
Data Structures for Dynamic Queries:
An Analytical and Experimental Evaluation

Vi& J&I and Ben Shneiderman+
Human-Computer Interaction Laboratory

Department of Computer Science
Institute for Systems March+

University of Maryland, College Park, MD 20742
email: vinit@tkg.com, benQcs.umd.edu

Abstract

Dynamic Queries is a querying technique for doing range
search on multi-key data nets. It b a direct manipulation
mechanism where the query is formulated using graph&d
widgets and the results are displayed graphically preferably
within 100 milliseconds.
This paper evaluates four data structures, the multilist, the
grid file, k-d tree and the quad tree wed to organize data in
high epeed storage for dynamic queries. The effect of factors
like size, distribution and dimeusionslity of data on the etor-
age overhead and the speed of search is explored. Analytical
models for estimating the storage and the search overheads
are presented, and verified to be correct by empirical data.
Results indicate that multilists are suitable for small (few
thousand points) data sets irrespective of the data distri-
bution. For large data sets the grid files are excellent for
uniformly distributed data, and trees are good for skewed
data distributions. There was no sign&cant difference in
performance between the tree structures.

1 Introduction

Most users of database systems must learn a queryiug lan-
guage which they use to nekct and retrieve information. A
query language is a special purpose language for constructing
queries to retrieve information from a database of inform&
tion stored in the computer [la].

Dynamic queries [l] is a novel way to explore information.
This mechanism is well euited for multi-key data sete where
the resulta of the search fit completely on a single screen.
Figure 1 shows an application of dynamic queries in search-
ing a real estate database. The query is formulated using
widgets such se buttons and sliders, one widget being used
for every key. A etudy [23] was conducted which compared
dynamic queries (DQ) to a natural language system known

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice a?d the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
AVI 94- 6194 Bari Italy
0 1994 ACM O-89791 -733~2/94/0010..$3.60

as ‘Q 6c A” and a traditional paper listing sorted by several
fields. There was a statistically significant difference in the
performance of the DQ interface compared to the other two
interfaces. The DQ interface enabled users to perform faeter
and was rated higher than the other two in the terms of user
satisfaction. The DQ interface was very useful iu spotting
trends and exceptions to trends as compared to the other
two interfaces.

One of the important features of a DQ interface is the imme-
diate display of the results of the query. In fact, users should
be able to perform tens of queries in a span of a few seconds
so that the mechanism remains dynamic. Using larger data
sets slows down the mechanism so that there is a noticeable
time interval (greater than 300 milliseconds) between the
movement of sliders and the display of results.

The speed of DQ depends mainly on how the query is com-
puted and the results displayed. The speed of display de-
pends mainly on the graphic capabilities of the machine
used. Even though the query computation depends to a
great extent on the hardware of the machine used, it can be
optimised to a great extent by using suitable data structures.

In this paper data structures for the high speed storage are
examined. We assumed that the data sets remains frozen i.e.
there are no insertions, deletions or updates. The time taken
to load the data into the high speed storage memory i.e. the
preprocessing time is ignored as it is done only once. Only
simple rectangular queries are considered i.e. queries will be
a simple conjunct of the ranges epeciiled by the sliders.

2 Multi Attribute Range Search Meth-
ods

The problem of range seerrch on multi attribute data nets can
be dellned as:
For o given multi-o&lute doto ret, ond o query which rpec-
ifier o mnge for each ottribute, find 011 recorda whose ot-
tributer lie in the given mnger.
The cost functions of various data structures rue provided
where N is the number of records, t is the number of at-
tributes and F is the number of records found.

1

Figure 1: The Dynamic Home Finder

l S(N, L) is the cost of etorage required by the data struc-
ture.

l Q(N, k) is the search time or query cost.

Figure 2 ebows cost functions for structures that are suitable
for rectangular queries. For the quad tree h’i is the num-
ber of nodes in the tree. Further details about these data
structures can be obtained from the references. Many other
complex etracturea exist, but they are mainly of theoretical
interest only because of their high storage overhead. It can
be seen that range treea and k-rangea have relatively high
storage overheada and are thun eliminated from considera-
tion.

3 Data Structures

We assume the following characteristics of dynamic queries.
The paranreters of search are specified using sliders with one
slider being used for each dimension. There are a limited
number of positions the dragbox of a slider can take. This
redte in the ranges getting broken into discrete intervals. If
every nlider ia assumed to break a range into G intervds, and
if the data net has D dimensions then the search space can
be spbt into GD buckets. A bucket is the smallest unit of
search and it is not possible to differentiate between points
in a bucket. During search all or none of the data points of a
bucket get included in the solution set. It may happen that

Multilist OW) O(Nk)

C&9 O(Nk) 0(2’.F)

k-d ‘Dee OWk) O(N-I* + F)

gaad Tree O(Nk) O(Nl’-“’ + F)

Range The O(Nlogk-lN) O(log’N + F)

k-Ranges O(NZk-‘) O(klogh’ + F)

Figure 2: Storage and Search time overheads for various data
structures

2

in certbin data distributions some buckets are empty. Unlike
the case in bucket methods for storage on disks, there is no
limit on the number of points in a bucket when the high
speed storage is used.

Four data structurea sre described in this section. The datb
points are stored in a simple array. It is assumed that points
belonging to the same bucket will be stored consecutively.
The data structures will be used to maintain an index on
the array so that the search time is reduced. To maintain
these indices, memory overhead is incurred which needs to be
kept low. These etrnctnrea can be da&led in two categories

i.e. bucket and non-bucket methods. In bucket methods an
index ia maintained on buckets and in non-bucket methods
it is maintained on dbtb points. The linked array which is
a non-bucket method is described first. Later the bucket
methods are described.

3.1 Linked Array

dklerl d&r2

' ' ' '

12 3 4

data array
f2

Figure 3: Liked Array need to index the Data Array

Figure 3 shows a part of the linked array when the dbta in
two dimensional (i.e. D = 2). Ah shown in the figure is a
data brrby. The data array is an array which holds the data
points. With every interval in the slider range is associated
a linked list. Every point in the data set will lie in one and
only one linked list of every slider. Also with every record is
associated a flag (not shown in the figure). This flag keeps
count of the number of fields of the record which satisfy the
region of iutereat. When this count becomea equal to the
number of dimensions then the record is displayed.

3.2 Grid Array

Figure 4 shows a part of the grid array md to index the
data array for the two dimensional csse. This is a bucket
method and a bucket is essentially a pair of index numbers
or pointers which point to the first and last record in the
data array that belong to the bucket. These buckets form b
part of the D dimensional search space. Therefore, to index
them a D dimensional array is used.

I elIdeI
1

2

l
3

4

rlkferl

Figure 4: Grid Array used to index the Data Array

3.3 k-d Tree

dlscl 2

disc2 2 2

/\

d&cl 1 1

\ /\ DataArray
fl v

-A-h-L-L / I ’ ! ’ !

J

Figure 5: k-d ‘lhe seed to index the Data Array

Figure 5 shows a part of a k-d tree and the data array as-
sociated with it. In kd trees, the concept of the buckets
is again the same as the grid array. For our optimized k-
d tree not ah nodes St the same level in the tree have the
same discriminator key. Nor are dl the leaves at the same
level. Therefore, in each node, beeides the die&minator key
vdue, the type of the discriminator key and a flag (not shown
in the figure) which indicates the type of children (node or
leaf) is also stored. This helps in reducing tree size when the
number of non-empty buckets is smdl. It is possible that af-
ter optimization some leaves may move so thbt they are no
longer at the level they were in the non-optimized tree. In
such cases an additiond check needs to be done to ensure
that the bucket reached falls iu the region of interest. A flag

3

(not shown in the figure) in the leaven indicates whether this
check needs to done.

Figure 6: Quad Tree used to index the Data Array

Just as k-d trees could be used to index the buckets, quad
trees can also be used to index the buckets as shown in Fig-
ure 6. Each node has D d&riminator keys and 2O pointers
for the children. Just m in the cae of a k-d tree, the chil-
dren of a non-leaf node may be a mix of leaves and (non-leaf)
nodes which is determined by a flag. One bit is required to
maintain this information about each child. It is assumed
that D in at most 5, hence the number of children is at
most 32 and one word (32 bits or 4 bytes) suffices to store
leaf/non-leaf information for all the children of a node. In
some casea, after optimization, some leaves may move, (as
in the k-d tree) and a check may be required to ensure cor-
rectness which is indicated by a flag.

4 Analytical Model

We analyze the storage and search overheads of data stmc-
turw used for dynamic queries in this section. Storage over-
head refers to the additional storage requirements for the
data structure used. Search overhead is the number of oper-
ations required to compute the query result when the slider
ie moved. These two metrica will be wed throughout thie
section to evaluate the data structnrea for dynamic queries.
Search overhead will depend on how large the space being
searched is, At any given moment the sliders define some-
thing called the t-&on of intenst, which is the portion of the
search space being displayed. Every movement of a slider is
a query which increw or d&eases the region of inter&.
It is rssumed that at any time only one dragbox of a slider
will move in steps of one discrete interval. As a result of this
move, poiuts have to be removed or added to the display.
In the case of the search overhead, it is assumed that the
case where the region of interest is increasing will apply as a
general case. For the worst csse the increment in the region
of interest should be the greatest. This happens when D - 1
sliders have their left and right dragboxes in the extreme left

and right respectively. In this case with every move of the
D’h slider CD-’ buckets are added to the region of interest.
The effectiveness of a method will be studied with respect
to factors such ay the distribution, dimensionality (D) and
sise (N) of the data sets.

4.1 Comparing Bucket Methods

In this section a comparison of bucket methods is presented.
Only the number of non-empty buckets will be considered
in the analysis. The number of tuples does not effect the
performance in any way. As mentioned earlier, two perfor-
mance metrics used in the analysis are the storage overhead
for the index on buckets and the worst case search time.

The following symbols will be used (i is the dimensionality):

N : Number of points.
D : Number of dimensions.
G : Number of intervals in each slider range.
Noi : Nodes in the structure.
Bi : Non-empty buckets (leaves) in the structure.
Nvi : Nodes (non-leaf) visited (worst csae).
Bvi : Non-empty buckets (leaves) visited (worst csse).

The storage overhead is the cost of maintaining an index on
the data points. In computing the storage overheads, it is
assumed that each integer is 4 bytes, each character is 1 byte
and each pointer is 4 bytes. If the number of dimensions is
i, then the following holds true:

Grid Array: In grid arrays, 2 integer indices (first and last)
are maintained for each bucket, irrespective of data distri-
bution. So, 8 bytes are required for each bucket. Therefore,
Total storsge overhead = 8G’ bytes .

k-d Tree: In k-d trees, each non-leaf node has an integer
discriminator key (4 bytes), a character dis&minator key
type (1 byte), a character flag for type of children (1 byte)
and two pointem for left and right children (4 bytes each),
resulting in a total of 14 bytes. Each leaf (non-empty bucket)
has 2 integer indices (4 bytea each) and a character flag (1
byte), resulting in a totd of 9 bytes. Therefore,
Total etorage overhead = 14Noi + 9Bi bytes.

Quad nee: In quad trees, each non-leaf node has 2’ point-
em for children of the node (4 bytes each), i integer dincrim-
inator keys (4 byke each) and one flag for maintaining types
of children (4 bytea), resulting in a total of 4(2’+i+l) bytes.
Each leaf (non-empty bucket) requires 9 bytes as in the csse
of k-d trees. Therefore,
Total storage overhead = 4(2’ + i + l)Noi + 9Bi bytes.

The following assumptions have been made in calculating the
search time overhead. i is used to indicate that the terms
are for i dimensional case.

l For every non-empty bucket visited it is assumed that
one operation ia done to report that the bn.cket is non-
empty.

4

l For the grid array one operation is required to visit a

bucket and if it is non-empty then another operation is
performed.

s For the k-d tree every non-leaf node visited has to be
put into the stack and then later retrieved from the
eta&. This requires 2 operations. In processing every
node two comparisons have to be made. This makes it
a total of 4 operations for every non-leaf node visited.
In visiting leaves, 2 operations will always be required:
1 operation for reporting that the bucket is non-empty
(as discussed earlier) and 1 operation to get to the leaf.
In some cssea, because of the optimizations on the tree
that were discussed earlier, an additional check is re-
quired to ensure that the bucket reached is the correct
one. This may require up to 2i operations.

s For the quad tree every non-leaf node visited has to be
put into the stack and later retrieved from the stack.
This requires 2 operations. 2i comparisons are required
to determine which children of the node to search. 2
operations me required for checking the flags to deter-
mine the type of children. So, in all 2i+4 operations are
done for every non-leaf node visited. In visiting leaves,
2 operations will always be required: 1 operation for
reporting that the bucket is non-empty (as discussed
earlier) and one operation to get to the leaf. As in the
case of k-d trees, an additionsl check may be required
to ensure correctness of the leaf reached which requires
2i operations.

l In the worst CM, for both k-d tree and quad tree, it
is assumed that the number of nodes visited, when the
data is i dimensional is Noi-1. This is because in the
worst case i - 1 sliders do not restrict the search in any
way. The slider restricting the search has only one of its
discrete intervals to be searched for. It is like taking a
slice of thickness 1 from the i dimensional search space.

4.1.1 Uniform Data Distribution

In this subsubsection we present the storage overheads and
search time requirements for the case when the data dL+
tribntiop is nniform. An important factor effecting these
performance metrics is the percentsge of buckets which are
non-empty. Two extreme cases were considered in this sub-
section, when all the buckets are non-empty and when only
25% of the buckets are non-empty. We briefly state the im-
portant results here. Detailed analysis for deriving these
results is presented in [ll].

Figures 9 and 10 show how the storage and sesrch over-
heads vary as the fraction of non-empty buckets changes for
nniformly distributed data. The values used were, G = 16
and D = 4. Figures 7 and 8 show the overheads for the
case of uniformly distributed data. These results indicate
that, the grid array is a significantly better structure to use
when data is uniformly distributed and most buckets are
non-empty. It has a lower memory and search time over-
head than both the tree structures. However av the number
of empty buckets rises the difference in the memory overhead

Data
Structure

Grid Array

Storage Cost Search Cost

8GU 2GU-’

1 k-d ‘Tree 1 23GD I 6GD-l I

Quad l-bee 4(2O + D + l)&
+9GD

(20 + 4) :“;:,
+2G’-’

Figure 7: Storage and Search time overheads for Uniformly
Distributed Data (100% buckets non-empty)

Data
Structure

Grid Array

k-d Tree

Quad Tree

Storage Cost

8GD

lJaD
.

4(SD + D + I)&

+9%

Figure 8: Storage and Search time overheads for Uniformly
Distributed Data (25% buckets non-empty)

reduces and the trees get better. When comparing the search
overheads of the structures for the case where most buckets
rue non-empty the quad tree hss a lower search overhead.
The dimensionality of the data only increases the differences
with the differences in performance becoming greater rur di-
mensionality rises.

4.1.2 Skewed Data Distribution

In thin s&subsection, the performance of data structures is
examined when the data distribution is skewed. Two csses
are examined, when all the non-empty buckets are only along
the diagonal of the search space and the case where all the
non-empty buckets are within a distance of G/4 from the
diagonal. As in the case of uniformly distributed data the
detailed analysis is presented in [ll].

Figures 11 and 12 show the overheads for the case of skewed
distributions. These results indicate that, there is a signif-
icant difference between the performance of trees and the
grid array with the trees being superior. This is reflected
both in memory and search overheads. For the case where
non-empty buckets lie only along the diagonal of the search
space the difference in the trees and the grid is phenomenal.
In the second case also the trees are significantly better.
Amongst the trees it can be said that the k-d tree has a
marginally lower memory overhead and a marginally higher
search overhead than the quad tree. As in the case of uni-
formly distributed data, higher dimensionality of data makes
the differences more pronounced.

5

I I I I I I I I I I
150 150 -’ -’ /’ /’
1.x) -’ 1.x) -’ .’ .’

1sJ -’ 1sJ -’
Ial Ial -. -.
1.10 1.10 -. -.
1m 1m -. -.
0.93 0.93 -. -.
0.80 0.80 -- --
0.m 0.m -- --

, ,
0.10 0.10 c- c- 1 I I I I I I I 17 17

OifJ 0.40 0.60 0.80 1.00
x

Figure 9: Idemory overhead for Uniformly Distributed Data
Ve. the fraction of non-empty buckets

qcmionm I Id

I 1-r

24.00 - ,.--
.*- -

22m-
,.--

g-

*.-’

20.00 -

18.00 - .’
,-

16LO -
.’

X X

Figure 10: Search overhead for Uniformly Distributed Data
Vs. the fraction of non-empty buckets

4@D + D + l)G + 9C (20 + 4)IogzG + 2

Figure 11: Storage and Search time overheads for Skewed
Data Distribution (non-empty buckets along diagonal only)

Storage Cost

6GD

Search Cost

++ u--l &
G

23i?o ~BD-1+

(20 + 2)%

4(2O + D + 1)Noo (20 + 4.)No~-~
+9Bn +2%

Figure 12: Storage and Search time overheads for Skewed
Data Distribution (all non-empty buckets withiu a distance
of G/4 of diagonal)

4.2 Bucket Vs Non-Bucket Methods

In bucket methods the number of points does not effect the
search overhead if the number of points is sufficiently large to
make most buckets non-empty. However when the number
of points is small or the number of dimensions is low it may
be better to use the linked array because its storage overhead
is directly proportional to the number of points in the data
net and the dimension of the data set.

Every tuple of the linked array has to be kept on D lists.
For this D additional pointers (4 bytes) are needed. In
addition a flag (1 byte) is required (see section 3.1).
Therefore, storsge overhead is (4D + 1)N.

Generally each linked list associated with a slider will
have N/G tuples in it. Therefore, search overhead
(worst case and average case) is 3.

The linked array WPBB compared to the grid array for uniform
data distributious. Only the grid array was chosen because
it has a superior performance compared to the treea for uni-
form distribution. With a value of G = 16 and D = 4, it
was seen that the linked array performed much better as far
as the search overhead is concerned. However the storage
overhead for this structure gets very high.

The linked array was compared with the tree structures
for the skewed distribution. The grid array was dropped
from consideration here because trees perform better under
skewed data distributions. In this case the performance of

6

the tree structures, specially the quad tree is much better
both when storage overhead and search overhesds are com-
pared. One reason could be that in ekewed distributions the
bucket occupancy rises very steeply when compared to the
uniform distributions.

5 Experimental Results

The analytical models of section 4 were verified by impL
menting the cases discussed. The implementation was done
on a dedicated SUN 4/50 with 16 MB of memory and mn-
ning SnnOS. The memory overhead ~~88 calculated by count-
ing the nodes and leaves for the bucket methods, and the
number of points for the finked array. Clock time in mi-
cra5econda was used to measure the epeed of search instead
of the number of operations an in section 4. The proceaa
switching overhead was ignored w the machine had negligi-
ble load.

5.1 Comparing Bucket Methods

The analytical model.5 of subsection 4.1 were implemented
and the results are presented in thie eubaection. In the calcu-
lation of memory overhead, only the extra memory required
to maintain the index was considered. AE mentioned before
in calculating the search time, the time for display of records
was ignored. The value of G = 16 was naed in implementa-
tions.

6.1.1 Uniform Data Distribution

m:x 14 5.1.2 Skewed Data Distribution

7.m -’ I b IF

1.60 -
g--

1.60 -
:

1.40 - :
:

:
la0 - :

8’
1m - :

: ,

0.80

0.60 t

8’
:

:
:

:
:

0.43 -

J ;

8’
:

oao - :
:

__o---
om -

-a#
200 3.00 4110 5m

Figure 13: Memory overhead for Uniformly Distributed
Data (100% bucket.9 non-empty)

Figures 13 and 14 show the results of the memory and search
time overhead respectively for the case where all buckets are

: : 25.00 25.00 8’ 8’ : : : :
mm mm ,I’ ,I’

: :

mm:J ; mm:J
i5m i5m : :

: :
: :

iom iom : : , ,
: :

5m 5m : :

om om

7.m 3.00 4.co 5.00

Figure 14: Search overhead for Uniformly Distributed Data
(100% buckets non-empty)

non-empty. For this case the grid array is significantly better
than the tree structures both in terme of memory overhead
and search time overhead.

The case where 25% of the buckets are empty is shown in
figures 15 and 16. The grid array is a significantly better
structure when eeuch time overhead is considered. However
the k-d tree ia marginally better when memory overhead is
considered. All results in this subsubsecton closely match
previous analytical models.

Figurea 17 and 18 show the results of the memory and
search time overhead respectively for the case where non-
empty buckets rue only along the diagonal. For this c-
both the k-d tree and the quad tree give a performance far
superior to the grid array both for memory overhead and
search time overhead. However there ia no Significant differ-
ence between the performance of trees.

When all points lie in bucketa within a distance G/4 of the
diagonal the tree structures turn out to be excellent perform-
ers compared to the grid array. This can be seen clearly in
figures 19 and 20. However the difference between the tree
rtructures themselves in not large. It should be noted that
LB in the previous casen the results of the implementations
follow the analytical models closely.

5.2 Bucket Vs Non-Bucket Methods

In the calculation of memory overhead for linked array, only
the extra memory required to maintain the linked list was
considered. An mentioned before in calculating the search
time, the time for display of records found was ignored. The

7

ia

1.a

1.60

1.40

1.2fJ

Irn

0.80

0.60

0.40

0.20

L 1 I I ’ ‘Dimatirm
:1a) 3m 4m 5.00

Figure 15: Memory overhead for Uniformly Distributed
Data (25% buckets non-empty)

#.W-

35m -

3O.W-

25xX) -

2om -

15m -

lam - 1: .’ .*’ .’
::I//

I ’ Dfmadm
200 3m 4m 5m

Figure 16: Search overhead for Uniformly Diatribated Data
(25% 'buckets non-empty)

Figure 18: Search overhead for Skewed Data Distribution
(non-empty buckets along diagonal only)

,
"hi DimemioDl

2.00 3.03 4m 5.00

Figure 17: Memory overhead for Skewed Data Distribution
(non-empty buckets along diagonal only)

utm-

35m -

30.00-

25&J-

mm-

1500 -

lom-

5m-

om--
I ’ nimmaiau

2.00 3.00 4m 5m

8

values of G = 16 and D = 4 were used in the implementa-
tions.

5.2.1 Uniform Data Distribution

1.m -

1.w -

0.80 -

0.60 -

0.40 -

0.m -

0.00 -
I I ’ DimaIiav

7.00 3.00 4m 5.00

Figure 19: Memory overhead for Skewed Data Distribution
(all non-empty bucketa within a distance of G/4 of diagonal)

ti-Xld UlkMXdI.103

I I I I
mm - Y3.w -

I I

45xX) - 45xX) -

a.00 - a.00 -

35.00 - 35.00 -

mono - mono -

l5.00 - l5.w -

mm- mm-

15.W - 15.W -

10.00 - 10.00 - I

ri
z

-I

I 1 I I I)-*.
100 3.W 4m 5.00

Figure 20: Search overhead for Skewed Data Distribution
(all non-empty buckets within a distance of G/4 of diagonal)

bywax bywax
1 1

l.W- l.W-
lunr lunr

srld srld

1.m - 1.m -

1.60 - 1.60 -

1.40 - 1.40 -

la - la -

im - im -

0.80 - 0.80 -

0.60 - 0.60 -

0.a - 0.a -

02-J - 02-J -

Om t- rawlooo)

om 1w.w mm

Figure 21: Memory overhead for Uniformly Distributed
Data

ml-dI x Id

W.W

45.00

a.00

35.00

mm

urn

mm

15m

I I hY
r

/i

11111 ;Yy:
om

om rwm lW.W
Polnts(1am)

Figure 22: Search overhead for Uniformly Distributed Data

Figures 21 and 22 show the comparison between the linked
array and the grid array. As mentioned before in subsection
5.2 only the grid array was chosen among bucket methods as
it hae the best performance for uniformly distributed data.
As far as search time overhead is considered the linked ar-
ray performed better than the grid for up to approximately
100,000 points. However the drawback is that the memory

9

overhead for this structure keeps increasing as the size of the
data set increases unlike the case for the grid array where it
remains a constant.

5.2.2 S:kewed Data Distribution

1.80

t

i-aif&---

1.60

oJ+, Fthw1cax

5cJ.w lOa

Figure 23: Memory overhead for Skewed Data Distribution
(all non-empty buckets within a distance of G/4 of diagonal)

mi-dI x 103

5oM

45.ca

Y).w

35.00

r)M

25.w

2om

15.a)

1OJxl

5.a)

OJXI
E

5aw lOa

-I

Figure 24: Search overhead for Skewed Data Distribution
(all non-empty buckets within a distance of G/4 of diagonal)

Figures 23 and 24 show the comparison between the linked
array and the tree structures for skewed distributions. As
mentioned before in subsection 5.2 only the trees were cho-
sen among bucket methods 88 they have significantly better
performa.nce for skewed data distribution. When compared

to the linked army the tree strnctnres get significantly better
than the linked array both in terms of search time and mem-
ory overhead. However when the number of tuples is small
(about 10,000) it is better to use a linked array because of
its simplicity.

6 Conclusions

6.1 Contributions

We have presented a way of rmalyzing data structures for
dynamic query applications. The usefulness of analytical
models was shown by empirical data. In almost sll cases the
empirical results confirmed the analytical models.

In the case of nniformly distributed data the linked array
structure performed quite well but the drawback in this
structure is that its memory overhead is very high and them-
fore it should be used only for small data sets. For larger
data sets it is recommended that a grid array be used. The
advantage in the grid array is that the memory overhead
does not depend on the number of points in the data set but
only on the number of buckets in the data set.

For skewed data distributions where most of the buckets
are empty, the performance of tree structures, was much
better than the grid array. Among tree structures the k-
d tree used marginally less memory but had a marginally
higher search overhead. Compared to the linked array again
the trees were much better except for the cases where the
number of data points were just a few thousand. However
there is a temptation to use the linked array because of its
simplicity. It is recommended that the tree structures be
used for skewed data distributions if the number of points
exceed a few thousand.

In cases where knowledge of the data distribution is lacking
we recommend using the k-d tree as the it is highly likely
that the distribution is non-uniform. The k-d tree is also
much easier to construct compared to the quad tree when
the ranges of the sliders are not equal. It was noticed that
the performance of a data structure does not change with the
dimensionality of the data set. The only effect of increasing
dimensions is that the number of buckets increases, which
rem&s in the differencea in the performance becoming more
pronounced.

The data structnres discus& in this paper are practical
and make it possible to implement dynamic queries on stan-
dard machines in common nse without major special require-
ments. This is essential, specially becausein addition to ex-
perts, novice users with inexpensive machines also find DQ
very appealing.

6.2 Future Directions

The assumption that data sets are frozen could be dropped
and the effect of updates on these data structures would be
interesting. Another assumption about the nature of queries,
where queries were assumed to be a simple conjunct of ranges

10

could be relaxed, opening up another area of investigation.
The segregation of data into buckets can also lead to inter-
esting methods for compression.

Using dynamic queries with very large data sets raises many
interesting issues. It would be impossible to store all data in
main memory and disk accesses become a necessity. It would
be worth while to study applications where data is organized
on disks. Approaching dynamic queries from the distributed
databases point of view would be another solution for large
data sets. Another approach to take is making dynamic
queries run on parallel machines.

One of the reasons dynamic query applicationa are effective
is because they present query results in a way to help users
visualize the data set. Therefore effective ways of visualizing
data, specially multi-dimensional data are important for the
success of dynamic queries.

Acknowledgements : We would like to thank The Na-
tional Center for Health Statistics for supporting the devel-
opment of “Dynamic Trend Maps” which in part inspired
this work. We also thank Catherine Plaisant for her leader-
ship in developing “Dynamic Trend Maps”.

References

[l] C. Ahiberg, C. Williamson, and B. Slmeidermau, ‘Dynamic
Queries for Information Exploration: Au Implementation
and Evaluation”, Proc. CHI’92, ACM, New York, 1992, pp.
619626.

[2] D.A. Be&icy, M.W. Evans and V.K. Ram.+ “Multikey
Retrievai from K-d ?tees and Quad-‘Bees”, Proc. ACM
SIGMOD International Conference on the Management of
Data, Austin, 1985, pp. 291-301.

[3] J. L. Bentley, ‘Muitidimeusiond Binary Search Trees Used
for Associative Searching”. Communicationr of the ACM,
Vol. 18, No. 9, 1975, pp. 509517.

[4] J. L. Bentley and D. F. Stauat, ‘Andy& of Range Searches
in Quad ‘l&es”, Informdim Proceasing Lettetr, Vol. 3, No.
6, 1975, pp. 17&173.

[5] J. Bentley and J. Friedmau, “Data Structures for F&ge
Searching”, Compdinp Srrve94 Vol. 11, No. 4, December
1979, pp. 397-40s.

[S] J. Bentley and H. Maurer, “Efficient Worst-Case Data Stroc-
turn for Range Searching”, Acto Informoticcl, Vol. 13, No.
2, 1980, pp. 158168.

[7j C. Fdoutsoa and P. Bhagwat, “Declumtering U&g Fractalo” ,
2nd International Conference on Parallel and Di&+bntrd
Information Sgtsems, San Diego CA, 1993, pp. 1825.

[S] Ft. A. Fiukel and J. L. Bentley, ‘C&d Treea , A Data Struc-
ture for Retrievd on Compoeite Keys”, Acto Iaformatico,
Vol. 4, 1974, pp. l-9.

[S] H. Garcia-Mohun and K. Sdem, ‘Main Memory Database
Systems: An Overview”, IEEE Tmnroctionr OII Knowledge
and Data Engineering, Vol. 4, No. 6, 1992, pp. 509516.

[lo] A. Guttmau, “R-T&s: A Dynamic Index Structure for Sps-
tid Searching”, Proc. ACM SIGMOD Conference, Boston,
1984, pp. 47-57.

[ll] V. Jaiu and B. Sbneiderman, “Data Structures for Dy-
namic Queries: Au Andyticd and Experimental Evdua-
tion”, CfAR Tech&d Report, University of Maryland, Col-
lege Park, No. CAR-TR-685, September 1993.

1121 D. E. Knuth, “The Art of Computer Programming, Vol. 3:
Sorting and Searching”, Addison-Wesley, 1973.

[13] D. T. Lee and C. K. Wang, ‘Worst-Case Analysis for Ra
gion and Partid Region !&r&es in Muitidimeusiond Bi-
nary Sesrch ‘pees and Bdauced Quad ‘Bees”, Acta Infor-
mot&, Vol. 9, 1977, pp. 2829.

[14] D. Lomet, “A Review of Recent Work OIL Multi-attribute Ac-
ce~ Methods”, SIGMOD RECORD, Vol. 21, No. 3, Septem-
ber 1992, pp. 5663.

[15] V. Y. Lum, “Multi-attribute Retrieval with Combined In-
dexes”, Commnnicotioar of the ACM, Vol. 13, No. 11, 1970,
pp. 66&665.

(161 J. Nievergeit and H. Hinterberger, “The Grid File: An
Adaptable, Symmetric Multikey Fiie Structure”, ACM
lkenractions on Dotabare S9&mr, Vol. 9, No. 1, March
1984, pp. 38-71.

[lfl M. Reguier, ‘Andy& of Grid File Algorithms”, BIT, Vol.
25,1985, pp. 335357.

[IS] P. Rehmer, ‘Human Factors Studies of Databame Query Lao-
guages: A Survey and Assessment”, Computing Srweyr,
Vol. 13, No. 1,1981, pp. 1331.

[lS] H. Same& “The Design and Audysis of Spatid Data Struc-
tures”, Chapter 2, Addison Wesley 1989.

[20] P. Scheuermauu and M. Chrkael, “Muitidimetioud B-Trees
for Associative Searching in Database Systema”, Informa-
tion Syrtcmr, Vol. 7, No. 2, 1982, pp. 128137.

[21] B. Shneidermau, “Direct Manipulation: A Step Beyond Pro-
gramming Languages”, IEEE Comprter, Vol. 16, No. 8, Au-
gut 1983, pp. 57-69.

[22] B. Sbueideromu, “Deaigniug the User Interface: Strategies
for effective H mmm-Computer Interaction”, Second Edition,
Chapter 5, Addison-Wesley 1992.

[23] C. Williamson and B. Slmeiderman, “The Dyuamic Home-
finder: Evduating Dynamic Queries in a Red-Estate Iofor-
matiou ExplorationSystem”, Proc. ACM SIGIR Conference
on lnfotmotion Ret&w& Copenhagen De-k, 1992.

11

