the substrate features
to accelerate exploration of a network data set. Enabling
users to design their own substrates dramatically facili-
tates the iterative process of creating, applying, editing,
and reapplying substrates to a data set. We believe that
semantic substrates will be beneficial for many network
analysis tasks, but are especially effective when there are
at least 2–3 attributes for each node.
The next section reviews relevant work about designing

semantic substrates. The subsequent section describes
the process of substrate design, while the fourth section
provides two case studies based on our work with domain
experts. We show how changing the substrate enables
users to gather new insights about their data sets and illus-
trates the process of semantic substrate design. The fifth
section provides guidelines for semantic substrate design.
The penultimate section provides discussion that leads to
future work and the final section concludes the paper.

Relevant work
The notion of user-defined semantic substrates proved
beneficial in a network visualization tool for author
name resolution in bibliographic databases.6 Author
name nodes were laid out in five distinct regions so users
could quickly spot shared and non-shared co-authors
for suspected duplicate names. Another inspiration for
semantic substrates is the user-defined spatial layout for
photos with shared attributes.7

Six recent systems have elements of semantic substrates.
Jambalaya8 integrates SHriMP views into the Protégé
framework. A graph metaphor is used to show links
between concepts, similar to regions in NVSS (NVSS
stands for Network Visualization by Semantic Substrates,
the name of the visualization tool to explore the
semantic substrates idea), which may include sub-
concepts (subclasses). Users can manually place the nodes

or automatically order them by a structural property
of nodes, such as number of children, however, not by
node attributes. Links are categorized and therefore can
be color-coded by source and target classes. PivotGraph9

places nodes on a two-dimensional (2D) grid by their
node attributes and nicely aggregates nodes by their
attributes to present a useful overview. While PivotGraph
aggregates nodes, NVSS shows all nodes. Nodes having
the same placement attributes are either spread out or put
next to each other in NVSS. In addition, PivotGraph has
only one region in NVSS terminology, while NVSS has
many regions. Users can select node attributes on the x-
and y-axis. Pretorius et al.10 represent multi-dimensional
transitional systems as networks and uses the projec-
tion of multi-valued node attributes to the 2D plane to
position nodes. The projection is parametrized and user
adjustable, which users could experiment with to arrive
at a good projection that fits their needs. The visualiza-
tion utilizes a grid–plot arrangement algorithm with the
extension of nested and rotated grid. NVSS also enables
users to control the size and location of regions (similar
to grids). In all these systems, nodes are arranged in a
grid–plot layout. NVSS allows multiple regions and allows
users to choose a different node placement method for
each region. Kosak et al.11 group nodes according to
their type and show two ways of organizing the nodes
within each group: rule-based and using genetic algo-
rithms. The rule-based layout may be used to group and
place nodes in terms of their node attributes; however,
the specification is manual. NVSS uses node attributes
directly and lets users specify the attributes that the nodes
will be placed by. In a way, this provides a faster and
more intuitive approach to users. In addition, Kosak et al.
focus on computing the layout while NVSS also provides
link-visibility features. In Constellation,12 horizontal
and vertical positions of nodes are based on the specific
attribute value of ‘pathway importance’. Then, a further
optimization pass is done to increase information density.
Dig-CoLa13 and IPSep-CoLa14 extend the force-directed
approach by layout constraints, which can have the same
effect of placing nodes according to their node attributes.
Constraints also include separation constraints, which
enhance the visual representation of the graph, such as
avoiding overlaps of nodes and clusters. IPSep-CoLa14

has the additional capability to cluster nodes into rectan-
gles according to an attribute value, such as all cereals of
a given manufacturer.
Although many systems; such as GGobi,15 Tulip,16

NicheWorks,17 SocialAction,18 Visone,19 and Osprey,20

Glide21 provide other useful features, they do not support
layouts based on node attributes:
GGobi15 uses radial, dot, and neato layouts; allows

users to manually edit node locations and categorize links
(by creating ‘edge sets’); supports different views, such as
scatterplots, barcharts, and parallel coordinate charts, and
provides brushing between linked views. The (jittered)
scatterplots in GGobi do not show links although they
can be brushed to the node–link diagram. Although
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GGobi scatterplots are similar to the GridPlotXY place-
ment method in NVSS in terms of using a node attribute
for the x- and y-axis to place nodes on display, there are
differences. While GGobi scatterplots use jitter to elimi-
nate overlap of nodes (having the same attribute values
on both x- and y-axis), NVSS simply places them next to
each other within a cell (columnwise, from top to bottom,
starting another column from left to right as needed).
Tulip16 supports node attributes, user interaction to

manage clusters (group and ungroup nodes), and has
plug-in capability for defining new layout algorithms.
Although it may be theoretically possible, no layout
based on node attributes (there is a treemap rendering;
however, it does not include links and it is limited to
the hierarchical treemap algorithm) and no link visibility
based on node attributes has been reported.
Visualizing large graphs (up to 1,000,000 nodes) is a

driving goal for NicheWorks,17 which uses several initial
layouts (circular layout, hexagonal grid, and tree layout).
Its incremental algorithms, such as steepest descent
and simulated annealing, compute the final layout and
supports filtering on node attributes.
Force directed layouts are used in SocialAction,18 but

it can show clustered groups of nodes called ‘communi-
ties’ that are determined by using a structural clustering
algorithm with user-controlled parameters. SocialAction
filters nodes using rankings on statistical information
(such as betweenness-centrality) but does not control link
(or node) visibility based on node attributes.
Visone19 provides a set of different algorithms to layout

nodes, such as spectral, layered, and radial layouts.
A domain-specific tool, Osprey,18,20 enables biologists

to combine data sets and provides node filters based on
attributes.
Glide21 provides users with Visual Organization

Features (VOFs) to apply to the graph to organize node
locations. The VOFs are based on spatial placement prin-
ciples (i.e. building blocks of aesthetic principles) and
the graph is updated as users apply them manually. He
and Marriott22 provide a way to layout nodes according
to user-defined constraints that assigns nodes suggested
values and places them accordingly. Their system takes
in constraints over the x and y positions of the nodes
and a partial assignment of suggested values for the node
coordinates. Dengler et al.23 provide a similar framework
that deals with visual features and does not use node
attributes to place nodes.
A different approach to network visualization is matrix-

based (Ghoniem etal.24 MatrixExplorer25).MatrixExplorer
couples matrices with node–link diagrams and provides
interactive operations such as sorting matrix columns in
terms of attributes and filtering. The node–link represen-
tation does not use layouts based on node attributes.

Substrate design
The notion of semantic substrates was introduced and
its utility illustrated using NVSS 1.0.4 This paper uses

NVSS 2.0 to demonstrate how users can design their own
substrates.
NVSS 2.0 has a module called the ‘Substrate Designer’

(called ‘the designer’ for brevity). The Substrate Designer
module enables users to create, save, and edit semantic
substrates for their own network data sets, which can be
applied to their data via NVSS 2.0.
Regions in a substrate have spatial properties, such as

location and size; visual properties, such as background
color and node color; and algorithmic properties, such as
the criterion that determines which nodes will fall into
and how nodes will be placed within this region. In both
of the algorithmic properties, attributes are used to deter-
mine node inclusion and node placement criteria within
a region. Therefore, in a substrate definition, at least the
attributes that are being used need to be defined. If the
substrate could be edited, then all possible attributes must
be derivable from the stored substrate representation used
by the editor. Additional settings of the substrate include
its size, node sizes, and link colors.
NVSS 2.0 allows users to set all the region properties

within the designer (Figure 1). In addition, users can set
the substrate and node size within the designer, while they
define link colors by modifying the default link colors
from within the instance of the visualized data set that
uses this substrate. Once users define link colors, they can
save the substrate.
NVSS 2.0 allows users to create a new substrate or load,

edit, and save an existing substrate. Once a substrate is
loaded, users can specify the data set files (consists of
nodes and links file) and launch the visualization using
that substrate. Each attribute in the data model of a
substrate has a name and a type (INTEGER, DOUBLE,
STRING, or DATE). Substrates in NVSS 2.0 are indepen-
dent of the data, and therefore can be reused for other
data sets, as long as the data model is compatible.
The top part of the designer displays features of regions,

while the bottom part displays features of the entire
substrate. At the bottom part on the left, users can set the
visualization size by either entering the width and height
or resizing the designer window by the usual mouse
dragging to resize windows. At the bottom part on the
right, users can select the method to determine node size.
Currently, the two available methods are ‘constant size’
with a specified diameter, and ‘attribute-based’ size, where
users select an attribute and optionally apply a square root
transformation on it. Users can also create an external
attribute and use that attribute to determine node sizes.
Users can visually create the regions on the top right-

hand side once they are in ‘draw’ mode. The other modes
are ‘select’, ‘delete’, ‘move’, ‘resize’, and ‘move/resize’. In
‘select’ mode, users can select a region and modify its
details (elaborated below). Users delete regions in ‘delete’
mode, while they relocate or resize the regions in ‘move’
and ‘resize’ modes, respectively. In ‘move/resize’ mode,
they can do either.
The top left-hand side shows the details of the selected

region. Users can select visual attributes of a region, such
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Figure 1 The NVSS 2.0 module that enables users to design their own semantic substrates. The user has created five regions,
assigned their background colors and is in the process of moving/resizing them.

as the location (X and Y), the size (Width and Height), the
color of nodes, and the background color (Figure 2).
The rest of the settings involve placement of nodes:

(1) which region and (2) how they are placed within this
selected region. Users select an attribute and an attribute
value to place nodes into the selected region. The venue
attribute and its ‘Supreme’ value is set for the purple
selected region (the grey highlighting inside edges of the
purple region indicates it is the selected region) (Figure 3).
The dialog shows available algorithms and choices to

select from available attributes to be set as parameters for
the selected algorithm. The available algorithms are Grid-
PlotX, GridPlotY, and GridPlotXY. GridPlotX and Grid-
PlotY allow users to select an attribute for the x- and y-axis
respectively, while leaving the other axis free. The jittered
versions of these two algorithms introduce jitter along
the free axis (up/down shifts of all nodes in alternating
horizontal and vertical slots for x-jittered and y-jittered,
respectively). GridPlotXY allows users to set attributes for

both axes. For all five GridPlot algorithms, users select a
minimum value, a maximum value and the number of
bins between these values to define the attribute values on
the axis along x or y. For nominal attributes (STRING type),
NVSS 2.0 uses only alphabetical ordering. To use another
ordering, users can create a derived attribute (based on
the nominal attribute) externally and make the order of
the derived attribute conform to the desired order to get
a similar effect.
When users are done, they close the designer, which

will prompt a dialog to save the substrate to a file.

Examples
The following examples show how substrate design helps
users explore their data. The examples show how user
needs influence substrate design and how the outcomes
enable certain insights. There is a division of labor when
designing substrates: Our users, who are knowledgeable
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Figure 2 Users can set visual properties of a region in the Substrate Designer. The pink selected region is highlighted by an inside
shaded border to indicate it is the selected region. The settings of the pink region are displayed on the left-hand side.

Figure 3 Users define the placement method for the selected pink region (i.e. the 'Supreme' region in Figure 2). The placement
method is comprised of a placement algorithm and its parameters. In this case, GridPlotX, a grid plot placement algorithm that
uses only the x-axis to place the node, is selected. The attribute along the x-axis is defined to be year with binning parameters that
define the minimum (1978) and maximum (2006) values and the number of bins (28).

in the domain of their data sets, are the ‘domain-experts’.
Whoever designs the substrates for them are the ‘tool-
experts’. In both cases, our users were the domain experts

and we were the tool experts. We listened to them to
understand their needs and designed the substrates for
them. However, we envision that domain experts can
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become (with increased exposure, some instruction and
practice) the tool experts.
Two data sets are shown: the first one is legal precedent

data (the same data set used in4) and the second example
is a food-web data set.

Legal precedent data
The first example is a legal court case (Throughout the
paper, ‘case’ is used to refer to a legal court decision.) data
set that our collaborators wanted to explore. We, as the
tool experts, designed the substrates to meet the needs
of their exploration. One of our collaborators is Professor
Wayne McIntosh, who holds a faculty position in the
Government and Politics Department at the University of
Maryland and is the leader of the Cite-It project, which
aims to analyze and understand the evolution of regula-
tory takings cases over the years. Other team members
include Ken Cousins and Stephen Simon. Ken Cousins
is a visiting assistant professor of the Political Science
Department at Western Washington University. Stephen
Simon currently is an assistant professor of political
science at the University of Richmond. In this multidisci-
plinary project, our domain experts are knowledgeable in
different aspects of the domain. Our work over 16 months
covered data identification, data collection and filtering,
followed by problem analysis to develop requirements for
visualization.
We spent a dozen sessions of 10–60min with our

collaborators (sometimes one person, sometimes all three
people). Each of our domain experts spent time with the
tool by themselves and showed it to their colleagues.
They also use screenshots of the data set to communi-
cate facts among themselves and other domain experts
through presentations and research papers. We (as the
tool experts) and our domain experts agreed on the design
of the substrate quickly, (usually in 1–3 major iterations),
deciding on the regions, their placement, the grouping
and placement attributes for nodes. The approach we
used to arrive at the initial substrate could be considered
as a trial and error approach, which ended quickly with
a satisfying substrate. The other substrates were created
via design-by-example. We copied the initial substrate
and modified it until we achieved the other types of
arrangements we envisioned.
Nodes represent legal court cases from 1978 to 2005

concerning the legal issue known as ‘regulatory takings’
and links represents legal citations from one court case
to another. Figure 4 shows the result of applying the first
substrate to this data set. The data set is a subset of a larger
data set with 2345 nodes and 14,401 unique links and
contains 287 nodes and 2032 links.
Nodes have the following attributes in this subset:

caseId, date, year, venue, venue2, circuitNo, inCites, outCites,
cite, and name. caseId is a unique integer to uniquely iden-
tify each case. date is the date of the case. year is the year
part of date, a derived attribute. venue is the type of court
the case was held with values ‘Supreme’, ‘Circuit’, and

‘District’. venue2 is the court name. circuitNo is a derived
attribute that ranges from 1 to 13 for Circuit and District
Court cases, where 1 to 11 indicate 1st to 11th circuit, 12
represents the D.C. circuit, and 13 represents the Federal
Circuit. For the ‘Circuit’ cases, circuitNo indicates in which
Circuit Court the case was held. For the ‘District’ cases,
circuitNo indicates the jurisdiction of the District Court
that the case was held. inCites is the number of citations
to a case in the larger data set. outCites is the number of
outgoing citations from the case in the larger data set.
cite is the citation of the case. name is the name of the
case usually indicating the two involved parties, such as
‘Penn. Cent. Transp. Co. v. City of New York.’
The semantic substrate in Figure 4 has three regions,

each using a value of the venue attribute. The location of
the regions from top to bottom is also in line with the
hierarchical system of courts in the United States, where
the Supreme Court has the most power, followed by the
Circuit Courts and then District Courts. This way the link
directions also indicate the hierarchy of the source and
target cases, where upward indicate higher and down-
ward indicate lower hierarchy in the court system. year
is used along the x-axis of all regions consistently. This
is achieved by using the same parameters (minimum and
maximum values, and the number of bins) for the x-axis
when designing the substrate. The same is true for the y-
axis of the Circuit and District regions, where the circuitNo
attribute is used.
Our domain experts more or less expected to find

that by using the circuitNo attribute for placement, the
tendency to cite within a circuit (both within Circuit
and District Court cases) is shown (see Figure 4). This
tendency is better perceived when link filters are used
to look at subsets of links at a time quickly and consec-
utively on the Circuit region (i.e. users limit outgoing
links on the Circuit region by year to a few years and drag
the double-slider from left to right to inspect consecutive
ranges). What our domain experts found interesting were
the diversions from the general tendency, which can
be isolated using link filters and investigated for further
analysis (see Figure 5).
Every region has associated link filters for each place-

ment attribute used. Since the ‘District’ region uses
attributes year and circuitNo to determine node place-
ment, there is a filter for the year attribute, and another
filter for the circuitNo attribute (the second and third
filters from the top on the right hand side in Figure 5,
respectively). The filters work conjunctively (rather than
disjunctively). As a result, the more filters applied on a
region, the more links are restricted. The filters restrict
links either to incoming or outgoing links. In Figure 5,
links are restricted to outgoing links. To make a filter
restrict to incoming links, users check the ‘in?’ checkbox
that belongs to that filter (at the far right).
Sometimes during exploratory tasks, users can adjust

filters to produce interesting results. Initially, users get a
sense of looking at the unfiltered data; then, they try one
filter, usually narrow it down and sweep it from one end
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Figure 4 An initial semantic substrate is applied to a court case data set, where nodes are court cases and links are citations from
one case to another. Nodes are grouped into regions using the venue node attribute with 'Supreme', 'Circuit', and 'District' values,
while they are placed using year along the x-axis and circuitNo along the y-axis (except the Supreme Court cases), indicating the
hierarchy of court cases in the legal system. Enabling links within Circuit and District regions shows a tendency for courts to cite
within their circuit.
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Figure 5 Upon seeing the tendency that court cases tend to cite within their circuit in Figure 4, a diversion from this tendency is
isolated using link filters on the District region, which helps users clearly see them.

to the other end of the range (could be done in a few
seconds by dragging the double-slider from the middle).
Then, depending on the visual feedback, users either can
expand the range or activate another filter and do a similar
procedure to arrive at an interesting result.
By switching the visibility of links to ‘Supreme to

Circuit’ and ‘Circuit to District’, the design of the substrate
reveals the citation patterns with respect to the ‘year’
attribute (Figure 6).
Since the year attribute is used along the x-axis of all

three regions consistently, visual comparisons in terms
of year are facilitated across regions. In Figure 6, citations
from ‘Circuit’ to ‘District’ tend to follow immediately after
(almost parallel citations), while citations from ‘Supreme’
to ‘Circuit’ are more diverse (not nearly as parallel, rather
spread out over time). This might give insight into the
nature of citations. Circuit Courts seem to follow up
cases that are appealed promptly, while it takes a while
for the Supreme Court to do so. A reason might be that
the Supreme Court’s decision-making process takes more
time. Looking into Figure 6, one critical question that
comes to mind is how cases of Circuit Court and District
Court cite one another in terms of their circuit. It is hard
to tell whether the citations from ‘Circuit’ to ‘District’
tend to be within the same circuit or not. To perceive this
easily, we used a different substrate on the same data for
our users.
To satisfy further requests from our domain experts, we

opened the initial substrate, swapped the attributes for
the x- and y-axis for the Circuit and District regions, and
saved the edited substrate as a new substrate. Then, we
applied it to the data to see Figure 7. With this modified
substrate, the same data is viewed from a different point

of view that favors comparisons in terms of the circuitNo
attribute across the Circuit and District regions.
Figure 7 reveals that many citations from Circuit to

District are within the same circuit although there are
quite a few cross citations outside their circuits (which
happens to be with District Courts of Circuits 1, 2, 3,
5, and 7. This becomes clearly visible with a sweep of
incoming links filter on the District region). At the same
time, the Supreme Court seems to cite various circuits
with no particular attention to a few. It was interesting
for our domain experts to see that there are Circuit Court
decisions that cite District Court decisions in a different
circuit. They noted that as worthy of further investigation.
They were also curious to see whether Supreme Court
citations have a different pattern when they cite Circuit
and District Court cases. However, it is hard to perceive
this using this substrate. Enabling only those links and
coloring them distinctively helps; however, modifying
(and reapplying) the substrate produced a much better
display. We opened the substrate to edit, moved the
Supreme region so that it is in the middle of the Circuit
and District regions. This helped our domain experts to
compare the citation half-life of Supreme versus District
and Circuit Courts. We saved the modified substrate and
applied it to the same data (Figure 8). Using this substrate,
citations from Supreme Court to Circuit and District
Court cases are easily comparable. Our domain experts
saw no dramatic differences in the citation patterns.
Our domain experts were intrigued by the fact that

there are Supreme Court decisions that cite several District
Court decisions at once. They found this quite unex-
pected and worthy of further exploration. This pattern
of citations from the Supreme Court to multiple Circuit
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Figure 6 Due to having used the year attribute across regions consistently on the x-axis, it is easy to compare the citation patterns
according to year across regions. The citation patterns indicate that although Circuit Courts tend to follow-up immediately after a
case is appealed, it takes a longer time to do so for the Supreme Court, possibly due to their lengthy appeals process.
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Figure 7 Looking at the same data using a modified substrate (the substrate in Figure 6 with swapped axes for Circuit and District
regions) that aligns circuits using circuitNo along the x-axis of Circuit and District Court regions helps comparison between cases
from these regions in terms of their circuits. Most citations from the Circuit Courts to the District Courts are within the same circuit
with a few exceptions from the 1st, 2nd, 3rd, 5th, and 7th Circuit Courts.
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Figure 8 The substrate in Figure 6 modified to place the Supreme region between the other regions. The pattern of Supreme
Court citations to Circuit and District Courts appears to be similar.
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Figure 9 Applying the substrate from Figure 7 reveals District to Circuit citations here many parallel citations with a major exception
of frequent citations from the 2nd to the 9th circuit.

Court cases is interesting since it shows how Circuit Court
cases can set precedents that influence even the Supreme
Court. This interesting circumstances was deemed worthy
of further research by our domain experts.
Our domain experts also wanted to explore the citations

from the District region to the Circuit region. To help
with this task, we loaded the previous substrate, applied
the data to generate Figure 9. Enabling ‘District to Circuit’
links reveals many citations, the majority of which appear
to be parallel. A major exception seems to be between the
District Court cases in the Second Circuit and the Circuit
Court cases of the Ninth Circuit. The Ninth circuit also
seems to receive many citations from the district courts
in the Ninth Circuit.
By isolating links from the district courts in the Second

Circuit to the Ninth Circuit (using an outgoing links filter

on the District region, an incoming links filter on the
Circuit region, and by restricting values to the desired
range), most of the citations appear to be concentrated in
three periods, namely 1989, 1993, and 2000 (Figure 10).
Our domain experts did not expect to see Circuit Court
citations to District Court decisions outside their circuit.
Circuit Courts aremore authoritative and therefore are not
expected to cite other Districts. What might be happening
in this situation is that the District Courts in the 2nd
circuit may have specialized in a particular topic that the
Circuit Courts foundworthy of citing. Our domain experts
mentioned that they might look into those decisions to
find out whether this is the case and if so which topics
these are.
As our domain experts became familiar with the

Substrate Designer’s features, the semantic substrates
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Figure 10 Restricting links in Figure 9 between the 2nd and 9th circuits using link filters reveals that citations are concentrated in
three periods, namely 1989, 1993, and 2000.

became a new language of discourse for them, enabling
them to generate many new hypotheses. The visual
presentation and user control of link visibility supported
discussion, exploration, and communication within and
beyond the group. Our domain experts mentioned that
NVSS is useful for them to overview the data quickly to
find out interesting phenomena and narrow down to the
cases to investigate. This would allow them also to read
those cases in a targeted way to answer the questions they
formed while exploring the data set. Overall, our domain
experts foundNVSS useful because it enabled them to look
at the temporal (year) and circuit (circuitNo) dimensions
at the same time, which they found comprehensible as
opposed to looking at a spreadsheet. Our domain experts
have captured states of their exploration via images and

used those to communicate ideas within their group
and with their colleagues. They are planning to further
explore their data using NVSS and complement it with
other methods (reading cases and statistical measures)
to finally produce results to be published in academic
research venues in their field (conferences, journals, etc.).

Food web data
Biologists study predator–prey networks, which are called
food webs. Our collaborator, Dr. Cynthia Parr, is a biolo-
gist and researcher associated with the Human–Computer
Interaction Lab. She was interested in exploring a food
web data set (seven aquatic webs from Brose et al.26) and
we designed our substrates to facilitate or improve the
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Figure 11 Using semantic substrates with food web data sets. Displaying data from seven studies with length (in meters) on the
x-axis for all except photo-autotroph. Negative values indicate missing or unknown attribute values.

process of understanding (finding facts or insights) of her
data. She was our domain expert for this data set, while
we were the tool experts. Her results were arrived at after
five sessions over 6 weeks, each lasting 45–60min. In the
first two sessions, we discussed how to compile the data
and the data characteristics. In the latter 2–3 sessions, we
looked at the data in NVSS together and she gave us her
feedback. We also communicated with our domain expert
via email to discuss specific aspects of the data and its
presentation.
Communication with our domain expert about the data

set led to our initial substrate. Then, 3–4 iterations were
needed to arrive at a satisfying initial substrate. These iter-
ations were guided by our domain expert’s comments.
We quickly arrived at the grouping attribute (metabolic
category), however, the placement attributes took several
iterations because of our joint lack of knowledge about
the data distribution. After the first substrate, it took two
iterations to arrive at the second substrate. This time, we
used design-by-example. We reused the first substrate and
modified it to arrive at the second one, a much faster
process. As in the other data set, we do not count iter-
ations resulting from minor adjustments, NVSS software
updates, etc.
In this food web example, nodes are taxa (species or

higher level classifications for living entities) and links are
predator to prey (also called ‘consumer’ and ‘resource’,
respectively) (Figure 11). The data set combines results

from seven studies of aquatic food webs. Studies do not
have links across each other because each is self-contained
to a certain place and time. Some of the available node
attributes in this data set are avgLen (average length of the
taxon in meters), avgMass (average mass of the taxon in
grams), studyId (the study that the taxon was observed in;
ranges from 1–7), and metCat (metabolic category of the
taxon, which has values ‘invertebrate’, ‘photo-autotroph’,
‘ectotherm-vertebrate’, and ‘detritus’ in this data set).
The data set consists of a total of 640 nodes and 1978

links.
With our domain expert, we made a series of design

choices for this semantic substrate. The metabolic
category was selected to group nodes into regions.
This attribute determines what type of living entity the
taxon is in terms of its metabolism.
Photo-autotrophs, such as Peridinium cinctum and

Dinobryon bavaricum, are usually very small in length
and mass. The average mass in photo-autotrophs ranges
from 3.57e–018 to 9.46e–008g while the average length
ranges from 0 to 0.1m (most values are small ranging
from 4e–006 to 9.8e–005m; the rest are 0, 0.0001, 0.0005,
0.005, and 0.01m). Since the range of these attributes
is so small and hard to analyze, they were not used for
placement for this first substrate. Instead, the studyId was
used to organize the nodes along the y-axis. In fact, for
consistency, studyId is used along the y-axis in all regions.
With the educated guess of our collaborator, we assumed
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Figure 12 Using a different semantic substrate with the same food web data set as in Figure 11. Displaying combined data from
seven studies with log(length in meters) on the x-axis and log(mass in grams) on the y-axis. Missing/unknown mass is denoted by
−43, while length is denoted by −15.

that the avgLen attribute would be a pretty good indicator
of how large a taxon is. Hence, avgLen was used along the
x-axis for all regions except photo-autotrophs. Negative
length indicates unknown length measurement for that
taxon, that is, missing data.
In general, themost striking conclusion is that the seven

data sets differ considerably in the metabolic categories of
organisms they sampled, and hence the kinds of links that
were possible. However, some patterns relating to size are
possible to discern.
Most of the invertebrates are very small animals.

Looking at the invertebrate region, study 6 reveals that
some longer invertebrates are prey of much shorter
ones, for example Sigara nigrolineata is prey of Agabus
bipustulatus (Coleoptera). Invertebrates are also prey of
ectotherm-vertebrates, such as Daphnia rosea (water flea)
is prey of Salmo trutta (brown trout) (294 links, unchecked
not to visualize the links). Only in study 5, invertebrates
do not consume invertebrates.
It appears that photo-autotrophs are sole producers

and are only in studies 2, 4, and 5. In studies 2 and
4, photo-autotrophs are heavily consumed by inverte-
brates, while in study 5 they are solely consumed by
ectotherm-vertebrates of relatively shorter taxa. Only one
study included detritus, which is solely consumed by
ectotherm-vertebrates as well (by relatively shorter ones
only from study 5).

It appears invertebrates never consume ectotherm-
vertebrates with one exception in study 3. The prey, in
this case, happens to be one of the shortest ectotherm-
vertebrates, which is reasonable when considering
that most ectotherm-vertebrates are much larger than
invertebrates.
To gain further understanding, we used a different

substrate to visualize the same data set. We hoped
that this different point of view would help to attain
new insights and understandings (Figure 12). In this
substrate, all regions except detritus use log(avgLen) on the
x-axis, while they use log(avgMass) on the y-axis. Length
increases from left to right, while mass increases from top
to bottom.
Combining the data from all studies, we helped

our collaborator see general tendencies in terms of
mass and length. This would also provide evidence to
support the earlier hypothesis that mass and length are
usually proportionate to each other. Shorter and lighter
photo-autotrophs are consumed merely by the heaviest
and mostly longer invertebrates, while heavier photo-
autotrophs are consumed by mostly not-so-heavy inver-
tebrates. Ectotherm-vertebrates (of known length and
mass) consume various length (but unknown mass) of
photo-autotrophs and detritus; while mostly the heavier
and longer ectotherm-vertebrates eat others in their own
metabolic category.
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Figure 13 Using an incoming link filter on mass on the invertebrate region shows that among the known-mass invertebrates,
the ones that are eaten are those that have a medium weight. In other words, the lightest and the heaviest invertebrates are not
consumed.

Looking at the relationship between ectotherm-
vertebrates and invertebrates, the ectotherm-vertebrates
are always consumers and they tend to consumemedium-
weight invertebrates rather than light or heavy inver-
tebrates. One can vaguely perceive this by the slope
of the links (the ones originating from the bottom left
of the ectotherm-vertebrate region); however, using an
incoming link filter on mass on the invertebrate region,
one can clearly see that this is the case (Figure 13).
From these two views on the food web data set, at one

glance, with a little bit of focus on each area on the display,
almost all interactions within the data set of seven studies
are interpretable in terms of study and length, and then
mass and length. Although axes have been used consis-
tently to have the same attributes in each substrate, this is
not a restriction and different attributes could be used in
general. Filters help focus on areas to reveal relationships
more clearly.
The semantic substrates enabled our domain expert

to understand her data set better, especially to recog-
nize what other data would be needed for her desired
analyses. She also realized that the seven data sets were
not comparable with each other, a fact unknown to
her before looking into the data in NVSS. She realized
some patterns that merit further investigation, such as
why ectotherm-vertebrates might avoid the lightest and
heaviest invertebrates.
The highly skewed distributions and partial nature of

the data presented challenges, but these features stood

out clearly in our visualizations, supporting the process of
discovery. These insights would not have emerged from
a simply defined force-directed layout of nodes, because
skewed distributions of attribute values and missing data
would not be visible.
Our domain expert found NVSS useful to explore her

food-web data and envisions using NVSS to continue food
web analysis work. She would use it to compare relation-
ships and attribute patterns of real foodwebswith patterns
of simulated food webs. This would help her refine the
models used to make them more realistic.

Semantic substrate design guidelines
As a result of our experience of designing semantic
substrates for these two domain expert groups and others
we began to develop design guidelines. They are more
or less in priority order and aim to provide efficient and
effective exploration of network data using semantic
substrates:

(1) Choose grouping and placement attributes based on
key variables of nodes.

(2) Favor attributes with uniform distributions to spread
out nodes evenly. Transform attributes by using log(X)
or sqrt(X), if necessary, to make their distribution
more uniform.

(3) Minimize or eliminate gaps (by choosing or trans-
forming attribute values) and avoid outliers (possibly
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by deleting them or setting a maximum value) to save
screen space.

(4) Align regions to facilitate comparison.
(5) Locate regions to minimize link length and link over-

laps while facilitating comparison (by aligning regions
to be compared and placing them close to each other).

Semantic substrate design guidelines can be applied to
selecting attribute values to group nodes into regions,
determining the placement method for nodes within
region, and other smaller but still significant issues. The
following subsections illustrate how the design guidelines
are applied.

Selecting a grouping attribute
It is best to choose the attribute that is of most interest
(1) and most suitable (2), (3) for grouping. If there are
many attributes of interest and their levels of interest
are not very different from each other, data set charac-
teristics determine how easy it is to choose an attribute
(or attributes) for grouping. Sometimes, there is a best
attribute to choose for grouping. Usually an attribute
with 2–5 values that separates nodes into meaningful
categories is appropriate (1) as was the case with the venue
attribute with the legal cases data set and the metCat
attribute (metabolic category) with the food web data set.
If users have an idea of what the best attribute is, they

may use it to see if it produces the desired understanding.
If not, they can choose another attribute and iterate.
When there is no attribute with 2–5 values, users may

create a derived attribute that will have 2–5 values (2).
Effective grouping (binning) of attribute values is almost
always possible.
Knowledge of what attributes are available in the data

set, their types and range of values helps when choosing
a grouping attribute, while knowledge of frequency and
distribution of attribute values help to create a substrate
containing regions with a balanced number of nodes
within each region (2). However, exceptions do not
violate the rule as in the detritus region with a single node
in Figure 11, which was useful to reveal incoming links.
Users who are knowledgeable in terms of these aspects
will have an advantage. Otherwise, they can accumulate
this type of knowledge by iterative design and applica-
tion of substrates to their data. Another way is to assist
users by making this type of knowledge available in the
Substrate Designer (see future work section).
The selection of a grouping attribute value for a region

eliminates it from the pool of attributes available to deter-
mine the placement method for that region. As a result,
users may take into account what attributes to choose
for placement later and accordingly not choose those
attributes as grouping attributes.
In some rare circumstances, users may want to select

values of different attributes for each region; however,
they need tomake sure that nodes fall into a unique region
and attribute values for grouping together cover all nodes

in the data set (or they can create a subset having only
those nodes that they cover).
To summarize, selecting an effective grouping attribute

is usually best with an attribute having 2–5 values that
divides the data set into meaningful subgroups or cate-
gories. Users will need to know what attributes are avail-
able in the data set, their type and their meaning. They
are likely to make better choices and have fewer substrate
design iterations if they have a good idea of the frequency
and distribution of nodes in terms of various attributes in
the data set.

Determining the placement method
Determining the placement method involves selecting
a placement algorithm and providing attributes as
parameters.
It is best to first determine which attributes to use for

placement. Attributes of high interest should be given
priority (1). The placement algorithm should be selected
according to the characteristics of the chosen attribute (2),
(3), (4).
GridPlotXY is suitable whenever there are two mean-

ingful attributes to choose for placement. For the legal
cases data set, year and circuitNo are meaningful (1) as year
helps make temporal inferences, while circuitNo subcat-
egorizes cases in addition to refining the hierarchy of
courts and enabling comparison between Circuit and
District Court cases (4), (5) . A fairly balanced distribution
of nodes across these attributes helps the visualization as
in the legal cases data set (Figures 4–10) (2). Outliers may
pose a challenge as in the invertebrate region in Figure 11
due to unused space (3). Nevertheless, it is still possible
to get an idea of the distribution of nodes in terms of
this attribute (as it is useful to see how invertebrate taxon
sizes compare across studies) and compare relationships
with other regions that use the same attribute (4) (as
it is revealing to see that smaller ectotherm-vertebrate
consume photo-autotrophs).
SingleAxisGridPlot algorithms (GridPlotX, GridPlotX

Jittered, GridPlotY, and GridPlotY Jittered) are appro-
priate when there is not a meaningful or a useful second
attribute to place the nodes by. Another reason not to
use a second attribute is to have a good spread of nodes
on the display (2), (3) (as GridPlotXY may cause too
many nodes to fall into a cell causing them to overlap,
as in ectotherm-vertebrate in Figure 11; a good spread
is achieved with photo-autotrophs along the x-axis with
the bad alternative of overlapped nodes on the far left if
the same x-axis was used as the ectotherm-vertebrate or
even invertebrate region).
In general, it is best if the values of selected attributes

have a uniform distribution (2) across the selected range.
Although this is ideal, it is not necessary to gain insights.
There are uniform distributions in the legal cases data
set but non-uniform ones in the food web data set.
For instance, photo-autotrophs are not distributed in a
balanced way across studies in Figure 11. In fact, studies
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1,3,6, and 7 have no nodes at all. Still, the lack of
nodes in those studies conveys useful information. The
cost is unused space; however, the advantage is that the
standardization in terms of study facilitates comparison
between regions. For attributes that have non-uniform
distributions, users also have the option of creating
derived attributes (2) (using external tools) that have
more uniform distributions by applying transformations
and then use those derived attributes. Aris et al.27 discuss
several options for transformations.
When selecting an attribute for the chosen algorithm,

challenges similar to selecting a grouping attribute arise.
In other words, users need to know what attributes are
available, their type and range of values. Knowledge of
their distribution and frequency helps; however, users
can find out this information by iterative design and
application of substrates or the application can present
this information to users (see future work section).

Miscellaneous issues
Size and alignment of regions can facilitate comparison
of nodes in terms of attributes. Using a common axis
(x- or y-) across regions and aligning them on that axis
are effective (4). When there are many alignment possi-
bilities, users must choose. Locating regions to decrease
(and in certain situations increase) link length and link
overlap will increase the visualization’s effectiveness (5) .
If users have specific questions, they can set the attributes
of interest as parameters of the placement methods and
align the regions of interest (1). If users are exploring the
data set, they can iteratively refine the design of their
substrate until desired insights are gained.
With respect to colors, choosing the link colors seem to

be the most crucial issue, especially when there are many
links on the display. It is best to choose contrasting colors
(such as bluewith purple and bluewith red as in links asso-
ciated with the ectotherm-vertebrate region in Figure 11).
Node and background colors are less important but still
significant. Lighter colors are better for the background.
Determining the size of nodes is another seemingly

small issue but still significant. Additional information
can be represented by tying node size to an attribute.
Unbalanced distributions and outliers can decrease the
effectiveness of size coding as well as make it hard for users
to find a good transformation to apply to the attribute
of interest. In such cases, it may help to create a derived
attribute (using other applications) from the existing
attributes and then use that attribute for size coding (2),
(3). For example, for distributions with long tails a loga-
rithmic transformation produces a more uniform distri-
bution. In the event log(X) does not produce a uniform
distribution, users could try other transformations such
as sqrt. In fact, the transformation used for the legal
cases data set was 5 + sqrt(X)/5 on the ‘incites’ attribute
(indicating the number of citations to a case in the larger
data set of 2345 decisions), which produced good results,
especially on the Supreme region.

Discussion and future work
User-defined semantic substrates appear to be effective in
organizing data in meaningful ways. Insights gained from
the data sets explored in this paper provide concrete exam-
ples of the usefulness of this approach. However, there
is room for improvement. These fall into the following
categories: (1) the visual presentation, (2) facilitating the
substrate creation process, and (3) miscellaneous issues.
The visual presentation can be improved in terms of

node and link representations. There are many situations
where the number of nodes to be represented exceeds the
limit of the available space. This happens especially with
themore restrictive algorithms, such as GridPlotXY, where
cell space is small and it becomes a challenge to display
more than a few nodes. Either non-uniform distribution
of nodes or simply that there are many nodes to visualize
lead to node overlaps.
A way to handle this is to clump nodes into meta-

nodes (also known as clusters; Tulip16 clusters nodes using
density functions of attributes and structural information
such as node degree and segment length). This will help
with the scalability by enabling display of larger data
sets. In addition, it will help reduce the number of links
(especially helpful for data sets with dense links).
There are several opportunities to improve link display.

Links tend to overlap due to originating from or pointing
to close nodes. An example is the links from the District
region to the Circuit region in . Nodes with close attribute
values are placed close to each other and those nodes are
usually of interest. The trade-off is between understanding
the data and perception of links. A specific form of link
overlap is with links concentrated within a small space.
This happens usually when the source and destination
links are packed together in a small space as in GridPlotXY
algorithm cells, such as in the invertebrate region in Figure
11. Either link routing28, link clustering such as using
hierarchy to organize edges,29 or other methods might
provide better visual representations.
The substrate creation process can be improved in terms

of two criteria: (1) a good substrate at the end of the
process, and (2) a faster process. A good substrate is one
that helps users gain useful insights. Trial and error plus
past experience are good ways to get started. Substrates
can be stored and reused for similar data sets. A module
that helps users store substrates, calculates compatibility
between a substrate and a data set, and provides a score
in terms of perceptual advantages might help users find a
good substrate.
One way to accelerate the substrate creation process

is to reduce the number of iterations. When users are
deciding which attributes to use for grouping or place-
ment methods within a region, providing the range or
distribution of attribute values relevant to the context
can eliminate several iterations. Previewing nodes within
a region and links whenever possible might help. Oppor-
tunities include more expressive region specification
(allowing the use of other operators than equality to a
single attribute value, to the limit to support a Boolean
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expression with a complete set of operators), a way to
select filters (especially if there are many possible ones),
and more algorithms for node placement within regions.
Other improvements would be facilities to help users
with pre-processing tasks, such as narrowing down to
an interesting subset (especially for large data sets) and
creating derived attributes.
Application-level improvements would include scala-

bility (both performance and visual representation as the
number of nodes and links increase), additional filters
for nodes and links, and perhaps other widgets for visual
interactions.
Further future work includes allowing multiple valued

attributes and supporting more than one type of node
(e.g. bimodal networks). Non-square and overlapping
regions might be helpful in some problems. Evaluation
of semantic substrates in several domains by case studies
is also needed.30

Conclusion
By engaging the remarkable human capabilities for
spatial perception and analysis, we believe that semantic
substrates will accelerate many network visualization
tasks, enabling domain experts to make more frequent
and important insights. Our two case studies demon-
strated benefits for domain experts, but much more needs
to be done to refine and extend our tools. The process
of substrate design could benefit from tools, modules, or
features that will both expedite the process and increase
the effectiveness or suitability of the substrate. Auto-
mated and semi-automated substrate designs are likely
to be tuned to the needs of specific domains, but these
could easily be shared among many users. A meaningful
substrate captures domain knowledge and enables easy
comparison of data sets, identification of attribute value
changes, and the detection of new nodes or links.
The two case studies in this paper showed how the

process of iterative substrate design helps explore network
data from different point of views, which resulted in fresh
interpretations and outcomes. Another contribution is the
proposed guidelines for designing semantic substrates. In
the discussion and future work section, areas for improve-
ment are addressed with possible solutions.
We believe that semantic substrates accompanied with

good substrate design promise more effective exploration
of networks through increased user control that leads to
better understanding and deeper insights.
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