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Abstract 
This paper describes a novel methodfor the visualization 

of hierarchically structured information. The Tree-Map 
visualization technique makes 100% use of the available 
display space, mapping the full hierarchy onto a rectangular 
region in a space-filling manner. This efficient use of space 
allows very large hierarchies to be displayed in their entirety 
and facilitates the presentation of semantic information. 

1 Introduction 

A large quantity of the world’s information is hierarchi- 
cally structured: manuals, outlines, corporate organizations, 
family trees, directory structures, intemet addressing, library 
cataloging, computer programs ... and the list goes on. Most 
people come to understand the content and organization of 
these structures easily if they are small, but have great 
difficulty if the structures are large. 

We propose an interactive visualization method for pre- 
senting hierarchical information called Tree-Maps. We hope 
that the Tree-Map approach is a step forward in the visual- 
ization of hierarchical information, and that it will produce 
benefits similar to those achieved by visualization techniques 
in other areas. 

As humans we have the ability to recognize the spatial 
configuration of elements in a picture and notice the relation- 
ships between elements quickly. This highly developed 
visual ability allows people to grasp the content of a picture 
much faster than they can scan and understand iext [12]. 

The Tree-Map visualization method maps hierarchical 
information to a rectangular 2-D display in a space-filling 
manner; 100% of the designated display space is utilized. 
Interactive control allows users to specify the presentation of 
both structural (depth bounds, etc.) and content (display 
properties such as color mappings) information. This is in 
contrast to traditional static methods of displaying hierarchi- 
cally structured information, which generally make either 
poor useofdisplay spaceor hidevastquantitiesof information 
from users. With the Tree-Map method, sections of the 
hierarchy containing more important information can be 
allocated more display space while portions of the hierarchy 

which are less important to the specific task at hand can be 
allocated less space [9,101. 

Tree-Maps partition the display space into a collection of 
rectangular bounding boxes representing the tree structure 
[20]. The drawing of nodes within their bounding boxes is 
entirely dependent on the content of the nodes, and can be 
interactively controlled. Since the display size is user con- 
mlled, the drawing size of each node varies inversely with 
the size of the tree (i.e., # of nodes). Trees with many nodes 
(lo00 or more) can be displayed and manipulated in a fixed 
display space. 

The main objectives of our design are: 
Efficient Space Utilization 

Efficient use of space is essential for the presentation 
of large information structures. 

Interactive control over the presentation of informa- 
tion and real time feedback are essential. 

The presentation method and its interactive feedback 
must facilitate the rapidexuactionof information with 
low perceptual and cognitive loads. 

Esthetics 
Drawing and feedback must be esthetically pleasing. 

Hierarchical information structures contain two kinds of 
informa tion: structural (organization) information associated 
with the hierarchy, and content information associated with 
each node. Tree-Maps are able to depict both the structure 
and content of the hierarchy. However, our approach is best 
suited to hierarchies in which thecontentof theleafnodesand 
the structure of the hierarchy are of primary importance, and 
the content information associated with internal nodes is 
largely derived from their children. 

2 Motivation: Current Methods and 

Interactivity 

Comprehension 

Problems 

This work was initially motivated by the lack of adequate 
tools for the visualization of the large directory structures on 
hard disk drives. 

Traditional methods for the presentation of hierarchically 
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structured information can be roughly classified into three 
categories: listings, outlines, and tree diagrams. It is difficult 
for people to extract information from large hierarchical 
information structures using these methods, as the navigation 
of the structure is a great burden and content information is 
often hidden within individual nodes [23]. 

Listings are capable of providing detailed content infor- 
mation, but are generally very poor at presenting structural 
information. Listings of the entire structure with explicit 
paths can provide structural information, but require users to 
parse path information to arrive at a mental model of the 
structure. Alternatively, users may list each intemal node of 
the hierarchy independently, but this requires users to manu- 
ally traverse the hierarchy to determine its structure. Outline 
methods can explicitly provide both structural and content 
information, but since the structural indentation can only be 
viewed a few lines at a time, it is often inadequate [4]. 

Thenumberofdisplay lines required topresent a hierarchy 
with both the listing and outline methods is linearly propor- 
tional to the number of nodes in h e  hierarchy. These methods 
are inadequate for structures containing more than a few 
hundred nodes. A great deal of effort is required to achieve 
an mental model of the Structure in large hierarchies using 
these methods. 

Tree drawing algorithms have traditionally sought effi- 
cient and esthetically pleasing methods for the layout of node 
and link diagrams. These layouts are based on static pre- 
sentations and are common in texts dealing with graph theory 
and data structures. They are excellcnt visualization tools for 
small trees [2,10,12.13,17]. However, these traditional node 
and link tree diagrams make poor use of the availabledisplay 
space. In a typical v ~ e  drawing more than 50% of the pixels 
are used as background. For small tree diagrams this poor use 
of spaceisacceptable,and traditional layout methods produce 
excellent results. But for large trees, traditional node and link 
diagrams can not be drawn adequately in a limited display 
space. Attempts to provide zooming and panning have only 
been only partially successful [lo]. 

Another problem with tree diagrams is the lack of content 
information; typically each node has only a simple tcxt label. 
This problem exists because presenting additional informa- 
tion with each nodequickly overwhelms the display space for 
trees with more than just a few nodes. 

The presentation of content information in all of these 
traditional methods has usually been text based. Although 
me diagrams are a graphically based method capable of 
making use of visualization techniques, and many of the ideas 
presented in this paper. Unfortunately, global views of large 
tree diagrams require the nodes to be so small that there is 
virtually no space in which to provide visual cues as to node 
content. 

Tree-Maps efficiently utilize the designated display area 
and are capable of providing structural information implic- 
itly, thereby eliminating the need to explicitly draw internal 

nodes. Thus much more space is available for the rendering 
of individual leaf nodes, and for providing visual cues related 
to content information. 

Tree-Maps provide an overall view of the entire hierar- 
chy, making the navigation of large hierarchies much easier. 
Displaying the entire information structure at once allows 
users to move rapidly to any location in the space. As Beard 
states in his paper on navigating large two-dimensional 
spaces [l], “If the two-dimensional information space fits 
completely onto a display screen, there is no navigation 
problem ... Users are never lost because they can see the 
complete information space.” 

3 A Directory Tree Example 

Obtaining information about directory trees was the ini- 
tial motivation for this research and provides a familiar 
example domain. For illustrative reasons, the hierarchy in 
this example is small and nodes haveonly an associated name 
and size. While reading through this example, think about 
how the techniques described would scale up to a directory 
tree containing loo0 files. An Apple Macintosh screen 
snapshot showing a Tree-Map of loo0 files from one of our 
laboratory’s hard disk drives follows this example. 

Presenting directory structures is a very practical prob- 
lem. The following are the methods widely available today: 

Command Line Listing (e.g. UNIX “ls”, DOS “dir”); 
Outlines (e.g. UNIX “du”, Microsoft Windows) 
Windowing (e.g. Macintosh Finder) 
Tree Drawings (e.g. Openwindows File Manager) 

We are not aware of approaches that provide a visual 
representation of the relative sizes of files or directories. 

Even moderately sized directory trees are difficult to 
visualize using standard operating system interfaces. With 
command line interfaces such as UNIX “ls” or DOS “dir”, 
only the immediate children of any directory are listed. An 
overall view of the directory tree must be pieced together by 
traversing the various paths and listing the immediate chil- 
dren of the currently active directory. 

Desktop metaphors and their windowing strategies are 
another alternative. Oneof the problems with windows is that 
they often obscure each other, and users may spend much of 
their time may be spent mng ing  windows. Also. the tree 
structure is not apparent unless windows havebeen carefully 
placed. Desktop icons generally show only the type of the 
file. Much richer visual mappings are possible but are 
currently not available, for instance, the depth of an icon’s 
shadow could be used to indicate file size. 

We will use a small directory tree hierarchy as an ex- 
ample. Tree A depicted in Figures 1 through 7 contains 23 
nodes, of lhese 6 are directories (internal nodes) and 17 are 
files (leaf nodes). This tree is structured such that among 
siblings, file nodes always precede directory nodes. 

In Figure 1 we see an outline view similar to the presen- 
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tations provided by PCShell under 
DOS, theUNIX command “du”, or 
Microsoft Windows 3.0. This pre- 
sentation requires 23 lines: a 
structure with lo00 files would re- 
quire a minimum of lo00 lines in 
order to present both directories 
and files. 

Figure 2 presents a typical tree 
diagram, such drawings can be 
found in graph theory textbooks. 
This tree drawing approach is simi- 
lar to the presentation method used 
by theopenwindows File Manager. 
Directory trees with 1000 files 
cannot be drawn all at once on a 
typical Screen (if all files are at the 
same leve1,each file node will have 
less than one pixel in which todraw 
itself). The problem becomes even 
more severe when real file names 
are used as node labels. 

Figure 3 presents the same in- 
formation in yet another manner, as a Venn diagram. We use 
this figure for illustrative purposes as a familiar and often 
used set theoretic visualization technique. It is an interme- 
diate step which facilitates the transition from traditional 
presentations to Tree-Maps. This is an odd use of Venn 
diagrams, as one does not usually think of files and directories 
as sets. However, simple directory structures can be thought 
of as set theoretic collections of files. using only the contain- 
ment (subset) property. Note that each node has been drawn 
proportionate to its size. 

The space required between regions would certainly 
preclude this Venn diagram representation from serious con- 
sideration for larger structures. Note that this “waste” of 
space is also present in traditional tree diagrams. Using 
boxes instead of ovals and a bin-packing algorithm could 
partially solve this space problem. But bin-paclung is an NP- 
complete problem and does not preserve order. 

Figure 4 is a box-based Venn diagram which illustrates a 
more efficient use of space and is an excellent tool for the 
visualization of small hierarchies. But even the small degree 
of nesting present in this technique renders it unsuitable for 
the presentation of large hierarchies. Fortunately space 
efficient results can be achieved without bin-packing, using 
our “slice and dice” Tree-Map approach, a simple linear 
method in which the algorithm works top-down. An analogy 
should quickly illustrate this concept. If the hard disk drive 
werea large, flat,rectangular cheese, onecouldcertainly slice 
it into chunks representing the size of each top lcvel directory. 
Applying this slice and dice algorithm recursively to each 
piece of the cheese, and rotating the slicing direction 90 
degrees at each recursive step, would result in the Tree Map 
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Figure 2. Tree Diagram 

Figure 3. Venn Diagram 

Figure 4. Nested Tree-Map 

Figure 5. Tree-Map 
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of Figure 5. 
Figure 5 simply eliminates the nesting offset used to 

seperate objects at each level. If we wanted to distribute our 
cheese to 17 people based on their weights, Figure 5 would 
give us a slicing diagram. This weight-proportionate distri- 
bution is one of the important features of Tree-Maps. The 
Tree Map snapshots of Figures 6 and 7 (see color plates) are 
the full color, machinc generated screen snapshots of Figures 
4 and 5. All screen snapshots in this paper have been made 
while using our TreeViz application on an Apple Macintosh 
11. 

Figure 8 (see color plates) is a screen snapshot showing a 
Tree-Map of loo0 files. A simple color mapping has been 
used to code some of the various Macintosh file types: Tree- 
Map applications are red; all other applications are purple; 
system files are green; picture files are magenta; text files are 
yellow; archive files are cyan; and all other file types not 
currently of primary interest are gray. This Tree-Map shows 
21 root level files on the left, followed by 19 root level 
directories moving across tothe right. Detailcdfileinformation 
is displayed in a pop-up dialog window as the mouse is 
dragged over files in the display. 

In this directory structure it can be observed that purple 
application filesaregenerally thelargest files on thisdisk, and 
take up relatively the same percentage of overall disk space 
as system related (green) files. A duplicate set of files exists 
just to the right of the vertical green bar. The files in this root 
level folder can be seen duplicated one level down in 
subfolders, as repeatinggeometricpattemsoffset900from their 
parent. 

Since thisTree-map portrays the overall allocation ofdisk 
space, the largest files can be located quite easily. Sorting a 
large directory listing by size would also make finding the 
largest files easy, but these files would not be presented in 
their original context. In addition, sorting a list on two or 
more properties (i.e. size and type) makes presentation of the 
results difficult. Tree-Maps make finding the largest system, 
application, and picture files on the disk as easy as finding the 
largest green, purple, and magenta rectangles in Figure 8. 
This is one simple example of the visual display properties 
possible; further discussion is contained in scction 4.2. 

4 The Tree Map Method 

Displaying a directory tree while fully utilizing space and 
conveying structural information in a visually appealing and 
low cognitive load manner is a difficult task, as these are often 
opposing goals. Our interactive approach to drawing dircc- 
tory trees allows users to determine how the tree is displayed. 
This control is essential, as it allows users to sct display 
properties (colors, borders, etc.) maximizing the utility of the 
drawing based on their particular task. 

4.1 Structural Information: Partitioning the 
Display Space 

Tree-Map displays look similar to the partition diagrams 
of quad-trees and k-D trees. The key difference is the 
direction of the transformation. Quad-trws create hierarchi- 
cal structures to store 2-D images efficiently [18] while Tree- 
Maps present hierarchical information structures efficiently 
on 2-D display surfaces. 

Tree-Maps require that a weight be assigned to each node, 
this weight is used to determine the size of a nodes bounding 
box. The weight may represent a single domain property 
(such as disk usage or file age for a directory tree), or a 
combination of domain properties (subject to Property 4 
below). A nodes weight (bounding box) determines its 
display size and can be thought of as a measure of importance 
or degree of interest[9]. 

The following relationships between the structure of the 
hierarchy and the structure of its Tree-Map drawing always 
hold: 

Properties 
IfNodel is an ancestor of Node2, then the bounding box 
ofNodel completely encloses,or isequal to, the bounding 
box of Node2. 
The bounding boxes of two nodes intersect iff one node is 
an ancestor of the other. 
Nodes occupy a display area strictly proportional to their 
weight. 
The weight of a no& is greater than or equal to the sum 
of the weights of its children. 

Structural information in Tree-Maps is implicitly pre- 
sented, although it may alsobe explicitly indicated by nesting 
child nodes within their parent. Nesting provides for the 
direct selection of all nodes, both intemal and leaf. Although 
the space required for nesting reduces the number of nodes 
which can be drawn in a given display space, and hence 
reduces the size of the trees that can be adequately displayed 
compared to non-nested drawings [21]. 

A non-nested display explicitly provides direct selection 
only for leaf nodes, but a pop-up display can provide path 
information as well as further selection facilities. Non-nested 
presentations cannot depict internal nodes in degenerate 
linear sub-paths, as the bounding boxes of the intemal nodes 
in the sub-path may be exactly equal. Such paths seldom 
occur and tasks dependent on long chains of single child 
nodes will require special treatments. 

4.2 Content Information: Mapping Content to 
the Display 

Once thebounding box ofanodeisset,avarietyofdisplay 
properties determine how the node is drawn within it. Visual 
display properties such as color (hue, saturation, brightness), 
texture, shape, border, blinking, etc. are of primary interest, 
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but the interface will not limit users to purely visual properties 
[6] .  Color is the most important of these visual display 
properties, and it can be an important aid to fast and accurate 
decision making [ 1 1,15,16]. Auditory properties may also be 
useful in certain circumstances. Nodes may have many 
domain dependent properties, in which case a rich set of 

each of its children, and recursively sends each child a 
drawing command. The bounds of a node's children form 
eithera vertical or horizontal partitioning of the display space 
allocated to the node. 

5.2 Tracking 
mappings exists between content information and display 
properties. 

The drawing of individual nodes within their bounding 
boxesdetermines thecontentinformation statically presented 
in a Tree-Map. The number and variety of domain properties 
that can be statically coded in the drawing of the tree is 
limited. As Kuhn states, "Since human perception imposes 
an upper bound on the complexity of graphic representations, 
only a small number of relations can be shown."[7,14] Inter- 
active control of the drawing is therefore critical because the 
mapping of content information to the display will vary 
dependingon theinformation usersrequire. Dynamic feedback 
is provided by a pop-up window which displays information 
about the node currently under the cursor. 

For example, files could have weights (display size) 
proportional to their creation date, color saturation dependent 
on their last modification date, and pitch (tone heard while 
crossing border) based on size. Using this scheme it is easy 
to locate old files which have changed recently, and &Y the 
cursor crosses into their bounding box a deep tone tells users 
that the file is large even before they read the information 
about that file. 

5 Algorithms 

Algorithms are given to draw a Tree-Map and to track 
cursor movement in the tree. The algorithms may be applied 
to any tree, regardless of its branching degree. Both algorithms 
appear on the following page as Figures 9 and 10. 

The basic drawing algorithm produces a series of nested 
boxes representing the structure of the tree. 

The cursor tracking algorithm facilitates interactive feed- 
back about the tree. Every point in the drawing corresponds 
to a node in the tree. While the current tracking point (from 
a mouse or touchscreen input device) is in a node, the node is 
selected and information about it is displayed. 

5.1 Drawing Algorithm 

The Tree-Map can be drawn during one pre-order pass 
through the tree in O(n) time, assuming that node properties 
(weight, name, etc.) have previously been computed or as- 
signed. The current algorithm has been implemented in 
object-oriented Think C on a Macintosh 11. The drawing 
algorithm proceeds as follows: 

1) The node draws itself within its rectangular bounds 
according to its display properties (weight, color, bordcrs, 
etc.). 

2) The node sets new bounds and drawing properties for 

The path from the root of the tree to the node associated 
with a given point in the display can be found in time 
proportional to the depth of the node. 

In our implementation, when a node draws itself it stores 
its bounding box in an instance variable. Every point in the 
Tree-Map corresponds to a node in the hierarchy. in addition 
every node is contained in the bounding box of the root node. 
Recall that each node's bounding box completely encloses 
the bounding boxes of its children, and that the bounding 
boxes of sibling nodes never overlap. Finding the path to a 
node containing a given point thus involves only a simple 
descent through one path in the tree, until the smallest 
enclosing bounding box is found. 

6 Coping with Size 

A typical 13 inch display has a resolution of 640 x 480, or 
roughly 300,000 pixels. Drawing an 80mb directory tree 
(weight = disk usage) on such a display requires that each 
pixel represent 260 bytes, i.e., there are roughly 4 pixels per 
Kilobyte. Assuming that such a directory structure may 
contain roughly 3,000 files (as on one of our lab's hard disks) 
implies that there are approximately 100 pixels per file on 
average. A box with 10 pixels per side (roughly 4"') is 
easily selectable using a standard mouse or touchscreen 
device [19]. This average case analysis is only part of the 
story since file sizes may vary widely. 

The range of file sizes on our hard disk varied from a few 
hundred bytes to well overonemillion bytes. In theTree-Map 
of Figure 8,groups of very small files often becomecompletely 
black regions as there is only enough space to draw their 
borders. Magnification over these regions or zooming can 
provideaccess tothese files. But since theassignment ofnode 
weights can be user controlled, presumably the nodes with the 
greatest weights are of greatest interest and the nodes with the 
smallest weights are of least interest. 

7 Future Research Directions 

Further research includes the exploration of alternate 
structural partitioning schemes, appropriate visual display of 
both numeric and non-numeric content information, dynamic 
views such as animated time slices, and operations on ele- 
mentsof the hierarchy. Standardoperationssuchaszooming, 
marking, selecting and searching also invite designers to 
explore variations on the Tree-Map strategy. 

Dr. Ram Naresh-Singh, a visiting research scientist in our 
lab, is working on an alternate directory only approach to 
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partitioning the display which we have termcd “top-down”. 
His implementation on a Sun Sparcstation preserves the 
traditional notion of having the root node at the top and the 
leaves at the bottom. 

Animation, or time-sliced displays, could provide insight 
into evolving structures. For example, the hierarchical orga- 
nization of a university could be mapped from the university 
level (root), to the college level, to the department level, to the 
research lab level. If weights were assigned based on person- 
nel resources, it would be easy to see the structure of the 
university based on the distribution of employees, and hence 
understand its strengths and weaknesses. Furthermore, if the 
saturation of red was proportionate to the funds spent at each 

node, and the saturation of cyan (the inverse of red) was 
proportionate to the funds allocated, nodes (labs, depart- 
ments, colleges) which were on budget would be shades of 
gray (equal amounts of red and cyan), nodes over budget 
would become increasingly red, and nodes under budget 
would become increasingly cyan. The magnitude of the 
nodes funding would range from black (small budgets and 
expenditures) to white (large budgets and expenditures). If a 
series of Lhese displays are generated based on data over the 
last ten years, it would be possible to see how funding and 
personnel resources have evolved and been distributed within 
the university. 

The range and variety of potential applications of this 

DrawTreeO 
{ donesize = 0; 

The node gets a message to draw itself The Root node is set up prior to the original recursive call 
The percent of this nodes subtree drawn thus far 
The node sends itself a Paint Message 
Decide whether to slice this node horizontally or vertkdy 

Set start for horizontal slices 

Set start for vertical slices 

Set up each child and have it draw itself 

PaintDisplay Rectangle(); 
switch (myorientation) ( 

case HORIZONTAL: 

case VERTICAL: 
startside = myBounds.left; 

startside = myBounds.top; 
1 
if (myNodeType == Internal) ( 

ForEach (childNode) Do ( 
childNode->SetBounds(startSide, donesize, myorientation); Set childs bounds based on the parent partition taken by previous 

children of parent 
childNode->SetVisual(); Set visual display properties (color, e tc.) 
childNode->DrawTree(); Send child a draw command 
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SetBounds(startSide, donesize, parentorientation) 
( donesize = donesize + mysize; 

switch (parentorientation) ( 
case HORIZONTAL: 

myorientation = VERTICAL; 
endside = parentwidth * donesize / parentsize; 
SetMyRect(startSide + offset, 

parentBounds.top + offset, 
parentBounds.left + endside - offset. 
parentBounds.bottom - offset); 

startside = parentBounds.left + endside; 

myorientation = HORIZONTAL; 
endside = parentHeight ’ donesize I parentsize; 
SetThisRect(parentBounds.left + offset, 

case VERTICAL: 

startside + offset, 
parentBounds.right - offset. 
parentBounds.top + endside - offset); 

startside = parentBounds.top + endside; 

How much of the parent will have been allocated after this node 
Decide which direction parent is being sliced 

Set direction to slice this node for its children 
How much of the parent will haw been sliced after this node 
Left side, Offset controls the nesting indentation 
TOP 
Right 
Bottom 
Set start side for next child 

Set direction to slice this node for its children 

Left side 
TOP 
Right 
Bottom 
Set start side for next child 

11 

FindPath(point thepoint) 
{ if node encloses thepoint then 

foreach child of thisNode do ( 
path = FindPath(theP0int); 
if (path != NULL) then 

return(lnsertlnList(thisNode. path)); 
1 
return (NULL); 

1 

Figure 9. Drawing Algorithm 

Add child to path 

Start path, thePoint is in this node, but not in any of its children 

Figure 10. Tracking Algorithm 
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technology is vast. For instance, stock market portfolios are 
often hierarchically structured, animations over time of fi- 
nancial portfolios could be a valuable application of this 
technology . 
8 Conclusion 

We believe that space-filling approaches to the visualiza- 
tion of hierarchical information structures have great poten- 
tial. The drawing algorithm we have given is quite general, 
and the numerous possibilities for mapping information about 
individual nodes to the display are appealing. The Tree-Map 
approach to visualizing hierarchical structures enables mean- 
ingful drawings of large hierarchies in a limited space. 
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