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Abstract. Users can better understand complex data sets by combining insights 
from multiple coordinated visual displays that include relevant domain knowl-
edge. When dealing with multidimensional data and clustering results, the most 
familiar displays and comprehensible are 1- and 2-dimensional projections (his-
tograms, and scatterplots). Other easily understood displays of domain knowl-
edge are tabular and hierarchical information for the same or related data sets. 
The novel parallel coordinates view [6] powered by a direct-manipulation 
search, offers strong advantages, but requires some training for most users. We 
provide a review of related work in the area of information visualization, and 
introduce new tools and interaction examples on how to incorporate users� do-
main knowledge for understanding clustering results. Our examples present hi-
erarchical clustering of gene expression data, coordinated with a parallel coor-
dinates view and with the gene annotation and gene ontology.   

1  Introduction 

Modern information-abundant environments provide access to remarkable collections 
of richly structured databases, digital libraries, and information spaces. Text searching 
to locate specific pages and starting points for exploration is enormously successful, 
but this is only the first generation of knowledge discovery tools. Future interfaces 
that balance data mining algorithms with potent information visualizations will enable 
users to find meaningful clusters of relevant documents, relevant relationships among 
dimensions, unusual outliers, and surprising gaps [10]. 

Existing tools for cluster analysis are already used for multidimensional data in 
many research areas including financial, economical, sociological, and biological 
analyses. Finding natural subclasses in a document set not only reveals interesting 
patterns but also serves as a basis for further analyses. One of the troubles with cluster 
analysis is that evaluating how interesting a clustering result is to researchers is sub-
jective, application-dependent, and even difficult to measure. This problem generally 
gets worse as dimensionality and the number of items grows. The remedy is to enable 
researchers to apply domain knowledge to facilitate insight about the significance of 
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the clustering result. Strategies that enable exploration of clusters will also support 
sense-making about outliers, gaps, and correlations. 

A cluster is a group of data items that are similar to others within the same group 
and are different from items in other groups. Clustering enables researchers to see 
overall distribution patterns, and identify interesting unusual patterns, and spot poten-
tial outliers. Moreover, clusters can serve as effective inputs to other analysis method 
such as classification. 

Researchers in various areas are still developing their own clustering algorithms 
even though there are already a large number of general-purpose clustering algorithms 
in existence. One reason is that it is difficult to understand a clustering algorithm well 
enough to apply it to their new data set. A more important reason is that it is difficult 
for researchers to validate or understand the clustering results in relation to their 
knowledge of the data set. Even the same clustering algorithm might generate a com-
pletely different clustering result when the distance/similarity measure changes. A 
clustering result could make sense to some researchers, but not to others because va-
lidity of a clustering result heavily depends on users� interest and is application-
dependent. Therefore, researchers� domain knowledge plays a key role in understand-
ing/evaluating the clustering result. 

A large number of clustering algorithms have been developed, but only a small 
number of cluster visualization tools are available to facilitate researchers� under-
standing of the clustering results. Current visual cluster analysis tools can be im-
proved by allowing researchers to incorporate their domain knowledge into visual 
displays that are well coordinated with the clustering result view. 

This paper describes additions to our interactive visual cluster analysis tool, the 
Hierarchical Clustering Explorer (HCE) [9]. These additions include 1-D histograms 
and 2-D scatterplots that are accessed through coordinated views. These views are 
familiar projections that are more comprehensible than higher dimensional presenta-
tions. HCE also implements presentations of external domain knowledge. While HCE 
users appreciate our flexible histogram and scatterplot views, his paper concentrates 
on novel presentations for high-dimensional data and for domain knowledge: 

 
− a parallel coordinates view enables researchers to search for profiles similar to a 

candidate pattern, which is specified by direct-manipulation 
− a tabular or hierarchical view enables researchers to explore relationships that may 

be found in information that is external to the data set. 
 
Visualization techniques can be used to support semi-automatic information 

extraction and semantic annotation for domain experts. For example, visual analysis 
by techniques such as dynamic queries has been successfully used in supporting re-
searchers who are interested in analyses of multidimensional data [5][7]. Well-
designed visual coordination with researchers� domain knowledge facilitates users� 
understanding of the analysis result.   

This paper briefly explains the interactive exploration of clustering results using 
our current version, HCE 3.0.  Section 3 describes the knowledge integration frame-
work, including the design considerations for direct-manipulation search and dynamic 
queries. Section 4 presents a tabular view showing gene annotation and the gene on-
tology browser and section 5 covers some implementation issues. 
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2  Interactive Exploration of Clustering Results with HCE 3.0 

Some clustering algorithms, such as k-means, require users to specify the number of 
clusters as an input, but it is hard to know the right number of natural clusters be-
forehand. Other clustering algorithms automatically determine the number of clus-
ters, but users may not be convinced of the result since they had little or no control 
over the clustering process. To avoid this dilemma, researchers prefer the hierarchi-
cal clustering algorithm since it does not require users to enter a predetermined 
number of clusters and it also allows users to control the desired resolution of a 
clustering result. 

 

 
Fig. 1. Overall layout of HCE 3.0.  Minimum similarity bar was pulled down to get 55 clusters 
in the Dendrogram View. A cluster of 113 genes (highlighted with orange markers below the 
cluster) is selected in the dendrogram view and they are highlighted in scatterplots, detail view, 
and parallel coordinates view tab window (see section 3). Users can select a tab among the 
seven tab windows at the bottom pane to investigate the data set coordinating with different 
views. Users can see the names of the selected genes and the actual expression values in the de-
tail views. 

HCE 3.0 is an interactive knowledge visualization tool for hierarchical clustering 
results with a rich set of user controls (dendrograms, color mosaic displays and etc.) 
(Fig. 1). A hierarchical clustering result is generally represented as a binary tree 
called dendrogram whose subtrees are clusters. HCE 3.0 users can see the overall 
clustering result in a single screen, and zoom in to see more detail. Considering that 
the lower a subtree is, the more similar the items in the subtree are, we implemented 
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two dynamic controls, minimum similarity bar and detail cutoff bar, which are 
shown over the dendrogram display. Users can control the number of clusters by us-
ing the minimum similarity bar whose y-coordinate determines the minimum simi-
larity threshold. As users pull down the minimum similarity bar, they get tighter 
clusters (lower subtrees) that satisfy the current minimum similarity threshold.  Us-
ers can control the level of detail by using the detail cutoff bar. All the subtrees be-
low the detail cutoff bar are rendered using the average intensity of items in the 
subtree so that we can see the overall patterns of clusters without distraction by too 
much detail. 

Since we get a different clustering result as a different linkage method or similar-
ity measure is used in hierarchical clustering, we need some mechanisms to evalu-
ate clustering results. HCE 3.0 implements 3 different evaluation mechanisms. 
Firstly, HCE 3.0 users can compare two dendrograms (or hierarchical clustering re-
sults) in the dendrogram view to visually comprehend the effects of different clus-
tering parameters. Two dendrograms are shown face to face, and when users dou-
ble-click on a cluster of a dendrogram, they can see the lines connecting items in 
the cluster and the same items in the other dendrogram [9]. Secondly, HCE 3.0 us-
ers can compare a hierarchical clustering result and a k-means clustering result. 
When users click on a cluster in the dendrogram view, the items in the cluster are 
also highlighted in the k-means clustering result view (the last tab in Fig. 1) so that 
users can see if the two clustering results are consistent. Thirdly, HCE 3.0 enables 
users to evaluate a clustering result using an external evaluation measure (F-
measure) when they know the correct clustering result in advance. Through these 
three mechanisms, HCE 3.0 helps users to determine the most appropriate cluster-
ing parameters for their data set. 

HCE 3.0 was successfully used in two case studies with gene expression data. We 
proposed a general method of using HCE 3.0 to identify the optimal signal/noise bal-
ance in Affymetrix gene chip data analyses. HCE 3.0's interactive features help re-
searchers to find the optimal combination of three variables (probe set signal algo-
rithms, noise filtering methods, and clustering linkage methods) to maximize the 
effect of the desired biological variable on data interpretation [8]. HCE 3.0 was also 
used to analyze in vivo murine muscle regeneration expression profiling data using 
Affymetrix U74Av2 (12,488 probe sets) chips measured in 27 time points. HCE 3.0's 
visual analysis techniques and dynamic query controls played an important role in 
finding 12 novel downstream targets that are biologically relevant during myoblast 
differentiation [12]. In section 3 and 4, we will use this data set to demonstrate how 
HCE 3.0 combines users� domain knowledge with other views to facilitate insight 
about the clustering result and the data set.  

Fig. 2 shows four tightly coupled components of HCE and linkages between them. 
Updates by each linkage in Fig. 2 are instantaneous (or, it takes less than 100ms) for 
most microarray data sets. 
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Fig. 2. Diagram of interactions between components of HCE 3.0. All interactions are bi-
directional. This paper describes coordination between the dendrogram view, scatterplots/his-
tograms views, parallel coordinates view, and knowledge tables/hierarchies views. Knowledge 
tables/hierarchies incorporate external domain knowledge while others show the internal data 
using different visual representations. 

3  Combining Users� Domain Knowledge: Parallel Coordinates 
 View 

Many microarray experiments measure gene expression over time [2][12]. Research-
ers would like to group genes with similar expression profiles or find interesting time-
varying patterns in the data set by performing cluster analysis. Another way to iden-
tify genes with profiles similar to known genes is to directly search for the genes by 
specifying the expected pattern of a known gene. When researchers have some do-
main knowledge such as the expected pattern of a previously characterized gene, re-
searchers can try to find genes similar to the expected pattern. Since it is not easy to 
specify the expected pattern at a single try, they have to conduct a series of searches 
for the expression profiles similar to the expected pattern. Therefore, they need an in-
teractive visual analysis tool that allows easy modification of the expected pattern and 
rapid update of the search result. 

Clustering and direct profile search can complement each other. Since there is no 
perfect clustering algorithm right for all data sets and applications, direct profile 
search could be used to validate the clustering result by projecting the search result 
onto the clustering result view. Conversely, a clustering result could be used to vali-
date the profile search by projecting the cluster result on the profile view. Therefore, 
coordination between a clustering result and a direct search result make the identifica-
tion process more valid and effective. 

 �Profile Search� in the Spotfire DecisionSite (www.spotfire.com) calculates the 
similarity to a search pattern (so called 'master profile') for all genes in the data set 
and adds the result as a new column to the data set. The built-in profile editor makes it 
possible to edit the search pattern, but the editor view is separate from the profile 
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chart view where all matching profiles are shown, so users need to switch between 
two views to try a series of queries. The modification of master profile in the profile 
editor view is interactive, but search results are not updated dynamically as the master 
profile changes. 

TimeSearcher [5] supports interactive querying and exploration of time-series data.  
Users can specify interactive timeboxes over the time-varying patterns, and get back 
the profiles that pass though all the timeboxes. Users can drag and drop an item from 
the data set into the query window to create a query with a separate timebox for each 
time point over the item in the data set. Each timebox at each time point can be modi-
fied to change the query. 

HCE 3.0 reproduces Spotfire�s and TimeSearcher�s basic functions with a novel in-
terface, the parallel coordinates view powered by a direct-manipulation search, that 
allows for rapid creation and modification of desired profiles using novel visual 
metaphors. Key design concepts are: 
− interactive specification of a search pattern on the information space : Users can 

submit their queries simply by mouse drags over the search space rather than using 
a separate query specification window. 

− dynamic query control : Users get the query results instantaneously as they change 
the search pattern, similarity function, or similarity threshold. 

− sequential query refinement : Users can keep the current query results as a new 
narrowed search space for subsequent queries. 
 

 
Fig. 3. Parallel coordinates view: Layout of the parallel coordinates view and an example of 
model-based query on the mouse muscle regeneration data. The data silhouette (the gray shadow) 
represents the coverage of all expression profiles (also known as �data envelope� in Time-
Searcher). The bold red line is a search pattern specified by users� mouse drags. Thin regular 
solid lines are the result of the current query that satisfies the given similarity threshold.  The 
data set shown is a temporal gene expression profile on the mouse muscle regeneration [12]. 

The parallel coordinates view consists of three parts (Fig. 3): the information space 
where input profiles are drawn and queries are specified, the range slider to specify 
similarity thresholds, and a set of controls to specify query parameters. Users specify 
a search pattern by simple mouse drags. As they drag the mouse over the information 
space, the intersection points of mouse cursor and vertical time lines define control 
points. Existing control points, if any, at the intersecting vertical time lines are up-
dated to reflect the dragging. A search pattern is a set of line segments connecting the 
contiguous control points specified. Users choose a search method and a similarity 
measure on the control panel. They can change the current search pattern by dragging 
a control point, by dragging a line segment vertically or horizontally, or by adding or 
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removing control points. All modifications are done by mouse clicks or drags, and the 
results are updated instantaneously. This integration of the space where the data is 
shown and where the search pattern is composed reduces users' cognitive load by re-
moving the overhead of context switching between two different spaces. 

Incremental query processing enables rapid updates (within 100 ms) so that dy-
namic query control is possible for most microarray data sets. The easy and fast 
search for interesting patterns enables researchers to attempt multiple queries in a 
short period of time to get important insights into the underlying data set. 

In the parallel coordinates view, users can submit a new query over the current 
query result. If users click �Pin This Result� button after submitting a query, the 
query result becomes a new narrowed search space (Fig. 3). We call this �pinning.�  
Pinning enables sequential query refinement, which makes it easy to find target pat-
terns without losing the focus of the current analysis process. If users click on a clus-
ter in the dendrogram view, all items in the cluster are shown in the parallel coordi-
nates view. By pinning this result, users can limit the search to the cluster to isolate 
more specific patterns in the cluster. 

Genes included in the search result are highlighted in the dendrogram view. Con-
versely, if users click on a cluster in the dendrogram view, profiles of the genes in the 
cluster are shown in the parallel coordinates view so that users can see the patterns of 
genes in a different view other than color mosaic. Through the coordination between 
the parallel coordinates view and the dendrogram view, users can easily see the repre-
sentative patterns of clusters and compare patterns between clusters. Since queries 
done in the parallel coordinates view identify genes with a similar profile, the search 
results should be consistent with clustering results if the same similarity function is 
used. In this regard, the parallel coordinates view helps researchers to validate the 
clustering results by applying their domain knowledge through direct-manipulation 
searches. 

In the parallel coordinates view, users can run a text search (called search-by-name 
query) by typing in a text string to find items whose name or description contains the 
string. Moreover, two different types of direct-manipulation queries are possible in 
the parallel coordinates view: model-based queries and ceiling-and-floor queries. 

 
Model-based queries: Users can specify a model pattern (or a search pattern) sim-

ply by mouse drags as shown in Fig. 3, and select a distance/similarity measure 
among 3 different ones and assign the similarity/distance threshold values. All pro-
files satisfying the similarity/distance threshold range will be rapidly shown in the in-
formation space. The three different measures are �Pearson correlation coefficient�, 
�Euclidean distance�, and �absolute distance from each control point�. The first meas-
ure is useful when the up-down trends of profiles are more important than the magni-
tudes, while the second and the third measures are useful when the actual magnitudes 
are more important. When users know the name of a biologically relevant gene, they 
can perform a text-based search first by entering a name or a description of the gene 
(Fig. 4). Then they can choose one of the matching genes and make them a model pat-
tern by right-clicking on the pattern and selecting �Make it a model pattern.� They 
can adjust or delete some control points depending on their domain knowledge. Fi-
nally, they adjust the similarity thresholds to get the satisfying results and project 
them onto other views including the dendrogram view. 
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Ceiling-and-Floor queries: Ceilings and floors are novel visual metaphors to 
specify satisfactory value ranges using direct manipulation. A ceiling imposes upper 
bounds and a floor imposes lower bounds on the corresponding time points. Users can 
define ceilings and floors on the information space so that only the profiles between 
ceilings and floors are shown as a result (Fig. 4). Users can specify a ceiling by drag-
ging with the left mouse button depressed and a floor by dragging with the right 
mouse button depressed. They can change ceilings and floors with mouse actions in 
the same way as they do for changing search patterns in model-based queries. This 
type of query is useful when users know the up-down patterns and the appropriate 
value ranges at the corresponding time points of the target profiles. Compared to 
model-based queries, ceiling-and-floor queries allow users to specify separate bounds 
for each control point. 

 

 
Fig. 4. An example of the Ceiling-and-Floor query. Bold line segments above the profiles de-
fine ceilings, and bold line segments below profiles define floors. Profiles below ceilings and 
above floors at the time points where ceilings or floors are defined are shown as a result. Users 
can move a line segment or a control point of ceilings or floors to modify current query. The 
highlighted region gives users informative visual feedbacks of the current query. The data set 
shown is a temporal gene expression profile on the mouse muscle regeneration [12]. 

Coordination example: Researchers performed a microarray experiment to gener-
ate a gene expression profile data that indicates relative levels of expression for each 
of these > 12000 genes in murine muscle samples [12]. They measured expression 
levels at 27 time points to find genes that are biologically relevant to the muscle re-
generation process. They already have domain knowledge that MyoD is one of genes 
that are the most relevant to muscle regeneration. They run the hierarchical clustering 
with the data set, and identify a relevant cluster that peaks on day 3 (Fig. 5). In the 
parallel coordinates view, they search MyoD using search-by-name query, then make 
it a model pattern to perform a model-based query. They adjust the similarity thresh-
olds to get the search result that mostly overlaps with the relevant 3 day cluster (Fig. 
5).  Finally, they confirm through other biological experiments that 2 genes (Cdh15 
and Stam) in the overlapped result set are novel downstream targets of MyoD. 
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Fig. 5(a). Run a search-by-name query with �MyoD� to find 5 genes whose name contains 
MyoD, and the 5 genes are projected onto the current clustering result visualization shown by 
triangles under the color mosaic. Select a gene (myogenic differentiation 1) and make it a 
model pattern for next query. 

 

 

Fig. 5(b). Modify the model pattern to emphasize 3 day peak (notice the bold red line), and run 
a model base query to find a small set of candidate genes. The updated search result will be 
highlighted in the dendrogram view and the gene ontology browser (see section 4). 

Fig. 5. An example of coordination with the parallel coordinates view 
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4 Combining Domain Knowledge: Tabular and Hierarchy Viewers 

Interactive visualization techniques combined with cluster analysis help researchers 
discover meaningful groups in the data set. A direct-manipulation search coordinated 
with clustering result visualization facilitates insight into clustering result and the data 
set. Further improvement is possible if there is another well-understood and meaning-
ful knowledge structure for the same data set. For example, when marketers perform a 
cluster analysis on the customer transaction data, they discover customer groups 
based on purchasing patterns. If they have another knowledge structure on the data 
such as the customer preferences or demographic information, they can acquire more 
insight into the clustering results by projecting the additional information onto the 
clustering result.  In this market analysis example, if a geographic hierarchy of states, 
counties, and cities were available, it might be possible to discover that purchasers of 
expensive toys reside in large southern cities. They are likely to be older grandparents 
in retirement communities.  

Coordination between clustering results and external domain knowledge, such as 
the Gene Ontology, is also being added to commercial software tools, such as Spotfire 
DecisionSite and CoMotion(www.mayaviz.com). We expand on this important idea 
by allowing rapid multiple selection in secondary databases through tabular and hier-
archical views. The paper continues with the genomic data case study. 

4.1  Tabular View 

In recent decades, biological knowledge has been accumulated in public genomic da-
tabases (GenBank, LocusLink, FlyBase, MGI, and so on) and it will increase rapidly 
in the future [1]. These databases are useful sources of external domain knowledge 
with which biologists gain insights into their data sets and clustering results.  Biologists 
frequently utilize those databases to obtain information about genomic instances that 
they are interested in. However, those databases are so diverse that researchers have dif-
ficulties in identifying relevant information from the databases and combining them. 

HCE 3.0 implements a tabular view (Fig. 6) as a hub of database annotations where 
users can see annotations extracted from those databases for items in the data set.  
Each row represents an item and each column represents an annotation from an exter-
nal knowledge source. Users can specify a URL for each column to link a web data 
base so that they can look up the data base for a cell on the column. The tabular view 
is interactively coordinated with other views in HCE 3.0 as shown in Fig. 2. If users 
select a group of items in other views, rows of the selected items are highlighted in 
the tabular view. By carefully looking at the annotations for the selected item in the 
table view and looking those up in the corresponding databases, users can gain more 
insight into the items by utilizing the domain knowledge from the databases. Con-
versely, if users select a bunch of rows in the tabular view, the selected items are also 
highlighted in other views. For example, after sorting by a column and selecting rows 
with the same value on the column, users can easily verify how closely those items 
are group together in the dendrogram view. 

Researchers can do annotation either by using one or more of the public genomic 
databases or by using annotation files provided by gene chip makers. For example, 
Affymetrix provides annotation files for all their GeneChips, and users can easily im-
port the annotation file and combine it with the data set. 
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Fig. 6. Tabular view: Each row has annotations for a gene. Each column represents an annota-
tion from an external database. All of 12422 genes are in the tabular view, and there are 28 an-
notation columns. When users select a cluster of 113 genes in the dendrogram view, the annota-
tion information for those genes is highlighted in the tabular view. The Affymetrix U74Av2 
chip annotation file downloaded from www.affymetrix.com was imported and combined with 
the data set. The data set shown is a temporal gene expression profile on the mouse muscle re-
generation [12]. 

4.2  Hierarchy View: Gene Ontology Browser 

One of the major reasons that biologists cannot efficiently utilize the abundant knowl-
edge in public genomic databases is the lack of a shared controlled vocabulary. The 
Gene Ontology (GO) project [6] is a collaborative effort of biologists to build consis-
tent descriptions of gene products in different databases.  The GO collaborators have 
been developing three ontologies - structured, controlled vocabularies with which 
gene products are described in terms of their associated biological processes, molecu-
lar functions, and cellular components in a species-independent manner. 

The good news is that Gene Ontology (GO) annotation is a widely accepted, well-
understood and meaningful knowledge structure for gene expression data. GO annota-
tions of genes in a cluster or a direct manipulation search result might reveal a clue 
about why the genes are grouped together. With the GO annotation, researchers can 
easily recognize the biological process, molecular function, and cellular component 
that genes in a cluster are associated with. Furthermore, it is possible to test a hy-
pothesis that an unknown gene might have the same or similar biological role with the 
known genes in the same cluster. Interactive coordination with the GO annotation en-
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ables researchers to upgrade their insights by combining generally accepted knowl-
edge from other researchers. 

We can see many tools listed at www.geneontology.org such as MAPPFinder [3], 
and GoMiner[11] that integrate microarray experiment data with GO annotation.  In 
those tools, users can input a criterion for a significant gene-expression change or a 
list of interesting genes, and then relevant GO terms are identified and shown in a tree 
structure or DAG display. HCE 3.0 integrates the three ontologies � molecular func-
tion, biological process, and cellular component into the process of understanding 
clusters and patterns in gene expression profile data. The ontologies are shown in a 
hierarchical structure as in Fig. 7. 

 

 
Fig. 7. HCE 3.0 with gene ontology browser on. Users can select a cluster in the dendrogram 
view (at the top left corner), which is highlighted with a rectangle. 113 genes in the selected 
cluster are shown in the gene list control at the bottom right corner. All paths to the selected 
GO terms (associated with myogenin) are shown with a flag-shape icon in the ontology tree 
control at the bottom left corner. �I� represents �IS-A� relationship and �P� represents �PART-
OF� relationship.  The data set shown is in vivo murine muscle regeneration expression profil-
ing data using Affymetrix U74Av2 (12,488 probe sets) chips measured in 27 time points. 

The gene ontology hierarchy is a directed acyclic graph (DAG), but we use a tree 
structure to show the hierarchy since the tree structure is easier for users to understand 
and easier for developers to implement than a DAG. Thus, a gene ontology term may 
appear several times in different branches, but the path from the root to a node is 
unique. Users can download the latest gene ontologies from the Gene Ontology Con-
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sortium�s ftp server (�Get Latest Ontology� button), and browse the ontology hierar-
chy on its own (�Load Ontology� button). Coordination between the gene ontology 
browser and other views in HCE 3.0 is bi-directional. 

5  Implementation 

HCE 3.0 was implemented as a stand-alone application using Microsoft Visual C++ 6.0.  
The Microsoft Foundation Class (MFC) library was statically linked.  HCE 3.0 runs on 
personal computers running Windows (at least Window 95) without special hardware or 
external library support. HCE 3.0 is freely available at http://www.cs.umd.edu/hcil/hce/ 
for academic or research purposes. 

To achieve rapid response times, hash and map data structures were used because 
they enable constant time lookup of items, with only a modest storage overhead. In-
cremental data structures were used to support rapid query update in the parallel coor-
dinate view by maintaining active index sets for intermediate query results. 

Microarray experiment data set can be imported to HCE 3.0 from tab-delimited 
text or Excel spreadsheets.  The latest gene ontology annotation data is automatically 
downloaded from the Gene Ontology Consortium�s ftp server.  The current annotation 
file with GO annotations for most Affymetrix chips is downloadable from 
www.affymetirx.com and can be automatically attached to the input data in HCE 3.0. 

6  Conclusion 

Cluster analysis has been the focus of numerous research projects conducted in vari-
ous fields. It reveals the underlying structure of an input data set, interesting unusual 
patterns, and potential outliers. Understanding the clustering result has been a tedious 
process of checking items one by one. With HCE 3.0, we believe users can quickly 
apply their own or external domain knowledge to interpret a cluster by visual display 
in coordinated views. Users often begin with histograms and scatterplots, but these 
are only the first step. 

This paper presented two coordinated views to incorporate users� domain knowl-
edge with visual analysis of the data set and clustering results. First, when users know 
an approximate pattern of a candidate group of interest, they can use the parallel co-
ordinates view to quickly compose the search pattern according to their domain 
knowledge and run a direct manipulation search. Second, when there is a well-
understood and meaningful tabular or hierarchical information for their data set, they 
can utilize external knowledge from other researchers to make interpretations based 
on the clustering result. Well-designed interactive coordination among visual displays 
helps users to evaluate and understand the clustering results as well as the data set by 
visually facilitating human intuition. 

This work is a part of our continuing effort to give users more controls over data 
analysis processes and to enable more interactions with analysis results through inter-
active visual techniques. These efforts are designed to help users perform exploratory 
data analysis, establish meaningful hypotheses, and verify results. In this paper, we 
show how those visualization methods can help molecular biologists analyze and un-
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derstand multidimensional gene expression profile data. Empirical validation on stan-
dard tasks, more case studies with biological researchers, and feedback from users 
will help refine this and similar software tools. 
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