
Tree-Maps: A Space-Filling Approach to the Visualization of Hierarchical
Information Structures

Brian Johnson Ben Shneiderman
ben@ cs.umd.edu bri anj@ cs . u md. ed u

Department of Computer Science & Human-Computer Interaction Laboratory
University of Maryland, College Park, MD 20742

Abstract
This paper describes a novel methodfor the visualization

of hierarchically structured information. The Tree-Map
visualization technique makes 100% use of the available
display space, mapping the full hierarchy onto a rectangular
region in a space-filling manner. This efficient use of space
allows very large hierarchies to be displayed in their entirety
and facilitates the presentation of semantic information.

1 Introduction

A large quantity of the world’s information is hierarchi-
cally structured: manuals, outlines, corporate organizations,
family trees, directory structures, intemet addressing, library
cataloging, computer programs ... and the list goes on. Most
people come to understand the content and organization of
these structures easily if they are small, but have great
difficulty if the structures are large.

We propose an interactive visualization method for pre-
senting hierarchical information called Tree-Maps. We hope
that the Tree-Map approach is a step forward in the visual-
ization of hierarchical information, and that it will produce
benefits similar to those achieved by visualization techniques
in other areas.

As humans we have the ability to recognize the spatial
configuration of elements in a picture and notice the relation-
ships between elements quickly. This highly developed
visual ability allows people to grasp the content of a picture
much faster than they can scan and understand iext [12].

The Tree-Map visualization method maps hierarchical
information to a rectangular 2-D display in a space-filling
manner; 100% of the designated display space is utilized.
Interactive control allows users to specify the presentation of
both structural (depth bounds, etc.) and content (display
properties such as color mappings) information. This is in
contrast to traditional static methods of displaying hierarchi-
cally structured information, which generally make either
poor useofdisplay spaceor hidevastquantitiesof information
from users. With the Tree-Map method, sections of the
hierarchy containing more important information can be
allocated more display space while portions of the hierarchy

which are less important to the specific task at hand can be
allocated less space [9,101.

Tree-Maps partition the display space into a collection of
rectangular bounding boxes representing the tree structure
[20]. The drawing of nodes within their bounding boxes is
entirely dependent on the content of the nodes, and can be
interactively controlled. Since the display size is user con-
mlled, the drawing size of each node varies inversely with
the size of the tree (i.e., # of nodes). Trees with many nodes
(lo00 or more) can be displayed and manipulated in a fixed
display space.

The main objectives of our design are:
Efficient Space Utilization

Efficient use of space is essential for the presentation
of large information structures.

Interactive control over the presentation of informa-
tion and real time feedback are essential.

The presentation method and its interactive feedback
must facilitate the rapidexuactionof information with
low perceptual and cognitive loads.

Esthetics
Drawing and feedback must be esthetically pleasing.

Hierarchical information structures contain two kinds of
informa tion: structural (organization) information associated
with the hierarchy, and content information associated with
each node. Tree-Maps are able to depict both the structure
and content of the hierarchy. However, our approach is best
suited to hierarchies in which thecontentof theleafnodesand
the structure of the hierarchy are of primary importance, and
the content information associated with internal nodes is
largely derived from their children.

2 Motivation: Current Methods and

Interactivity

Comprehension

Problems

This work was initially motivated by the lack of adequate
tools for the visualization of the large directory structures on
hard disk drives.

Traditional methods for the presentation of hierarchically

284
CH3046-0/91/0000/02844/$01 .OO 0 1991 IEEE

- _ ~

http://cs.umd.edu

structured information can be roughly classified into three
categories: listings, outlines, and tree diagrams. It is difficult
for people to extract information from large hierarchical
information structures using these methods, as the navigation
of the structure is a great burden and content information is
often hidden within individual nodes [23].

Listings are capable of providing detailed content infor-
mation, but are generally very poor at presenting structural
information. Listings of the entire structure with explicit
paths can provide structural information, but require users to
parse path information to arrive at a mental model of the
structure. Alternatively, users may list each intemal node of
the hierarchy independently, but this requires users to manu-
ally traverse the hierarchy to determine its structure. Outline
methods can explicitly provide both structural and content
information, but since the structural indentation can only be
viewed a few lines at a time, it is often inadequate [4].

Thenumberofdisplay lines required topresent a hierarchy
with both the listing and outline methods is linearly propor-
tional to the number of nodes in h e hierarchy. These methods
are inadequate for structures containing more than a few
hundred nodes. A great deal of effort is required to achieve
an mental model of the Structure in large hierarchies using
these methods.

Tree drawing algorithms have traditionally sought effi-
cient and esthetically pleasing methods for the layout of node
and link diagrams. These layouts are based on static pre-
sentations and are common in texts dealing with graph theory
and data structures. They are excellcnt visualization tools for
small trees [2,10,12.13,17]. However, these traditional node
and link tree diagrams make poor use of the availabledisplay
space. In a typical v ~ e drawing more than 50% of the pixels
are used as background. For small tree diagrams this poor use
of spaceisacceptable,and traditional layout methods produce
excellent results. But for large trees, traditional node and link
diagrams can not be drawn adequately in a limited display
space. Attempts to provide zooming and panning have only
been only partially successful [lo].

Another problem with tree diagrams is the lack of content
information; typically each node has only a simple tcxt label.
This problem exists because presenting additional informa-
tion with each nodequickly overwhelms the display space for
trees with more than just a few nodes.

The presentation of content information in all of these
traditional methods has usually been text based. Although
me diagrams are a graphically based method capable of
making use of visualization techniques, and many of the ideas
presented in this paper. Unfortunately, global views of large
tree diagrams require the nodes to be so small that there is
virtually no space in which to provide visual cues as to node
content.

Tree-Maps efficiently utilize the designated display area
and are capable of providing structural information implic-
itly, thereby eliminating the need to explicitly draw internal

nodes. Thus much more space is available for the rendering
of individual leaf nodes, and for providing visual cues related
to content information.

Tree-Maps provide an overall view of the entire hierar-
chy, making the navigation of large hierarchies much easier.
Displaying the entire information structure at once allows
users to move rapidly to any location in the space. As Beard
states in his paper on navigating large two-dimensional
spaces [l], “If the two-dimensional information space fits
completely onto a display screen, there is no navigation
problem ... Users are never lost because they can see the
complete information space.”

3 A Directory Tree Example

Obtaining information about directory trees was the ini-
tial motivation for this research and provides a familiar
example domain. For illustrative reasons, the hierarchy in
this example is small and nodes haveonly an associated name
and size. While reading through this example, think about
how the techniques described would scale up to a directory
tree containing loo0 files. An Apple Macintosh screen
snapshot showing a Tree-Map of loo0 files from one of our
laboratory’s hard disk drives follows this example.

Presenting directory structures is a very practical prob-
lem. The following are the methods widely available today:

Command Line Listing (e.g. UNIX “ls”, DOS “dir”);
Outlines (e.g. UNIX “du”, Microsoft Windows)
Windowing (e.g. Macintosh Finder)
Tree Drawings (e.g. Openwindows File Manager)

We are not aware of approaches that provide a visual
representation of the relative sizes of files or directories.

Even moderately sized directory trees are difficult to
visualize using standard operating system interfaces. With
command line interfaces such as UNIX “ls” or DOS “dir”,
only the immediate children of any directory are listed. An
overall view of the directory tree must be pieced together by
traversing the various paths and listing the immediate chil-
dren of the currently active directory.

Desktop metaphors and their windowing strategies are
another alternative. Oneof the problems with windows is that
they often obscure each other, and users may spend much of
their time may be spent mng ing windows. Also. the tree
structure is not apparent unless windows havebeen carefully
placed. Desktop icons generally show only the type of the
file. Much richer visual mappings are possible but are
currently not available, for instance, the depth of an icon’s
shadow could be used to indicate file size.

We will use a small directory tree hierarchy as an ex-
ample. Tree A depicted in Figures 1 through 7 contains 23
nodes, of lhese 6 are directories (internal nodes) and 17 are
files (leaf nodes). This tree is structured such that among
siblings, file nodes always precede directory nodes.

In Figure 1 we see an outline view similar to the presen-

2H5

tations provided by PCShell under
DOS, theUNIX command “du”, or
Microsoft Windows 3.0. This pre-
sentation requires 23 lines: a
structure with lo00 files would re-
quire a minimum of lo00 lines in
order to present both directories
and files.

Figure 2 presents a typical tree
diagram, such drawings can be
found in graph theory textbooks.
This tree drawing approach is simi-
lar to the presentation method used
by theopenwindows File Manager.
Directory trees with 1000 files
cannot be drawn all at once on a
typical Screen (if all files are at the
same leve1,each file node will have
less than one pixel in which todraw
itself). The problem becomes even
more severe when real file names
are used as node labels.

Figure 3 presents the same in-
formation in yet another manner, as a Venn diagram. We use
this figure for illustrative purposes as a familiar and often
used set theoretic visualization technique. It is an interme-
diate step which facilitates the transition from traditional
presentations to Tree-Maps. This is an odd use of Venn
diagrams, as one does not usually think of files and directories
as sets. However, simple directory structures can be thought
of as set theoretic collections of files. using only the contain-
ment (subset) property. Note that each node has been drawn
proportionate to its size.

The space required between regions would certainly
preclude this Venn diagram representation from serious con-
sideration for larger structures. Note that this “waste” of
space is also present in traditional tree diagrams. Using
boxes instead of ovals and a bin-packing algorithm could
partially solve this space problem. But bin-paclung is an NP-
complete problem and does not preserve order.

Figure 4 is a box-based Venn diagram which illustrates a
more efficient use of space and is an excellent tool for the
visualization of small hierarchies. But even the small degree
of nesting present in this technique renders it unsuitable for
the presentation of large hierarchies. Fortunately space
efficient results can be achieved without bin-packing, using
our “slice and dice” Tree-Map approach, a simple linear
method in which the algorithm works top-down. An analogy
should quickly illustrate this concept. If the hard disk drive
werea large, flat,rectangular cheese, onecouldcertainly slice
it into chunks representing the size of each top lcvel directory.
Applying this slice and dice algorithm recursively to each
piece of the cheese, and rotating the slicing direction 90
degrees at each recursive step, would result in the Tree Map

F6 G6 Hb 114 536 K24
A
U IW N28 04 P4 Q4 R4 S 4 T4
f i
U8 VI2 W8

Figure 2. Tree Diagram

Figure 3. Venn Diagram

Figure 4. Nested Tree-Map

Figure 5. Tree-Map

286

of Figure 5.
Figure 5 simply eliminates the nesting offset used to

seperate objects at each level. If we wanted to distribute our
cheese to 17 people based on their weights, Figure 5 would
give us a slicing diagram. This weight-proportionate distri-
bution is one of the important features of Tree-Maps. The
Tree Map snapshots of Figures 6 and 7 (see color plates) are
the full color, machinc generated screen snapshots of Figures
4 and 5. All screen snapshots in this paper have been made
while using our TreeViz application on an Apple Macintosh
11.

Figure 8 (see color plates) is a screen snapshot showing a
Tree-Map of loo0 files. A simple color mapping has been
used to code some of the various Macintosh file types: Tree-
Map applications are red; all other applications are purple;
system files are green; picture files are magenta; text files are
yellow; archive files are cyan; and all other file types not
currently of primary interest are gray. This Tree-Map shows
21 root level files on the left, followed by 19 root level
directories moving across tothe right. Detailcdfileinformation
is displayed in a pop-up dialog window as the mouse is
dragged over files in the display.

In this directory structure it can be observed that purple
application filesaregenerally thelargest files on thisdisk, and
take up relatively the same percentage of overall disk space
as system related (green) files. A duplicate set of files exists
just to the right of the vertical green bar. The files in this root
level folder can be seen duplicated one level down in
subfolders, as repeatinggeometricpattemsoffset900from their
parent.

Since thisTree-map portrays the overall allocation ofdisk
space, the largest files can be located quite easily. Sorting a
large directory listing by size would also make finding the
largest files easy, but these files would not be presented in
their original context. In addition, sorting a list on two or
more properties (i.e. size and type) makes presentation of the
results difficult. Tree-Maps make finding the largest system,
application, and picture files on the disk as easy as finding the
largest green, purple, and magenta rectangles in Figure 8.
This is one simple example of the visual display properties
possible; further discussion is contained in scction 4.2.

4 The Tree Map Method

Displaying a directory tree while fully utilizing space and
conveying structural information in a visually appealing and
low cognitive load manner is a difficult task, as these are often
opposing goals. Our interactive approach to drawing dircc-
tory trees allows users to determine how the tree is displayed.
This control is essential, as it allows users to sct display
properties (colors, borders, etc.) maximizing the utility of the
drawing based on their particular task.

4.1 Structural Information: Partitioning the
Display Space

Tree-Map displays look similar to the partition diagrams
of quad-trees and k-D trees. The key difference is the
direction of the transformation. Quad-trws create hierarchi-
cal structures to store 2-D images efficiently [18] while Tree-
Maps present hierarchical information structures efficiently
on 2-D display surfaces.

Tree-Maps require that a weight be assigned to each node,
this weight is used to determine the size of a nodes bounding
box. The weight may represent a single domain property
(such as disk usage or file age for a directory tree), or a
combination of domain properties (subject to Property 4
below). A nodes weight (bounding box) determines its
display size and can be thought of as a measure of importance
or degree of interest[9].

The following relationships between the structure of the
hierarchy and the structure of its Tree-Map drawing always
hold:

Properties
IfNodel is an ancestor of Node2, then the bounding box
ofNodel completely encloses,or isequal to, the bounding
box of Node2.
The bounding boxes of two nodes intersect iff one node is
an ancestor of the other.
Nodes occupy a display area strictly proportional to their
weight.
The weight of a no& is greater than or equal to the sum
of the weights of its children.

Structural information in Tree-Maps is implicitly pre-
sented, although it may alsobe explicitly indicated by nesting
child nodes within their parent. Nesting provides for the
direct selection of all nodes, both intemal and leaf. Although
the space required for nesting reduces the number of nodes
which can be drawn in a given display space, and hence
reduces the size of the trees that can be adequately displayed
compared to non-nested drawings [21].

A non-nested display explicitly provides direct selection
only for leaf nodes, but a pop-up display can provide path
information as well as further selection facilities. Non-nested
presentations cannot depict internal nodes in degenerate
linear sub-paths, as the bounding boxes of the intemal nodes
in the sub-path may be exactly equal. Such paths seldom
occur and tasks dependent on long chains of single child
nodes will require special treatments.

4.2 Content Information: Mapping Content to
the Display

Once thebounding box ofanodeisset,avarietyofdisplay
properties determine how the node is drawn within it. Visual
display properties such as color (hue, saturation, brightness),
texture, shape, border, blinking, etc. are of primary interest,

Johnson Figure 6 (Color). Nested Tree-Map Johnson Figure 7 (Color). Non-nested Tree-Map

(See color plates, page 429.)

but the interface will not limit users to purely visual properties
[6] . Color is the most important of these visual display
properties, and it can be an important aid to fast and accurate
decision making [1 1,15,16]. Auditory properties may also be
useful in certain circumstances. Nodes may have many
domain dependent properties, in which case a rich set of

each of its children, and recursively sends each child a
drawing command. The bounds of a node's children form
eithera vertical or horizontal partitioning of the display space
allocated to the node.

5.2 Tracking
mappings exists between content information and display
properties.

The drawing of individual nodes within their bounding
boxesdetermines thecontentinformation statically presented
in a Tree-Map. The number and variety of domain properties
that can be statically coded in the drawing of the tree is
limited. As Kuhn states, "Since human perception imposes
an upper bound on the complexity of graphic representations,
only a small number of relations can be shown."[7,14] Inter-
active control of the drawing is therefore critical because the
mapping of content information to the display will vary
dependingon theinformation usersrequire. Dynamic feedback
is provided by a pop-up window which displays information
about the node currently under the cursor.

For example, files could have weights (display size)
proportional to their creation date, color saturation dependent
on their last modification date, and pitch (tone heard while
crossing border) based on size. Using this scheme it is easy
to locate old files which have changed recently, and &Y the
cursor crosses into their bounding box a deep tone tells users
that the file is large even before they read the information
about that file.

5 Algorithms

Algorithms are given to draw a Tree-Map and to track
cursor movement in the tree. The algorithms may be applied
to any tree, regardless of its branching degree. Both algorithms
appear on the following page as Figures 9 and 10.

The basic drawing algorithm produces a series of nested
boxes representing the structure of the tree.

The cursor tracking algorithm facilitates interactive feed-
back about the tree. Every point in the drawing corresponds
to a node in the tree. While the current tracking point (from
a mouse or touchscreen input device) is in a node, the node is
selected and information about it is displayed.

5.1 Drawing Algorithm

The Tree-Map can be drawn during one pre-order pass
through the tree in O(n) time, assuming that node properties
(weight, name, etc.) have previously been computed or as-
signed. The current algorithm has been implemented in
object-oriented Think C on a Macintosh 11. The drawing
algorithm proceeds as follows:

1) The node draws itself within its rectangular bounds
according to its display properties (weight, color, bordcrs,
etc.).

2) The node sets new bounds and drawing properties for

The path from the root of the tree to the node associated
with a given point in the display can be found in time
proportional to the depth of the node.

In our implementation, when a node draws itself it stores
its bounding box in an instance variable. Every point in the
Tree-Map corresponds to a node in the hierarchy. in addition
every node is contained in the bounding box of the root node.
Recall that each node's bounding box completely encloses
the bounding boxes of its children, and that the bounding
boxes of sibling nodes never overlap. Finding the path to a
node containing a given point thus involves only a simple
descent through one path in the tree, until the smallest
enclosing bounding box is found.

6 Coping with Size

A typical 13 inch display has a resolution of 640 x 480, or
roughly 300,000 pixels. Drawing an 80mb directory tree
(weight = disk usage) on such a display requires that each
pixel represent 260 bytes, i.e., there are roughly 4 pixels per
Kilobyte. Assuming that such a directory structure may
contain roughly 3,000 files (as on one of our lab's hard disks)
implies that there are approximately 100 pixels per file on
average. A box with 10 pixels per side (roughly 4"') is
easily selectable using a standard mouse or touchscreen
device [19]. This average case analysis is only part of the
story since file sizes may vary widely.

The range of file sizes on our hard disk varied from a few
hundred bytes to well overonemillion bytes. In theTree-Map
of Figure 8,groups of very small files often becomecompletely
black regions as there is only enough space to draw their
borders. Magnification over these regions or zooming can
provideaccess tothese files. But since theassignment ofnode
weights can be user controlled, presumably the nodes with the
greatest weights are of greatest interest and the nodes with the
smallest weights are of least interest.

7 Future Research Directions

Further research includes the exploration of alternate
structural partitioning schemes, appropriate visual display of
both numeric and non-numeric content information, dynamic
views such as animated time slices, and operations on ele-
mentsof the hierarchy. Standardoperationssuchaszooming,
marking, selecting and searching also invite designers to
explore variations on the Tree-Map strategy.

Dr. Ram Naresh-Singh, a visiting research scientist in our
lab, is working on an alternate directory only approach to

289

partitioning the display which we have termcd “top-down”.
His implementation on a Sun Sparcstation preserves the
traditional notion of having the root node at the top and the
leaves at the bottom.

Animation, or time-sliced displays, could provide insight
into evolving structures. For example, the hierarchical orga-
nization of a university could be mapped from the university
level (root), to the college level, to the department level, to the
research lab level. If weights were assigned based on person-
nel resources, it would be easy to see the structure of the
university based on the distribution of employees, and hence
understand its strengths and weaknesses. Furthermore, if the
saturation of red was proportionate to the funds spent at each

node, and the saturation of cyan (the inverse of red) was
proportionate to the funds allocated, nodes (labs, depart-
ments, colleges) which were on budget would be shades of
gray (equal amounts of red and cyan), nodes over budget
would become increasingly red, and nodes under budget
would become increasingly cyan. The magnitude of the
nodes funding would range from black (small budgets and
expenditures) to white (large budgets and expenditures). If a
series of Lhese displays are generated based on data over the
last ten years, it would be possible to see how funding and
personnel resources have evolved and been distributed within
the university.

The range and variety of potential applications of this

DrawTreeO
{ donesize = 0;

The node gets a message to draw itself The Root node is set up prior to the original recursive call
The percent of this nodes subtree drawn thus far
The node sends itself a Paint Message
Decide whether to slice this node horizontally or vertkdy

Set start for horizontal slices

Set start for vertical slices

Set up each child and have it draw itself

PaintDisplay Rectangle();
switch (myorientation) (

case HORIZONTAL:

case VERTICAL:
startside = myBounds.left;

startside = myBounds.top;
1
if (myNodeType == Internal) (

ForEach (childNode) Do (
childNode->SetBounds(startSide, donesize, myorientation); Set childs bounds based on the parent partition taken by previous

children of parent
childNode->SetVisual(); Set visual display properties (color, e tc.)
childNode->DrawTree(); Send child a draw command

111

SetBounds(startSide, donesize, parentorientation)
(donesize = donesize + mysize;

switch (parentorientation) (
case HORIZONTAL:

myorientation = VERTICAL;
endside = parentwidth * donesize / parentsize;
SetMyRect(startSide + offset,

parentBounds.top + offset,
parentBounds.left + endside - offset.
parentBounds.bottom - offset);

startside = parentBounds.left + endside;

myorientation = HORIZONTAL;
endside = parentHeight ’ donesize I parentsize;
SetThisRect(parentBounds.left + offset,

case VERTICAL:

startside + offset,
parentBounds.right - offset.
parentBounds.top + endside - offset);

startside = parentBounds.top + endside;

How much of the parent will have been allocated after this node
Decide which direction parent is being sliced

Set direction to slice this node for its children
How much of the parent will haw been sliced after this node
Left side, Offset controls the nesting indentation
TOP
Right
Bottom
Set start side for next child

Set direction to slice this node for its children

Left side
TOP
Right
Bottom
Set start side for next child

11

FindPath(point thepoint)
{ if node encloses thepoint then

foreach child of thisNode do (
path = FindPath(theP0int);
if (path != NULL) then

return(lnsertlnList(thisNode. path));
1
return (NULL);

1

Figure 9. Drawing Algorithm

Add child to path

Start path, thePoint is in this node, but not in any of its children

Figure 10. Tracking Algorithm

290

technology is vast. For instance, stock market portfolios are
often hierarchically structured, animations over time of fi-
nancial portfolios could be a valuable application of this
technology .
8 Conclusion

We believe that space-filling approaches to the visualiza-
tion of hierarchical information structures have great poten-
tial. The drawing algorithm we have given is quite general,
and the numerous possibilities for mapping information about
individual nodes to the display are appealing. The Tree-Map
approach to visualizing hierarchical structures enables mean-
ingful drawings of large hierarchies in a limited space.

Acknowledgments

We would like to acknowledge the support of the mem-
bers of the Human-Computer Interaction Lab, whose sugges-
tionsandcriticisms havebeen greatly appreciated. They have
forced us to prove the value of Tree-Maps and allowed us to
hone our presentations of the idea.

References

[l] David V. Beard and John Q. Walker 11. Navigational
techniques to improve the display of large two-dimen-
sional spaces. Behavior & Information Technology,

[2] A. Briiggemann-Klein and D. Wood. Drawing trees
nicely withtex. ElectronicPublishing,2(2):101-115,July
1989.

[3] Stuart K. Card, George G. Robertson, and Jock D.
Mackinlay. The information visualizer, an information
workspace. In Proceedings of ACM C111’91 Conference
on Human Factors in Computing Systems, Information
Visualization, pages 181-188. 1991.

[4] Richard Chimera, Kay Wolman, Sharon Mark, and Ben
Shneiderman. Evaluation of three interfaces for brows-
ing hierarchical tables of contents. Technical Report
CAR-TR-539, CS-TR-2620, University of Maryland,
College Park, February 199 1.

[5] Donna J. Cox. The art of scientific visualization. Aca-
demic Computing, page 20, March 1990.

[6] Chen Ding and Prabhaker Mateti. A framework for the
automated drawing of data structure diagrams. IEEE
Transactions on Sofiware Engineering, 16(5):543-557,
May 1990.

[7] Richard Ellson. Visualization at work. Academic Com-
puting, page 26, March 1990.

[8] Steven Feiner. Seeing the forest for the trees: Hierarchi-
cal displayofhypertextsuuctures. In ACMProc. COIS88
(Conf. on Office Information Systems), pages 205-212,
Palo Alto, CA, March 1988.

[9] George W. Furnas. Generalized fisheye views. In Pro-

9(6):451-466, 1990.

ceedings of ACM CH1’86 Conference on Human Fac-
tors in Computing Systems, Visualizing Complex In-
formation Spaces, pages 16-23. 1986.

[lo] Tyson R. Henry and Scott E. Hudson. Viewing large
graphs. Technical Report 90-13. University of Arizona,
May 1990.

[l l] Ellen D. Hoadley. Investigating the effects of color.
Communications of the ACM, 33(2):120-139, February
1990.
Tomihisa Kamada. On Visualization ofAbstract Objects
and Relations. Ph.D. thesis, University of Tokyo, De-
partmentof Information Science,7-3-l Hongo, Bunkyo-
ku, Tokyo, 113 JAPAN, December 1988.
Donald E. Knuth. Fundamental Algorithms, volume I of
the Art of Computer Programming. Addison-Wesley,
Reading, MA, 2nd edition, 1973.

[141 Werner Kuhn. Editing spatial relations. In Proceedings
of the 4th International Symposium on Spatial Data
lfandling, pages 423-432, Zurich, Switzerland, 1990.

[151 Lindsay W. MacDonald. Using colour effectively in
displays for computer-human interface. DISPLAYS,
pages 129-142, July 1990.

[161 John F. Rice. Ten rules for color coding. Information
Display, 7(3):12-14, March 1991.

[171 George G. Robertson, Jock D. Mackinlay, and Stuart K.
Card. Cone trees: Animated 3d visualizations of hierar-
chical information. In Proceedings of ACM CHI’91
Cogerence on Human Factors in Computing Systems,
Information Visualization, pages 189-194. 1991.

[18] Hanan Samet. Design and Analysis of Spatial Data
Structures. Addison-Wesley Publishing Co., Reading,
MA, 1989.

[19] Andrew Sears and Ben Shneiderman. High precision
touchscreens: Design strategies and comparisons with
a mouse. International Journal of Man-Machine Stud-
ies, 34(4):593-613. April 1991.

[20] Ben Shneiderman. Tree visualization with tree-maps: A
2-d space-filling appoach. Technical Report CAR-TR-
548, CS-TR-2645, University of Maryland, College
Park, September 1990. to appear in ACM Transactions
on Graphics.

[21] Michael Travers. A visual representation forknowledge
structures. In ACM Hypertext’89 Proceedings, Imple-
mentations and Interfaces, pages 147-158.1989.

[22] E. R. Tufte. The Visual Display of Quantitative Infor-
mation. Graphics Press, Cheshire, CT, 1983.

[23] Kim J. Vicente, Brian C. Hayes, andRobert C. Williges.
Assaying and isolating individual differences in search-
inga hierarchical file system. HmnFactors,29(3):349-
359,1987.

29 I

