Data Structures for Dynamic Queries:
An Analytical and Experimental Evaluation

Vinit Jain and Ben Shneiderman*
Human-Computer Interaction Laboratory
Department of Computer Science
Institute for Systems Researcht
University of Maryland, College Park, MD 20742
email: vinit@tkg.com, ben@cs.umd.edu

Abstract

Dynamic Queries is a querying technique for doing range
search on multi-key data sets. It is a direct manipulation
mechanism where the query is formulated using graphical
widgets and the results are displayed graphically preferably
within 100 milliseconds.

This paper evaluates four data structures, the multilist, the
grid file, k-d tree and the quad tree used to organize data in
high speed storage for dynamic queries. The effect of factors
like size, distribution and dimensionality of data on the stor-
age overhead and the speed of search is explored. Analytical
models for estimating the storage and the search overheads
are presented, and verified to be correct by empirical data.
Results indicate that multilists are suitable for small (few
thousand points) data sets irrespective of the data distri-
bution. For large data sets the grid files are excellent for
uniformly distributed data, and trees are good for skewed
data distributions. There was no significant difference in
performance between the tree structures.

1 Introduction

Most users of database systems must learn a querying lan-
guage which they use to select and retrieve information. A
query language is a special purpose language for constructing
queries to retrieve information from a database of informa-
tion stored in the computer [18].

Dynamic queries [1] is 2 novel way to explore information.
This mechanism is well suited for multi-key data sets where
the results of the search fit completely on a single screen.
Figure 1 shows an application of dynamic queries in search-
ing a real estate database. The query is formulated using
widgets such as buttons and sliders, one widget being used
for every key. A study [23] was conducted which compared
dynamic queries (DQ) to a natural language system known

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

AV| 94- 6/94 Bari ltaly
© 1994 ACM 0-89791-733-2/94/0010..$3.50

as “Q & A” and a traditional paper listing sorted by several
fields. There was a statistically significant difference in the
performance of the DQ interface compared to the other two
interfaces. The DQ interface enabled users to perform faster
and was rated higher than the other two in the terms of user
satisfaction. The DQ interface was very useful in spotting
trends and exceptions to trends as compared to the other
two interfaces.

One of the important features of a DQ interface is the imme-
diate display of the results of the query. In fact, users should
be able to perform tens of queries in a span of a few seconds
80 that the mechanism remains dynamic. Using larger data
sets slows down the mechanism so that there is a noticeable
time interval (greater than 300 milliseconds) between the
movement of sliders and the display of results.

The speed of DQ depends mainly on how the query is com-
puted and the results displayed. The speed of display de-
pends mainly on the graphic capabilities of the machine
used. Even though the query computation depends to a
great extent on the hardware of the machine used, it can be
optimized to a great extent by using suitable data structures.

In this paper data structures for the high speed storage are
examined. We assumed that the data sets remains frozen i.e.
there are no insertions, deletions or updates. The time taken
to load the data into the high speed storage memory i.e. the
preprocessing time is ignored as it is done only once. Only
simple rectangular queries are considered i.e. queries will be
a simple conjunct of the ranges specified by the sliders.

2 Multi Attribute Range Search Meth-
ods

The problem of range search on maulti attribute data sets can
be defined as:

For a given multi-attribute data set, and @ query which spec-
ifies a range for each attribute, find all records whose at-
tributes lie in the given ranges.

The cost functions of various data structures are provided
where N is the number of records, & is the number of at-
tributes and F is the number of records found.

Figure 1: The Dynamic Home Finder

e S(N,k)is the cost of storage required by the data struc-
ture.

o Q(N,k) is the search time or query cost.

Figure 2 shows cost functions for structures that are suitable
for rectangular queries. For the quad tree N, is the num-
ber of nodes in the tree. Further details about these data
structures can be obtained from the references. Many other
complex structures exist, but they are mainly of theoretical
interest only because of their high storage overhead. It can
be seen that range trees and k-ranges have relatively high
storage overheads and are thus eliminated from considera-
tion.

3 Data Structures

We assume the following characteristics of dynamic queries.
The parameters of search are specified using sliders with one
slider being used for each dimension. There are a limited
number of positions the dragbox of a slider can take. This
results in the ranges getting broken into discrete intervals. If
every slider is assumed to break a range into G intervals, and
if the data set has D dimensions then the search space can
be split into G buckets. A bucket is the smallest unit of
search and it is not possible to differentiate between points
in a bucket. During search all or none of the data points of a
bucket get included in the solution set. It may happen that

Data Storage Cost Search Cost

Structure S(N, k) Q(N, k)

Sequential List O(Nk) O(Nk)

Multilist O(NEk) O(Nk)

Cells O(Nk) O(2*F)

k-d Tree O(NK) O(NT-* 4 F)
Quad Tree O(Nk) O(N,*-V* 4 F)
Range Tree | O(Nlog**N) | O(log"*N + F)

k-Ranges O(N?*-1) O(klogN + F)

Figure 2: Storage and Search time overheads for various data
structures

in certain data distributions some buckets are empty. Unlike
the case in bucket methods for storage on disks, there is no
limit on the number of points in a bucket when the high
speed storage is used.

Four data structures are described in this section. The data
points are stored in a simple array. It is assumed that points
belonging to the same bucket will be stored consecutively.
The data structures will be used to maintain an index on
the array so that the search time is reduced. To maintain
these indices, memory overhead is incurred which needs to be
kept low. These structures can be classified in two categories
i.e. bucket and non-bucket methods. In bucket methods an
index is maintained on buckets and in non-bucket methods
it is maintained on data points. The linked array which is
a non-bucket method is described first. Later the bucket
methods are described.

3.1 Linked Array

slider1 slider2
L1 l2fsa [1]2]s]4
linked array data array
f f2 f1 f2
— — 1 1
— — 1 2
| — — 1 4
— 2 2
— — 2 4

Figure 3: Linked Array used to index the Data Array

Figure 3 shows a part of the linked array when the data is
two dimensional (i.e. D = 2). Also shown in the figure is a
data array. The data array is an array which holds the data
points. With every interval in the slider range is associated
a linked list. Every point in the data set will lie in one and
only one linked list of every slider. Also with every record is
associated a flag (not shown in the figure). This flag keeps
count of the number of fields of the record which satisfy the
region of interest. When this count becomes equal to the
number of dimensions then the record is displayed.

3.2 Grid Array

Figure 4 shows a part of the grid array used to index the
data array for the two dimensional case. This is a bucket
method and a bucket is essentially a pair of index numbers
or pointers which point to the first and last record in the
data array that belong to the bucket. These buckets form a
part of the D dimensional search space. Therefore, to index
them a D dimensional array is used.

Grid Array

slider2

rklz | 8 | 4 Data Array
PN f1 2
T A= NN\BEE
_2— null \ l ! !
| 1 2
BREL BE
4 \\ 1 3
slider1 1 4
2 2
21 2

Figure 4: Grid Array used to index the Data Array
3.3 k-d Tree

disct R
dsc2 | 2 | [2 |
AN
disc1
Data Amray
disc2 fi 2
1|1

buckets

o
-
-

-
S| W] W] N

Figure 5: k-d Tree used to index the Data Array

Figure 5 shows a part of a k-d tree and the data array as-
sociated with it. In k-d trees, the concept of the buckets
is again the same as the grid array. For our optimized k-
d tree not all nodes at the same level in the tree have the
same discriminator key. Nor are all the leaves at the same
level. Therefore, in each node, besides the discriminator key
value, the type of the discriminator key and a fiag (not shown
in the figure) which indicates the type of children (node or
leaf) is also stored. This helps in reducing tree size when the
number of non-empty buckets is small. It is possible that af-
ter optimization some leaves may move so that they are no
longer at the level they were in the non-optimized tree. In
such cases an additional check needs to be done to ensure
that the bucket reached falls in the region of interest. A flag

(not shown in the figure) in the leaves indicates whether this
check needs to done.

3.4 Quad Tree

nodes (1,2)

Data Armay

buckets

a| W@ 0] < =)

Figure 6: Quad Tree used to index the Data Array

Just as k-d trees could be used to index the buckets, quad
trees can also be used to index the buckets as shown in Fig-
ure 6. Each node has D discriminator keys and 2° pointers
for the children. Just as in the case of a k-d tree, the chil-
dren of a non-leaf node may be a mix of leaves and (non-leaf)
nodes which is determined by a flag. One bit is required to
maintain this information about each child. It is assumed
that D is at most 5, hence the number of children is at
most 32 and one word (32 bits or 4 bytes) suffices to store
leaf/non-leaf information for all the children of a node. In
some cases, after optimization, some leaves may move, (as
in the k-d tree) and a check may be required to ensure cor-
rectness which is indicated by a flag.

4 Analytical Model

We analyze the storage and search overheads of data struc-
tures used for dynamic queries in this section. Storage over-
head refers to the additional storage requirements for the
data structure used. Search overhead is the number of oper-
ations required to compute the query result when the slider
is moved. These two metrics will be used throughout this
section to evaluate the data structures for dynamic queries.
Search overhead will depend on how large the space being
searched is. At any given moment the sliders define some-
thing called the region of interest, which is the portion of the
search space being displayed. Every movement of a slider is
a query which increases or décreases the region of interest.
It is assumed that at any time only one dragbox of a slider
will move in steps of one discrete interval. As a result of this
move, points have to be removed or added to the display.
In the case of the search overhead, it is assumed that the
case where the region of interest is increasing will apply as a
general case. For the worst case the increment in the region
of interest should be the greatest. This happens when D -1
sliders have their left and right dragboxes in the extreme left

and right respectively. In this case with every move of the
D* glider GP~? buckets are added to the region of interest.
The effectiveness of a method will be studied with respect
to factors such as the distribution, dimensionality (D) and
size (N) of the data sets.

4.1 Comparing Bucket Methods

In this section a comparison of bucket methods is presented.
Only the number of non-empty buckets will be considered
in the analysis. The number of tuples does not effect the
performance in any way. As mentioned earlier, two perfor-
mance metrics used in the analysis are the storage overhead
for the index on buckets and the worst case search time.

The following symbols will be used (s is the dimensionality):

N : Number of points.

D : Number of dimensions.

G : Number of intervals in each slider range.

No; : Nodes in the structure.

B; : Non-empty buckets (leaves) in the structure.
Nv; : Nodes (non-leaf) visited (worst case).

Byv; : Non-empty buckets (leaves) visited (worst case).

The storage overhead is the cost of maintaining an index on
the data points. In computing the storage overheads, it is
assumed that each integer is 4 bytes, each character is 1 byte
and each pointer is 4 bytes. If the number of dimensions is
1, then the following holds true:

Grid Array: In grid arrays, 2 integer indices (first and last)
are maintained for each bucket, irrespective of data distri-
bution. So, 8 bytes are required for each bucket. Therefore,
Total storage overhead = 8G' bytes .

k-d Tree: In k-d trees, each non-leaf node has an integer
discriminator key (4 bytes), a character discriminator key
type (1 byte), a character flag for type of children (1 byte)
and two pointers for left and right children (4 bytes each),
resulting in a total of 14 bytes. Each leaf (non-empty bucket)
has 2 integer indices (4 bytes each) and a character flag (1
byte), resulting in a total of 9 bytes. Therefore,

Total storage overhead = 14No; + 9B; bytes.

Quad Tree: In quad trees, each non-leaf node has 2* point-
ers for children of the node (4 bytes each), i integer discrim-
inator keys (4 bytes each) and one flag for maintaining types
of children (4 bytes), resulting in a total of 4(2° +1+1) bytes.
Each leaf (non-empty bucket) requires 9 bytes as in the case
of k-d trees. Therefore,

Total storage overhead = 4(2‘ + i+ 1)Noi; + 9B; bytes.

The following assumptions have been made in calculating the
search time overhead. 1 is used to indicate that the terms
are for 1+ dimensional case.

o For every non-empty bucket visited it is assumed that
one operation is dore to report that the bucket is non-
empty.

e For the grid array one operation is required to visit a
bucket and if it is non-empty then another operation is
performed.

o For the k-d tree every non-leaf node visited has to be
put into the stack and then later retrieved from the
stack. This requires 2 operations. In processing every
node two comparisons have to be made. This makes it
a total of 4 operations for every non-leaf node visited.
In visiting leaves, 2 operations will always be required:
1 operation for reporting that the bucket is non-empty
(as discussed earlier) and 1 operation to get to the leaf.
In some cases, because of the optimizations on the tree
that were discussed earlier, an additional check is re-
quired to ensure that the bucket reached is the correct
one. This may require up to 2i operations.

o For the quad tree every non-leaf node visited has to be
put into the stack and later retrieved from the stack.
This requires 2 operations. 2i comparisons are required
to determine which children of the node to search. 2
operations are required for checking the flags to deter-
mine the type of children. So, in all 25+ 4 operations are
done for every non-leaf node visited. In visiting leaves,
2 operations will always be required: 1 operation for
reporting that the bucket is non-empty (as discassed
earlier) and one operation to get to the leaf. As in the
case of k-d trees, an additional check may be required
to ensure correctness of the leaf reached which requires
2¢ operations.

o In the worst case, for both k-d tree and quad tree, it
is assumed that the number of nodes visited, when the
data is ¢ dimensional is No;—;. This is because in the
worst case 1 — 1 sliders do not restrict the search in any
way. The slider restricting the search has only one of its
discrete intervals to be searched for. It is like taking a
slice of thickness 1 from the 1 dimensional search space.

4.1.1 Uniform Data Distribution

In this subsubsection we present the storage overheads and
search time requirements for the case when the data dis-
tribution is uniform. An important factor effecting these
performance metrics is the percentage of buckets which are
non-empty. Two extreme cases were considered in this sub-
section, when all the buckets are non-empty and when only
25% of the buckets are non-empty. We briefly state the im-
portant results here. Detailed analysis for deriving these
results is presented in [11].

Figures 9 and 10 show how the storage and search over-
heads vary as the fraction of non-empty buckets changes for
uniformly distributed data. The values used were, G = 16
and D = 4. Figures 7 and 8 show the overheads for the
case of uniformly distributed data. These results indicate
that, the grid array is a significantly better structure to use
when data is uniformly distributed and most buckets are
non-empty. It has a lower memory and search time over-
head than both the tree structures. However as the number
of empty buckets rises the difference in the memory overhead

Data Storage Cost Search Cost
Structure
Grid Array 8GY 2Gg~c—!
k-d Tree 23GP 6GP-1
Quad Tree | 4(2° + D+1);8= | 2D+ 4)55?3;_‘_1
+9GP +2G2!

Figure 7: Storage and Search time overheads for Uniformly
Distributed Data (100% buckets non-empty)

Data Storage Cost Search Cost
Structure
Grid Array 8GP 50'1-1
k-d Tree 2g7 59572
Quad Tree | 4(2° + D+ 1);8= | (2D + 4) ;81
+952 +&
4 2

Figure 8: Storage and Search time overheads for Uniformly
Distributed Data (25% buckets non-empty)

reduces and the trees get better. When comparing the search
overheads of the structures for the case where most buckets
are non-empty the quad tree has a lower search overhead.
The dimensionality of the data only increases the differences
with the differences in performance becoming greater as di-
mensionality rises.

4.1.2 Skewed Data Distribution

In this subsubsection, the performance of data stractures is
examined when the data distribution is skewed. Two cases
are examined, when all the non-empty buckets are only along
the diagonal of the search space and the case where all the
non-empty buckets are within a distance of G/4 from the
diagonal. As in the case of uniformly distributed data the
detailed analysis is presented in [11].

Figures 11 and 12 show the overheads for the case of skewed
distributions. These results indicate that, there is a signif-
icant difference between the performance of trees and the
grid array with the trees being superior. This is reflected
both in memory and search overheads. For the case where
non-empty buckets lie only along the diagonal of the search
space the difference in the trees and the grid is phenomenal.
In the second case also the trees are significantly better.
Amongst the trees it can be said that the k-d tree has a
marginally lower memory overhead and a marginally higher
search overhead than the quad tree. Asin the case of uni-
formly distributed data, higher dimensionality of data makes
the differences more pronounced.

byluxlo6

l _” . ¢ —] emem——
140 —
130 |-
120 -
110
1.00 (-
0.90 -
080 -
Q.70 -
.60
Q.50 -
040 [
0.30 -1
020 _

0.10 k= I 1 1 .| = x
020 0.40 0.60 0.80 1.00

| I

L

I 1

Figure 9: Memory overhead for Uniformly Distributed Data
Vs. the fraction of non-empty buckets

operations X 103

24.00 (~ ‘_." — qtree
22,00 |~ Lo .

18.00 I~ ‘," -
16.00

14.00

Figure 10: Search overhead for Uniformly Distributed Data
Vs. the fraction of non-empty buckets

Data Storage Cost Search Cost
Structure
Grid Array 8G7 G-t
k-d Tree 23G 4log:G+2D + 2
Quad Tree | 4(2° 4+ D +1)G +9G | (2D + 4)log:G + 2

Figure 11: Storage and Search time overheads for Skewed
Data Distribution (non-empty buckets along diagonal only)

Data Storage Cost Search Cost
Structure
Grid Array 8GP Gzi_l %2
k-d Tree 23Bp 4Bp_a1+
(2D +2)52
Quad Tree | 427 + D4+ 1)Nop | (2D + 4)Nop—4
+9Bp +252

Figure 12: Storage and Search time overheads for Skewed
Data Distribution (all non-empty buckets within a distance
of G/4 of diagonal)

4.2 Bucket Vs Non-Bucket Methods

In bucket methods the number of points does not effect the
search overhead if the number of points is sufficiently large to
make most buckets non-empty. However when the number
of points is small or the number of dimensions is low it may
be better to use the linked array because its storage overhead
is directly proportional to the number of points in the data
set and the dimension of the data set.

o Fvery tuple of the linked array has to be kept on D lists.
For this D additional pointers (4 bytes) are needed. In
addition a flag (1 byte) is required (see section 3.1).
Therefore, storage overhead is (4D + 1)N.

e Generally each linked list associated with a slider will
have N/G tuples in it. Therefore, search overhead
(worst case and average case) is .

The linked array was compared to the grid array for uniform
data distributions. Only the grid array was chosen because
it has a superior performance compared to the trees for uni-
form distribution. With a value of G = 16 and D = 4, it
was seen that the linked array performed much better as far
as the search overhead is concerned. However the storage
overhead for this structure gets very high.

The linked array was compared with the tree structures
for the skewed distribution. The grid array was dropped
from consideration here because trees perform better under
skewed data distributions. In this case the performance of

the tree structures, specially the quad tree is much better
both when storage overhead and search overheads are com-
pared. One reason could be that in skewed distributions the
bucket occupancy rises very steeply when compared to the
uniform distributions.

5 Experimental Results

The analytical models of section 4 were verified by imple-
menting the cases discussed. The implementation was done
onr a dedicated SUN 4/50 with 16 MB of memory and run-
ning SunOS. The memory overhead was calculated by count-
ing the nodes and leaves for the bucket methods, and the
number of points for the linked array. Clock time in mi-
croseconds was used to measure the speed of search instead
of the number of operations as in section 4. The process
switching overhead was ignored as the machine had negligi-
ble load.

5.1 Comparing Bucket Methods

The analytical models of subsection 4.1 were implemented
and the results are presented in this subsection. In the calcu-
lation of memory overhead, only the extra memory required
to maintain the index was considered. As mentioned before
in calculating the search time, the time for display of records
was ignored. The value of G = 16 was used in implementa-
tions.

5.1.1 Uniform Data Distribution

bytes x 108
T T T] &rid

200

1.80 -

1.60 -

140 -

120~

100 —

080 —

0.60 -

0.40 —

020

0.00

Figure 13: Memory overhead for Uniformly Distributed
Data (100% buckets non-empty)

Figures 13 and 14 show the results of the memory and search
time overhead respectively for the case where all buckets are

2000

15.00

10.00

500

0.00

Figure 14: Search overhead for Uniformly Distributed Data
(100% buckets non-empty)

non-empty. For this case the grid array is significantly better
than the tree structures both in terms of memory overhead
and search time overhead.

The case where 25% of the buckets are empty is shown in
figures 15 and 16. The grid array is a significantly better
structure when search time overhead is considered. However
the k-d tree is marginally better when memory overhead is
considered. All results in this subsubsecton closely match
previous analytical models.

5.1.2 Skewed Data Distribution

Figures 17 and 18 show the results of the memory and
search time overhead respectively for the case where non-
empty buckets are only along the diagonal. For this case
both the k-d tree and the quad tree give a performance far
superior to the grid array both for memory overhead and
search time overhead. However there is no significant differ-
ence between the performance of trees.

When all points lie in buckets within a distance G/4 of the
diagonal the tree structures turn out to be excellent perform-
ers compared to the grid array. This can be seen clearly in
figures 19 and 20. However the difference between the tree
structures themselves in not large. It should be noted that
as in the previous cases the results of the implementations
follow the analytical models closely.

5.2 Bucket Vs Non-Bucket Methods

In the calculation of memory overhead for linked array, only
the extra memory required to maintain the linked list was
considered. As mentioned before in calculating the search
time, the time for display of records found was ignored. The

Figure 15: Memory overhead for Uniformly Distributed

Data (25% buckets non-empty)

45.00
40.00
35.00
30,00
25.00

20.00

Figure 16: Search overhead for Uniformly Distributed Data

(25% buckets non-empty)

Figure 17: Memory overhead for Skewed Data Distribution
(non-empty buckets along diagonal only)

microseconds x 107

—_

4500
4000 —
3500 -

25001
2000
1300 +
1000 [~
500

Figure 18: Search overhead for Skewed Data Distribution
(non-empty buckets along diagonal only)

byweu106

200 -

1.80

1.60 ~

1.40

1.20 —

1.00 |~

0.80 —

0.60 —

0.40 —

0.20 -

0.00

Figure 19: Memory overhead for Skewed Data Distribution
(all non-empty buckets within a distance of G/4 of diagonal)

microseconds x 10°

50.00

45.00

35.00

30.00

25.00

20.00

15.00

10.00

3.00

0.00

Figure 20: Search overhead for Skewed Data Distribution
(a1l non-empty buckets within a distance of G/4 of diagonal)

values of G = 16 and D = 4 were used in the implementa-

tions.

5.2.1 Uniform Data Distribution

bymxmﬁ

200 -

150 —

1.60
1.40 L
120
100
080 -

0.60 —

040 -
0.20 -

0.00 —

0.00

i

Points(1000)

Figure 21: Memory overhead for Uniformly Distributed

Data

microscoands x 103

50.00 —

4500 -

40.00 -

35.00 —

30.00 —

2500 -

20.00

15.00 —

10.00 — /

500

000 I~
1

0.00

10000

200.00

Points(1000)

Figure 22: Search overhead for Uniformly Distributed Data

Figures 21 and 22 show the comparison between the linked
array and the grid array. As mentioned before in subsection
5.2 only the grid array was chosen among bucket methods as
it has the best performance for uniformly distributed data.
As far as search time overhead is considered the linked ar-
ray performed better than the grid for up to approximately
100, 000 points. However the drawback is that the memory

overhead for this structure keeps increasing as the size of the
data set increases unlike the case for the grid array where it
remains a constant.

5.2.2 Skewed Data Distribution

bytes x. 106

200 — e
180 [| e
1.60 + —
140 - -
120 - -
1.00 - —
080
0.60 |- .
040 |- .

020 — —

0.00 -

Pointa(1000)

Figure 23: Memory overhead for Skewed Data Distribution
(all non-empty buckets within a distance of G/4 of diagonal)

microseconds x 10°

50.00 — -

45.00 — —

4000 -1

3500 —

30.00 -

25.0C

2000 —

15.00 — —

1000 — -

500 |~ -

0.00 —~ -

Points(1000)

Figure 24: Search overhead for Skewed Data Distribution
(all non-empty buckets within a distance of G/4 of diagonal)

Figures 23 and 24 show the comparison between the linked
array and the tree structures for skewed distributions. As
mentioned before in subsection 5.2 only the trees were cho-
sen among bucket methods as they have significantly better
performance for skewed data distribution. When compared

10

to the linked array the tree structures get significantly better
than the linked array both in terms of search time and mem-
ory overhead. However when the number of tuples is small
(about 10,000) it is better to use a linked array because of
its simplicity.

6 Conclusions

6.1 Contributions

We have presented a way of analyzing data structures for
dynamic query applications. The usefulness of analytical
models was shown by empirical data. In almost all cases the
empirical results confirmed the analytical models.

In the case of uniformly distributed data the linked array
structure performed quite well but the drawback in this
structure is that its memory overhead is very high and there-
fore it should be used only for small data sets. For larger
data sets it is recommended that a grid array be used. The
advantage in the grid array is that the memory overhead
does not depend on the number of points in the data set but
only on the number of buckets in the data set.

For skewed data distributions where most of the buckets
are empty, the performance of tree structures, was much
better than the grid array. Among tree structures the k-
d tree used marginally less memory but had a marginally
higher search overhead. Compared to the linked array again
the trees were much better except for the cases where the
number of data points were just a few thousand. However
there is a temptation to use the linked array because of its
simplicity. It is recommended that the tree structures be
used for skewed data distributions if the number of points
exceed a few thousand.

In cases where knowledge of the data distribution is lacking
we recommend using the k-d tree as the it is highly likely
that the distribution is non-uniform. The k-d tree is also
much easier to construct compared to the quad tree when
the ranges of the sliders are not equal. It was noticed that
the performance of a data structure does not change with the
dimensionality of the data set. The only effect of increasing
dimensions is that the number of buckets increases, which
results in the differences in the performance becoming more
pronounced.

The data structures discussed in this paper are practical
and make it possible to implement dynamic queries on stan-
dard machines in common use without major special require-
ments. This is essential, specially because in addition to ex-
perts, novice users with inexpensive machines also find DQ
very appealing.

6.2 Future Directions

The assumption that data sets are frozen could be dropped
and the effect of updates on these data structures would be
interesting. Another assumption about the nature of queries,
where queries were assumed to be a simple conjunct of ranges

could be relaxed, opening up another area of investigation.
The segregation of data into buckets can also lead to inter-
esting methods for compression.

Using dynamic queries with very large data sets raises many
interesting issues. It would be impossible to store all data in
main memory and disk accesses become a necessity. It would
be worth while to study applications where data is organized
on disks. Approaching dynamic queries from the distributed
databases point of view would be another solution for large
data sets. Another approach to take is making dynamic
queries run on parallel machines.

One of the reasons dynamic query applications are effective
is because they present query results in a way to help users
visualize the data set. Therefore effective ways of visualizing
data, specially multi-dimensional data are important for the
success of dynamic queries.

Acknowledgements : We would like to thank The Na-
tional Center for Health Statistics for supporting the devel-
opment of “Dynamic Trend Maps” which in part inspired
this work. We also thank Catherine Plaisant for her leader-
ship in developing “Dynamic Trend Maps”.

References

[1] C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic
Queries for Information Exploration: An Implementation
and Evaluation”, Proc. CHI'92, ACM, New York, 1992, pp.
619-626.

D.A. Beckley, M.W. Evans and V.K. Raman, “Multikey
Retrieval from K-d Trees and Quad-Trees”, Proc. ACM
SIGMOD International Conference on the Managemeni of
Data, Austin, 1985, pp. 291-301.

J. L. Bentley, “Multidimensional Binary Search Trees Used
for Associative Searching”, Communications of the ACM,
Vol. 18, No. 9, 1975, pp. 509-517.

J. L. Bentley and D. F. Stanat, “Analynis of Range Searches
in Quad Trees”, Information Processing Letters, Vol. 3, No.
6, 1975, pp. 170-173.

{5] J. Bentley and J. Friedman, “Data Structures for Range
Searching”, Compsting Sxrveys, Vol. 11, No. 4, December
1979, pp. 397-409.

J. Bentley and H. Maurer, “Efficient Worst-Case Data Struc-
tures for Range Searching”, Acta Informatica, Vol. 13, No.
2, 1980, pp. 155-168.

C. Faloutsos and P. Bhagwat, “Declustering Using Fractals”,
2nd International Conference on Parallel and Distributed
Information Sytsems, San Diego CA, 1993, pp. 18-25.

R. A. Finkel and J. L. Bentley, “Quad Trees , A Data Struc-
ture for Retrieval on Composite Keys”, Acts Informatica,
Vol. 4, 1974, pp. 1-9.

H. Garcia-Molina and K. Salem, “Main Memory Database
Systems: An Overview”, IEEE Transactions on Knowledge
and Data Engineering, Vol. 4, No. 6, 1992, pp. 509-516.

A. Guttman, “R-Trees: A Dynamic Index Structure for Spa-
tial Searching”, Proc. ACM SIGMOD Conference, Boston,
1984, pp. 47-57.

V. Jain and B. Shneiderman, “Data Structures for Dy-
namic Queries: An Analytical and Experimental Evalua-
tion", CfAR Technical Report, University of Maryland, Col-
lege Park, No. CAR-TR-685, September 1993.

(2]

(3]

{4]

6]

i

8]

f9)

{10]

1)

11

[12] D. E. Knuth, “The Art of Computer Programming, Vol. 3:
Sorting and Searching”, Addison-Wesley, 1973.

[13] D. T. Lee and C. K. Wong, “Worst-Case Analysis for Re-
gion and Partial Region Searches in Multidimensional Bi-
nary Search Trees and Balanced Quad Trees", Acta Infor-
matics, Vol. 9, 1977, pp. 23-29.

[14] D. Lomet, “A Review of Recent Work on Multi-attribute Ac-

cess Methods”, SIGMOD RECORD, Vol. 21, No. 3, Septem-
ber 1992, pp. 56-63.

{15] V. Y. Lum, “Multi-attribute Retrieval with Combined In-
dexes”, Commsnications of the ACM, Vol. 13, No. 11, 1970,
pp. 660-665.

[16] J. Nievergelt and H. Hinterberger, “The Grid File: An
Adaptable, Symmetric Multikey File Structure”, ACM
Transactions on Database Systems, Vol. 9, No. 1, March
1984, pp. 38-T1.

[17] M. Regnier, “Analysis of Grid File Algorithms”, BIT, Vol.
25, 1985, pp. 335-357.

{18] P. Reisner, “Human Factors Studies of Database Query Lan-
guages: A Survey and Assessment”, Computing Surveys,
Vol. 13, No. 1, 1981, pp. 13-31.

{19] H. Samet, “The Design and Analysis of Spatial Data Struc-
tures”, Chapter 2, Addison Wesley 1989.

[20] P. Scheuermann and M. Ouksel, “Multidimensional B-Trees

for Associative Searching in Database Systems"”, Informa-

tion Systems, Vol. 7, No. 2, 1982, pp. 123-137.

B. Shneiderman, “Direct Manipulation: A Step Beyond Pro-

gramming Languages”, IEEE Computer, Vol. 16, No. 8, Au-

gust 1983, pp. 57-69.

B. Shneiderman, “Designing the User Interface: Strategies

for effective Human-Computer Interaction”, Second Edition,
- Chapter 5, Addison-Wesley 1992.

C. Williamson and B. Shneiderman, “The Dynamic Home-
finder: Evaluating Dynamic Queries in a Real-Estate Infor-
mation Exploration System”, Proc. ACM SIGIR Conference
on Information Retrieval, Copenhagen Denmark, 1992.

(21]

(22]

(23]

