
722 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

Visual and Textual Consistency Checking
Tools for Graphical User Interfaces

Rohit Mahajan and Ben Shneiderman

Abstract —Designing user interfaces with consistent visual and textual properties is difficult. To demonstrate the harmful effects of
inconsistency, we conducted an experiment with 60 subjects. Inconsistent interface terminology slowed user performance by 10 to
25 percent. Unfortunately, contemporary software tools provide only modest support for consistency control. Therefore, we
developed SHERLOCK, a family of consistency analysis tools, evaluates visual and textual properties of user interfaces. It provides
graphical analysis tools such as a dialog box summary table that presents a compact overview of visual properties of all dialog
boxes. SHERLOCK provides terminology analysis tools including an Interface Concordance, an Interface Spellchecker, and
Terminology Baskets to check for inconsistent use of familiar groups of terms. Button analysis tools include a Button Concordance
and a Button Layout Table to detect variant capitalization, distinct typefaces, distinct colors, variant button sizes, and inconsistent
button placements. This paper describes the design, software architecture, and the use of SHERLOCK. We tested SHERLOCK with
four commercial prototypes. The outputs, analysis, and feedback from designers of the applications are presented.

Index Terms —Graphical User Interfaces, evaluation tools, consistency, textual and visual style, assessment tools, metrics.

1 INTRODUCTION AND PREVIOUS RESEARCH

Consistency in user interfaces follows the second law of thermo-
dynamics. If nothing is done, then entropy will increase in the
form of more and more inconsistency in your user interface.

Jakob Nielsen (1989)

RAPHICAL User Interface (GUI) design is a complex
and challenging task. It requires careful requirements

analysis, iterative design, and usability testing, [27]. GUI
design has become a major part of software development,
and is minimally 29 percent of software development
budgets [24]. Moreover, data analysis has shown that the
user interface is 47 to 60 percent of the total lines of appli-
cation code [17]. GUI design encompasses more than one
third of the software development cycle and plays a major
role in determining the quality of a product. Proper human
factors techniques, including early completion of user re-
quirements definitions, expert reviews, usability prototype
testing, and usability walkthroughs, can significantly speed
up software development [14].

Powerful GUI development tools enable the development
of working interfaces in a few weeks. However, these inter-
faces may contain inconsistencies in visual design and textual
properties that cannot be detected by current development
tools. Such inconsistencies can have a subtle and negative
impact on the usability of the interface. Better quality control
and GUI test procedures are required, but new analytic and
metric-based tools can support the creation of cognitively
consistent interfaces having a common “look and feel.”

1.1 Consistency and Evaluation
Defining Consistency. Consistency is an important aspect of
user interface design and is stressed in most guidelines [27],
[21]. But, experts have struggled to define exactly “what
consistency is?” and “how to identify good consistency?”
Reisner [23] states that consistency is neither a property of
the system nor the user, but a relation between two poten-
tially conflicting models: the actual system and the user’s
mental model. Wolf [36] suggests that consistency means
that similar user actions lead to similar results. Another
definition is that a consistent user interface is one that maxi-
mizes the number of shared rules across tasks [22].

Consistency within an application should facilitate hu-
man perception and cognitive processes such as visual
scanning, learning, and remembering. This applies to spa-
tial properties which includes the organization of menus,
placement of frequently used widgets, symmetry, and
alignment of widgets. This also applies to fonts, colors,
common actions, sequences, terms, units, layouts, typogra-
phy, and more within an application program. Consistency
is naturally extended to include compatibility across the
application programs and compatibility with paper or non-
computer-based systems. The sequence of pointing, select-
ing or clicking should be the same throughout the applica-
tion [29]. Consistency facilitates positive transfer of skills
from one system to another leading to ease of use, reduced
training time, and improved retention of operating proce-
dures [21], [22].

Kellogg [15] studied the impact of the conceptual dimen-
sion of consistency by prototyping a “consistent” version
(common look-and-feel and conceptually consistent) and an
“inconsistent” version (only common look-and-feel) of an
interface. The results of her study, which incorporated a
variety of measures like learning time, subjective satisfac-
tion and more, showed that the “consistent” interface was
better than the “inconsistent” (consistent in visual appear-
ance and behavior only).

• R. Mahajan is with BDM International, 1501 BDM Way, McLean, VA
22101. E-mail: rmahajan@bdm.com.

• B. Shneiderman is with the Department of Computer Science, Human-
Computer Interaction Laboratory and Institutes for Advanced Computer
Studies and for Systems Research, University of Maryland, College Park,
MD 20742. E-mail: ben@cs.umd.edu.

Manuscript received 23 May 1996; revised 13 June 1997.
Recommended for acceptance by L. Clarke.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101217.

0098-5589/97/$10.00 © 1997 IEEE

G

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 723

GUI Guidelines. The use of guidelines is important within
human-computer interface (HCI) [12]. However there are
critics such as Frederiksen, Grudin, and Laursen [9], who
showed that consistency guidelines should be applied cau-
tiously to be in harmony with the user’s task. According to
Grudin [10], interface consistency is a largely unworkable
concept and can sometimes work against good design.
However, we believe that industrial guidelines documents,
such as Apple [1] or Microsoft [19], can educate and direct
software developers in positive ways. Empirical evidence of
the benefits of many forms of consistency is strong.

Terminology. Inconsistent terminology in interactive dia-
logs for applications such as text editing can be problematic
for users. For example, programs that differ in the names of
important commands e.g., “quit” and “exit,” are confusing
to users [10]. Three studies on command language design
showed that users learned positionally consistent systems
more readily [3].

Proper use of abbreviation is an important part of termi-
nology. Abbreviations are constructed to reduce typing and
optimize the use of screen space, but can impose significant
cognitive demands on users. To create an internally consis-
tent design, one abbreviation algorithm, such as truncation,
should be used [10].

Tools for Consistent Design. The Interactive Transaction
Systems (ITS) project [35] generated consistent interfaces
automatically by the use of executable style rules. ITS pro-
vided a set of software tools to support four application
development roles: an application expert, a style expert, an
application programmer, and a style programmer. The ITS
architecture divided the application into three parts,
namely: application functions, a dialog manager, and views
supporting user interfaces. This architecture helped to cre-
ate a consistent interface for a family of applications and to
create multiple consistent interfaces for a given application.
ITS has been used to create a number of large-scale appli-
cations.

Interface Evaluation Methods. Interface evaluation is a dif-
ficult process. Evaluation of a software product’s user inter-
face using four techniques—heuristic evaluation, usability
testing, guidelines and cognitive walk-throughs—showed
that each has advantages and disadvantages [13]. For in-
stance, heuristic evaluation identifies more problems than
any other method, but it requires UI expertise and several
evaluators. Similarly, usability testing identifies serious and
recurring problems, but requires UI expertise and has a
high cost. The requirements for these powerful methods,
which may include availability of working prototypes, test
users, expert evaluators, and time constraints are hin-
drances in applying these methods more frequently. The
study also showed that usability testing, a powerful and
effective evaluation method, is not good in finding consis-
tency problems. Therefore, consistency checking tools are
likely to be a beneficial complement to usability testing.

Furthermore, usability testing works best for smaller ap-
plications. It is too costly to run a usability test on applica-
tions with hundreds of dialog boxes. Finding anomalies
while reviewing numerous dialog boxes is hard even for
expert reviewers, who may fail to detect some flaws and
inconsistencies. In contrast, automated evaluation tools can

be used in early prototypes (or during late iterations) and
can detect anomalies across all the dialog boxes.

1.2 Evaluation Tools for Visual Design and Textual
Properties

Automated tools for consistency checking are meant to re-
place the current manual consistency checking process
which is complex, expensive, error prone, and time con-
suming. These tools can be made independent of platform
and development environment. A pioneering tool to evalu-
ate alphanumeric displays derived six measures: Overall
Density, Local Density, Number of Groups, Size of Groups,
Number of Items, Layout Complexity [31]. These measures
were later incorporated into a Display Analysis Program to
analyze alphanumeric display [32], [33]. The results of his
user study indicated that it can accurately predict the rela-
tive search times and subjective ratings.

Streveler and Wasserman [30] proposed novel visual
metrics to quantitatively assess screen formats which have
similarities with Tullis’s Display Analysis Program. They
proposed three basic techniques: “boxing,” “hot-spot” and
“alignment” analysis. A balance measure was also pro-
posed that computed the differences between the center of
mass of the array of characters and the physical center of
the screen. These proposed metrics were not applied to any
system to validate them. Tullis’s complexity metrics were
later applied to the domain of interactive system design
with findings strongly supporting their applicability [7].

The evolution of modern user interfaces, like multimedia
interfaces, has sparked research in automated evaluation
based on visual techniques. Vanderdonckt and Gillo [34]
proposed five visual techniques (Physical, Composition,
Association and dissociation, Ordering, and Photographic
techniques) that are more sophisticated than traditional
properties such as balance, symmetry, and alignment. Dy-
namic strategies for computer-aided visual placement of
interaction objects on the basis of localization, dimension-
ing, and arrangement were introduced by Bodart et al. [4].
They defined mathematical relationships to improve the
practicability, the workability and the applicability of their
visual principles into a systematic strategy, but specific
metrics and acceptance ranges were not tested.

Sears [25], [26] developed a first generation tool (AIDE)
using automated metrics for both design and evaluation
using Layout Appropriateness metrics. In computing the
Layout Appropriateness the designer provides the set of
widgets used in the interface, the sequence of actions to be
performed by the user, and how frequently each sequence
is used. The appropriateness of a given layout is computed
by weighing the cost of each sequence of actions by how
frequently the sequence is performed. Layout Appropriate-
ness can be used to compare existing layouts and to gener-
ate optimal layouts for the designer. AIDE has demon-
strated its effectiveness in analyzing and redesigning dialog
boxes in simple Macintosh applications and also dialog
boxes with complex control panels in NASA applications.
Studies by Comber and Maltby [8] assessed the usefulness
of layout complexity metrics in evaluating the usability of
different screen designs. Mullet [20] developed a systematic
layout grid strategy to easily position related controls con-

724 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

sistently across dialog boxes. Using this systematic ap-
proach, he showed that the GUI of the “Authorware Profes-
sional”, a leading development tool for learning materials
in the Macintosh and Windows environments, could be
easily redesigned to create a more coherent, consistent, and
less crowded layout.

1.3 User Studies on the Effects of Interface
Inconsistencies

Chimera and Shneiderman [5] performed a controlled ex-
periment to determine the effects of inconsistency on per-
formance. This experiment used two interactive computer
systems: the original inconsistent version and a revised
consistent version. The revised version had consistent
screen layouts and colors, and used consistent task-oriented
phrases for the description of menu items. The results
showed that there was a statistically significant difference
favoring the revised interface for five tasks and favoring the
original interface for one. They concluded that the revised
interface yielded faster performance and higher satisfaction
due to consistent location, wording, and color choices.

Bajwa [2] studied the effect of inconsistencies in color,
location, and size of buttons on user’s performance and
subjective satisfaction. For a billing system interface, three
inconsistent versions were created with 33 percent incon-
sistency in color, location, and size. Her results showed that
inconsistency significantly effects user’s performance speed
by about 5 percent.

2 EXPERIMENTAL SUPPORT FOR SHERLOCK
2.1 Introduction
We designed an experiment to test the hypothesis that ter-
minology consistency increases performance speed and
subjective satisfaction. The experiment considered only one
aspect of inconsistency, misleading synonyms. We devel-
oped a GUI in Visual Basic for the students to access the
resources of the University’s Career Center. Three versions
of the interface were created. The first version was termi-
nologically consistent. The second version had a medium
level of terminology inconsistency (one inconsistency was
introduced for each task and each task had an average of
four screens). The third version had a high level of termi-
nology inconsistency (one or two inconsistencies were in-
troduced for each task). Some designers argue that incon-
sistencies are easily overcome with a few minutes of usage.
To test this conjecture we had two levels of training: no prior
training and five minutes of training. The resulting 2 × 3
between-groups experiment had two independent variables
which were level of training (0 and 5 minutes) and the type
of interface (no inconsistency, medium inconsistency, and
high inconsistency). For all six treatments, users were given
the same task list and their task completion time and sub-
jective satisfaction were evaluated. For each treatment, 10
subjects were selected, making a total of 60 subjects.

2.2 Interface Design
All the screens of the Career Center interfaces had a con-
sistent visual design (sizes of similar screen, placement of
similar items, screen density, margins, typefaces, colors
etc.). Inconsistencies were introduced in the medium and
high inconsistency versions.

In the medium inconsistency version, one terminological
inconsistency was introduced for every task. Since the sub-
jects were told to perform seven tasks, the interface had
seven terminology inconsistencies. In the high inconsis-
tency version, one or two terminology inconsistencies were
included per task for a total of 11.

These inconsistencies included changing the heading of
the dialog box from “Questions” to “Inquiries” or changing
the widget labels from “Workshops” to “Seminars.” Also,
menu items were changed from “Career Counseling” to
“Career Advising” and “View” to “List.” Inconsistency in
button labels were also introduced by changing “OK” and
“Abort” to “Forward” and “Discard.”

2.3 Hypotheses
The task completion time for the interface with no terminol-
ogy inconsistency will be significantly lower than the inter-
faces with medium and high terminology inconsistency in
the case of subjects with no prior training of the system.

The difference in task completion time for the interface
with no, medium, and high terminology inconsistencies
will decrease when subjects are given five minutes of
training with the system, prior to the execution of the tasks.

The subjective satisfaction will be significantly higher for
the interface with no terminology inconsistency as compared
to those with medium and high terminology inconsistency.

2.4 Subjects
Sixty University of Maryland students participated. All
were familiar with Windows 3.1 and mouse operation.
Half were given five minutes training with the no incon-
sistency interface.

2.5 Materials
The experiment was run on a 100 MHz Pentium machine
with a 17 in. color monitor having a 1024 × 768 pixel reso-
lution with 256 colors. A set of written instructions was
provided. The subjects were asked to fill out a modified
version of the Questionnaire (QUIS) [6] after completing the
experiment.

2.6 Task List
The subjects performed seven tasks:

• Register for Workshop II.
• Set appointment with any one of the career counselors

for Nov. 8 for 10:00 to 10:30 a.m.
• View part-time job openings in Computer Science

Major in Maryland state.
• Submit the following question to the Career Center:

Do counselors at the career center perform mock in-
terviews?

• Request graduate school information for masters pro-
gram in business management in any one of the listed
universities.

• Register for an interview with any one of the listed
companies on Nov. 20 using any one of the open slots.

• Cancel Registration for Workshop II

2.7 Procedure
Administration. Subjects were asked to read the instructions
and to sign the consent form. The no training group was

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 725

introduced to the interface by a presentation of the menu
items. The training group was shown the menus and all the
dialog boxes by opening each of the menu items. They were
also allowed to use the interface for two minutes to experi-
ence the interface. After the experiment, subjects filled out
the 19-item subjective satisfaction questionnaire.

2.8 Results
The experimental results (Table 1) show that the no incon-
sistency version had a faster average task completion time
than the medium and high inconsistency versions. The av-
erage subjective satisfaction ratings for the no inconsistency
version were higher than the medium, and the high incon-
sistency versions of the interface (Table 2). Overall, the per-
formance improved when training was administered to
the subjects, as the average task completion time was
lower for all the three versions of the interface when
training was provided.

TABLE 1
AVERAGE TASK COMPLETION TIME AND STANDARD DEVIATION

(10 SUBJECTS PER CELL; SEVEN TASKS PER SUBJECT)

Level of
Training

No
Inconsistency

Medium
Inconsistency

High
Inconsistency

None 239.0 sec
(61.0)

 287.4 sec
(42.6)

312.7 sec
(88.3)

Five minutes 204.0 sec
(41.7)

 217.4 sec
(50.6)

270.7 sec
(30.5)

TABLE 2
AVERAGE SUBJECTIVE SATISFACTION RATING

 (HIGHER NUMBERS INDICATE INCREASED SATISFACTION)
AND STANDARD DEVIATION (10 SUBJECTS PER CELL)

Level of
Training

No
Inconsistency

Medium
Inconsistency

High
Inconsistency

None 142 (14) 130 (14) 134 (13)
Five minutes 142 (12) 139 (11) 138 (13)

A 2 × 3 ANOVA (Analysis of Variance) was used to de-
termine whether the interface types (versions) and the level
of training had statistically significant effects on the task
completion time and subjective satisfaction, measured
across the three treatments (no, medium, and high level of
terminology inconsistency) and two training levels (none
and five minutes). There was a statistically significance
difference for task completion time by training (F (1, 54) =
12.38, p < 0.05) and interface type (F (2, 54) = 8.21, p <
0.05), but no interaction effect. This implies that training
reduces the task completion time, but training does not
overcome the problems caused by an inconsistent design.
Differences in subjective satisfaction were not statistically
significant.

2.9 Discussion
In relation to the task completion time, the ANOVA identi-
fied that the terminology inconsistencies introduced in each
version of the interface significantly slowed the user’s per-
formance. In the no training group, the average task comple-
tion time for the medium, and high inconsistency treatments
were 20 and 31 percent more than the no inconsistency
treatment. Similarly in the training group, the average task
completion time for medium, and high inconsistency were 7
and 34 percent more than the no inconsistency treatment.

The level of training, according to the ANOVA signifi-
cantly effected the user’s performance. On average, the
training decreased the task completion time by 14, 24, and 13
percent in no, medium, and high inconsistency versions, re-
spectively. Although the subjective satisfaction ratings for the
medium and the high inconsistency versions were less than
the no inconsistency version, the ANOVA analysis found no
statistically significant differences. It is difficult to obtain sta-
tistically significant differences in preference scores for be-
tween-groups design, because subjects do not see the other
versions. A future within-subjects study might elicit stronger
preference differences.

2.10 Conclusion
The results of this experiment, along with the experiment
done by Bajwa [2] supported the encouragement to “strive
for consistency” and including consistency as one of the
prime guidelines when designing user interfaces [27].
Therefore, developing user interface consistency checking
tools seems worthwhile to support software engineers
during the development process.

3 DESCRIPTION AND DESIGN OF SHERLOCK
SHERLOCK is a family of consistency checking tools to
evaluate visual design and terminology in user interfaces. It
consists of a set of seven programs that were implemented
in about 7,000 lines of C++ code, and developed on the
SUN SPARC Stations/UNIX platform. In order to evaluate
a GUI using SHERLOCK, its interface description files need
to be converted to a canonical format. These canonical for-
mat files are the only input required by the SHERLOCK
evaluation tools. SHERLOCK was designed to be a generic
GUI consistency and evaluation tool.

3.1 Translator and Canonical Format Design
The canonical format is an organized set of GUI object de-
scriptions. These object descriptions embrace interface vis-
ual design and terminology information in a sequence of
attribute-value pairs. The canonical format is advantageous
because of its lucidity and extendibility. It can be easily
modified to include new attributes encompassing interface
description information in the form of files.

Translator programs are designed for a particular GUI
development tool and convert its interface description
(resource) file to a canonical format. Design of the data
structure for the translator depends on the format of the
interface resource file. Two translators were created, one for
Visual Basic 3.0 and the other for Visual C++ 4.0 using a
lexical scanner generated by FLEX (Fast Lexical Analyzer
Generator) which is a tool for generating programs that
perform pattern matching on text. Using the lexical scanner,
attribute value strings are detected and converted to the
appropriate canonical format. All the dimensional coordi-
nates are converted to pixels and other platform and appli-
cation independent values.

The canonical format may be created for other interface
development tools like Power Builder, Galaxy, and Delphi
by writing a translator program for those tools.

726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

3.2 SHERLOCK Design
The SHERLOCK data structure was designed to be flexible,
extensible and customizable to changes that may be made
by expansion of the canonical format files. SHERLOCK has
a sequential modular design and can be divided into the
following subsystems.

• Widget store
• Dialog box
• String processing
• Spell checker
• Button processing

3.3 SHERLOCK Tools
SHERLOCK is an extension of previous work by Shneider-
man, Chimera et al. [28] in which spatial and textual evalua-
tion tools were constructed. These tools have been modified
after evaluating sample applications and new tools have been
integrated. Our focus was on evaluating only the aspects of
consistency that are relatively task-independent and can be
automated. Our tools evaluated layout properties such as
sizes of dialog boxes, placement of similar items, screen den-
sity, consistency in margins, screen balance, and alignment.
We also evaluated consistency in visual design properties
such as fonts, font-sizes, font-styles, background colors, and
foreground colors. Finally our evaluation includes checking
for terminology inconsistencies, abbreviations, variant capi-
talization, and spelling errors in buttons, labels, messages,
menu items, window titles etc.

3.3.1 Dialog Box Summary Table
The dialog box summary table is a compact overview of the
visual design of dozens or hundreds of dialog boxes of the
interface. Each row represents a dialog box and each column
represents a single metric. Typical use would be to scan
down the columns looking for extreme values, spotting in-
consistencies, and understanding patterns within the design.

Choosing the appropriate metrics is critical in the design
of the dialog box summary table. The researchers at the
University of Maryland generated a list of approximately
40 metrics after reviewing the relevant previous literature,
consulting with colleagues and using their GUI evaluation
experience. A similar effort was taken by our partners at
General Electric Information Services (GEIS), where they
brain-stormed and proposed their metrics based on com-
mercial software development experience. The two lists had
many similar items which were grouped into categories
such as spatial layout, alignment, clustering, cluttering,
color usage, fonts, attention getting, etc. The metric set was
revised several times after evaluating a series of interfaces.
Ineffective metrics were removed, others were redefined,
and new metrics were added. The modified column set of
the dialog box summary contained:

Aspect Ratio. The ratio of the height of a dialog box to its
width. Numbers in the range 0.5 through 0.8 are desirable.
Dialog boxes that perform similar functions should have
the same aspect ratio.

Widget Totals. Count of all the widgets and the top level
widgets. Increasing difference between all and top level
counts indicates greater nesting of widgets, such as buttons,
lists, and combo boxes inside containers.

Nonwidget Area: The ratio of the nonwidget area to the
total area of the dialog, expressed as a percentage. Num-
bers closer to 100 indicate high utilization, and low num-
bers (< 30) indicate possibilities for redesign.

Widget Density. The number of top-level widgets divided
by the total area of the dialog box (multiplied by 100,000 to
normalize it). Numbers greater than 100 indicate that a
comparatively large number of widgets are present in a
small area. This number is a measure of the crowding of
widgets in the dialog box.

Margins. The number of pixels between the dialog box
border and the closest widget. The left, right, top, and bot-
tom margins should all be equal in a dialog box, and across
different dialog boxes.

Gridedness. Gridedness is a measure of alignment of
widgets. This metric has been refined several times, but we
have not been able to find a satisfactory metric to detect
misaligned widgets. X-Gridedness counts the number of
stacks of widgets with the same X coordinates (excluding
labels). Similarly, Y-Gridedness counts the number of
stacks of the widgets with the same Y coordinates. High
values of X-Gridedness and Y-Gridedness indicate the pos-
sibility of misaligned widgets. An extension of Gridedness
is Button Gridedness where the above metrics are applied
to button widgets.

Area Balances. A measure of how evenly widgets are
spread out over the dialog box. There are two measures: a
horizontal balance, which is the ratio of the total widget
area in the left half of the dialog box to the total widget area
in the right half of the dialog box; and the vertical balance,
which uses top area divided by bottom area. High values of
balances between 4.0 and 10.0 indicate screens are not well
balanced. The limiting value 10.0 represents a blank or al-
most blank (for example, a dialog box that has only one
widget which is a button) dialog box.

Distinct Typefaces. Typeface consists of a font, font size,
bold and italics information. Each distinct typeface in all the
dialog boxes is randomly assigned an integer to facilitate
quick interpretation. For each dialog box, all the integers
representing the distinct typefaces are listed so that the
typeface inconsistencies can be easily spotted locally within
each dialog box and globally across all dialog boxes. We
recommend that a small number of typefaces should be
used in an application.

Distinct Background Colors. All the distinct background
colors (RGB values) in a dialog box are displayed. Each
distinct color is randomly assigned to an integer for display
and comparison convenience and is described in detail at
the end of the table. The purpose of this metric is to check if
the dialog boxes have consistent background colors. Multi-
ple background colors may indicate inconsistency, de-
pending on the application.

Distinct Foreground Colors. All the distinct foreground
colors in a dialog box are displayed.

In addition to the dialog box summary table, a set of in-
dependent tools were built, including:

3.3.2 Margin Analyzer
Margin Analyzer is an extension of the dialog box sum-
mary table’s margins metric. This analyzer calculates the

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 727

most frequently occurring values of left, right, top, and
bottom margins across the interface and then lists margins
in every dialog box that are inconsistent with these fre-
quently occurring values. It also calculates what widgets of
the dialog box need to be moved by how many pixels to
make the margins consistent. The Margin Analyzer tool
depends on the fact that the most frequently occurring
value of margins are the optimum margin values that the
designer would have ideally used for consistency.

3.3.3 Concordance.
The Concordance tool extracts all the words that appear in
labels, buttons, messages, menu items, window titles etc. in
every dialog box. It can help designers spot inappropriate
word use such as variant spellings, abbreviations, tense and
case inconsistency, etc. Occurrences of words in a different
case are shown to point out potential inconsistent use. The
sort order used was aAbB...zZ so that the occurrence of
“cancel” is not separated from “Cancel” or “CANCEL.”

3.3.4 Interface Concordance.
The Interface Concordance tool checks for variant capitali-
zation for all the terms that appear in buttons, labels, menu
items, and window titles etc. This tool outputs strings that
have variant capitalization, listing all the variant forms of
the string and its dialog box sources. These variant forms
may be acceptable, but they should be reviewed by a de-
signer. For example the words “MESSAGES,” “messages,”
“Messages,” and “mesgs” are variant forms of the same
word.

3.3.5 Button Concordance
Buttons are one of the most frequently used widgets, per-
forming vital functions like “Save,” “Open,” “Delete,”
“Exit,” etc. They should also be checked for consistency in
their size, placement, typefaces, colors, and case usage. This
tool outputs all the buttons used in the interface, listing the
dialog boxes containing the buttons plus fonts, colors, and
button sizes. The Button Concordance identifies variant
capitalization, distinct typefaces, distinct foreground colors,
and variant sizes in buttons.

3.3.6 Button Layout Table.
Often a set of buttons frequently occur together (for exam-
ple, OK Cancel, Help), and therefore it is desirable that
these appear in the same order and have the same size. If
the first button in the set is detected, then the program out-
puts the height, width, and position relative to the first
button of every button detected in the list. The relative po-
sition of every button detected in the set is output as (x +
offset, y + offset) to the first button, where offset is in pixels.
Buttons stacked in rows would yield a (x + offset, y) rela-
tive position and those stacked in columns would yield (x,
y + offset). The Button Layout table identifies inconsisten-
cies in button placement, and variant button sizes locally
within a dialog box and globally across all the dialog boxes.
Additionally, the tool helps to determine synonym button
labels in button sets, for example use of both “Quit” and
“Exit” with the “OK” button in different dialog boxes.
Some of the sample button sets are:

• OK Cancel Close Exit Quit Help

• Stop Halt Pause Cancel End

 Close Done Exit Quit

• Add Remove Delete Copy Clear

3.3.7 Interface Spellchecker
The Interface Spellchecker reads all the terms from buttons,
labels, menu items, messages, titles etc. and outputs terms
that are not found in the dictionary. The spell checking op-
eration is performed within the code and all the possible
misspelled words are stored in a file. This file can be re-
viewed by the designer to detect possible misspelled and
abbreviated words which may create confusion for users.
The output is filtered through a file containing valid com-
puter terms and default Visual Basic terms that may be
flagged as spelling errors by the dictionary.

3.3.8 Terminology Baskets
A terminology basket is a collection of computer terms in-
cluding their different tenses that may be inadvertently
used as synonyms by interface designers. Our goal is to
construct different sets of terminology baskets by con-
structing our own computer thesaurus and then search for
these baskets in every dialog box of the interface. The pur-
pose of terminology baskets is to provide interface design-
ers with feedback on misleading synonymous computer
terms, like “Close,” “Cancel,” “End,” “Exit,” “Terminate,”
and “Quit.” The program reads an ASCII file containing the
basket list. For each basket all the dialog boxes containing
any of the basket terms are output. Some of the idiosyn-
cratic baskets are:

• Remove Removes Removed Removing

Delete Deletes Deleted Deleting

Clear Clears Cleared Clearing Purge

Purges Purged Purging Cancel Cancels

Canceled Canceling Refresh Refreshed

• Item Items Entry Entries Record

Records Segment Segments Segmented

Segmenting Field Fields

• Message Messages Note Notes Letter

Letters Comment Comments

4 INTERFACE EVALUATIONS

4.1 Testing the Evaluation Tools
The effectiveness of the SHERLOCK tools was tested with
four commercial prototype applications developed in Mi-
crosoft Visual Basic. These applications included a 139 dia-
log box interface for the GEIS Electronic Data Interchange, a
30-dialog box GE business application, a 75-dialog box
Italian business application, and a set of University of
Maryland AT&T Teaching Theater interfaces combined into
an 80-dialog box application. The analysis of the 30-dialog
box GEIS application and the Italian business application is
not discussed in this paper because the results were similar
to the other two applications.

4.2 Evaluation Results, GE Interfaces
The 139-dialog box GEIS Electronic Data Interchange inter-
face was the first prototype evaluated. Although this was a

728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

well-reviewed and polished design, SHERLOCK detected
some inconsistencies which may have otherwise been left
undetected.

4.2.1 Dialog Box Summary Table Analysis
Aspect Ratio. Aspect Ratio varied from 0.32 to 1.00. Many
dialog boxes that performed the same functionality had
different Aspect Ratios, indicating a potential inconsistency.

Nonwidget Area. Nonwidget area varied from 2 to 97.5
percent. Some dialog boxes with low Nonwidget area (5 to
15 percent) were candidates for redesign.

Widget Density. Widget Density varied from 14 to 271,
but most of the high values were due to exceptions in the
metric, as none of the dialog boxes had too many widgets in
a small area.

Margins. Left, right, top, and bottom margins were in-
consistent within a single dialog box and were also incon-
sistent across the interface. For example, the average value
of the left margin was 12 pixels, but the margin ranged
from 0 to 80 pixels. Inconsistencies detected by metrics of
dialog box summary table like left margin, can easily be
spotted, by plotting the metric (Fig. 1).

Fig. 1. Inconsistencies in left margin.

Gridedness. Some high values of the Button Gridedness
(three or more) metric helped in detecting dialog boxes
with misaligned buttons.

Area Balances. Dialog boxes were well balanced as the
average value of Left/Right Balance and Top/Bottom Bal-
ance was 1.1 and 1.4, respectively.

Distinct Typefaces. Although most of the dialog boxes
used a single typeface (MS Sans Serif 8.25 Bold), there were
a couple which used more than three typefaces. Altogether
seven distinct typefaces were used.

Distinct Background and Foreground Colors. There was much
variation in color usage among dialog boxes, indicating in-
consistency. The interface used a total of eight foreground
and seven background colors (RGB values). Although in
some applications, the use of many different colors may be
appropriate, in this case it was an inconsistency.

4.2.2 Margin Analyzer.
The margin analyzer successfully detected the dialog boxes
that had margin values more than two pixels apart from the
most frequently occurring value. For each inconsistent
value, it listed the widgets that need to be moved and by
how many pixels to make them consistent. There were
some exceptions (Visual Basic 3.0 allows widgets to extend
beyond the area enclosed by the dialog box and allows the
size of label and text boxes to be greater than the text en-
closed by them) beyond the capability of the tool to handle,
leading to negative margins.

4.2.3 Interface Concordance
The interface concordance tool spotted the terms that used
more than one case across the application. For example,
terms like “Messages,” “MESSAGES,” and “messages”
were detected by the interface concordance tool. Some of
the other inconsistencies included variant capitalizations
such as “Open,” “OPEN,” and “open.”

4.2.4 Button Concordance
GEIS interfaces did not have any button labels which used
more than one case. All the button labels used the title for-
mat and were therefore consistent. Also, all the buttons
used the same typeface and foreground color. The Button
Concordance detected inconsistency in height and width of
the buttons across the interface. Table 3 shows a portion of
the button concordance output for the “Archive” button.
Browsing across the columns of the table, we can see that
the width of the “Archive” button varied between 65 and
105 pixels. All the buttons had a top margin of 0 pixels ex-
cept one which has a top margin of 312 pixels. This is an
inconsistency, since all the “Archive” buttons are placed at
the top right corner of the dialog box, except one which is
placed at the bottom right corner. Button placement incon-
sistencies were detected in many other buttons including
“OK,” “Cancel,” “Close,” “Find,” “Forward,” and “Print.”

4.2.5 Interface Spellchecker.
The tool detected a few misspelled terms, and many poten-
tially confusing, incomplete, and abbreviated words such as
“Apps,” “Trans,” “Ins,” “Oprs.”

4.2.6 Terminology Baskets.
The basket browser revealed some interesting terminology
anomalies after analyzing the interface that led to reconsid-
eration of the design. As shown in Table 4, terms like
“record,” “segment,” “field,” and “item” were used in
similar contexts in different dialog boxes. Other interesting
inconsistencies included the use of “start,” “execute,” and
“run” for identical tasks.

4.2.7 Button Layout Table.
The most common button position and terminology in-
consistency was in the button set [OK Cancel Close Exit
Help]. The button labels “Cancel,” “Close,” and “Exit”
were used interchangeably. Sometimes these buttons were
stacked in a column on the top left corner of the dialog
box, and in other cases they were stacked in a row at the
bottom of the dialog box and were either left, right, or
center aligned.

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 729

A portion of the output from the button set [OK Cancel
Close Exit Quit Help] is shown in Table 5. Inconsistency in
height and relative button positions within a button set can
be checked by moving across the table rows. Inconsistency
in height and relative position for a particular button can be
spotted by moving down the columns. For example,
browsing the “OK” button column we found that the height
of the “OK” button varied between 22 and 26 pixels and the
width varied between 62 and 82 pixels. Scanning across the
rows, we found that the relative position of “OK” and
“Cancel” buttons varied in all three dialog boxes in which
they occurred together. In two of the dialog boxes the
“Cancel” button was 20 and 13 pixels below the “OK” but-
ton, but in the third dialog box, the buttons were adjacent in
the same row. Both “Cancel” and “Exit” were used with the
“OK” button to perform the same task which was a termi-
nology inconsistency.

4.3 Evaluation of University of Maryland Interface
The 80-dialog box University of Maryland AT&T Teaching
Theater Interface was a combination of applications, all
designed for the students to use. Evaluation of this interface
highlighted the intra-application inconsistencies that may
exist among applications designed for the same users.

4.3.1 Dialog Box Summary Table
A portion of the dialog box summary table from this appli-
cation is shown in Fig. 2.

Aspect Ratio. Aspect Ratio, in general varied between 0.5
and 0.8, but outliers above or below were detected. All the
About (Fig. 3), Cover and Exit dialog boxes had different
aspect ratios. These applications were designed for the
same set of users and these inconsistencies in Aspect Ratio,
especially in the dialog boxes with the same functionality,
should be minimized.

Widget Totals. Some dialog boxes had a high value of
widget totals i.e., 70 or more widgets. This indicated com-
plexity in the dialog box.

Nonwidget Area. High values of nonwidget area (above
90 percent) were found in some of the dialog boxes, indi-
cating that the use of screen space was not optimum.

Widget Density. Some of the values of widget density
(around 150 or more) indicated that too many widgets were
present in a small area. Only dialog boxes which had high
widget density, but a nonwidget area of 40 percent or more
were acceptable.

Margins. Left margins varied from 0 to 192 pixels, al-
though the most frequently used margin values were be-
tween 8 and 16 pixels. A quarter of the dialog boxes had left

TABLE 3
BUTTON CONCORDANCE

%87721 ',$/2* %87721 %87721 %87721 %87721 326,7,21

/$%(/ %2;�1$0(7<3()$&(FG_COLOR �+��:� /()7 5,*+7 723

$UFKLYH [UHI � � ������ ��� ��� �
ILOH � � ����� ��� �� �
ILOH� � � ����� ��� �� �
ILOHILQG � � ����� ��� ��� ���
KROG � � ������ ��� �� �

LQ � � ������ ��� �� �

RXW � � ������ ��� �� �

VHQW � � ������ ��� �� �

',67,1&7�7<3()$&(6�,1�%877216�

�� �06�6DQV�6HULI������%ROG�1R�/DEHO

',67,1&7�)25(*5281'�&2/256�,1�%877216�

�� �'HIDXOW�&RORU

TABLE 4
TERMINOLOGY BASKETS

%DVNHW��(QWULHV��(QWU\��)LHOG��)LHOGV��,WHP��,WHPL]HG�
,WHPL]LQJ��,WHPV�5HFRUG��5HFRUGV��6HJPHQW��6HJPHQWHG�
6HJPHQWLQJ��6HJPHQWV

%$6.(7�7(50)250�&217$,1,1*�7+(�%$6.(7�7(50

)LHOG VHDUFK
,WHPV UHFRQO\ UHFRQO\ UHFRQO\

UHFRQO\ VHQGUHF VHQGUHF
VHQGUHF VHQGUHF ZDVWHGHI

5HFRUG IIDGP SURILOH
6HJPHQW DGGU VHDUFK

TABLE 5
BUTTON LAYOUT TABLE

',$/2*�%2; 2. &DQFHO ([LW +HOS

�+�:� �+�:� 5HO� 3RV� �+�:� 5HO� 3RV� �+�:� 5HO� 3RV�

DGPSURI ������ ������ [��� \ ����� [��� \ ������ [���

FKHFNSV ������ ������ [����

QEDWFK ������ ������ [�� \��� ������ [� \���

V\VWLQS ������ ������ [�� \��� ������ [�� \���

730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

Fig. 2. A portion of dialog box summary table.

Fig. 3. Aspect ratios shown below each dialog box reveal inconsistencies.

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 731

margin values of 0 pixels and a few had high values above
70 pixels. Right margins varied from 0 to 381 pixels. In
some cases, high values of the right margins were not a
problem, such as the cases when the dialog box only had
labels or center-aligned buttons. Top margin varied from 0
to 56 pixels and was more consistent than left and right
margins. Similarly, bottom margins were more consistent
than left and right margins with values clustered between 8
and 30 pixels.

Gridedness. Most dialog boxes had well aligned widgets,
with low X-gridedness and Y-gridedness values (1 or 2).
Some dialog boxes which had high values of gridedness (4
or more) required minor alignment changes. A small num-
ber of dialog boxes had higher values of button gridedness
due to misalignment of buttons by a few pixels.

Area Balances. High balance ratios (greater than 4) were
detected in few dialog boxes. These screens were often
poorly designed.

Distinct Typefaces. In total, 19 distinct typefaces were
used, which was high. This revealed that different design-
ers worked on the applications without following any
guidelines. We recommended that the applications be
modified to use fewer typefaces.

Distinct Background and Foreground Colors. The application
used 15 different colors: eight background and 10 foreground
colors. We recommended more consistent use of colors.

4.3.2 Interface Concordance
A few terms that had different cases across the application,
such as “Cancel,” “cancel,” and “CANCEL” or “Delete,”
and “DELETE.”

4.3.3 Button Concordance
The following inconsistencies were detected by the Button
Concordance tool (see Table 6):

• Designers used six distinct typefaces in button labels.
Designers used three distinct foreground colors in
button labels.

• Button sizes were inconsistent across the application.
For example, the height of the “Cancel” button varied
between 24 and 49 pixels and width varied between
57 and 122 pixels. We found inconsistencies in button
sizes in “OK,” “Done,” “Exit,” “No,” “Previous,” and
“Start.”

• Buttons like “OK,” “Cancel,” “Done,” “Exit,” and
“No” used inconsistent cases across the application.
Also, the designers used the button labels “Save Left”
and “Save Right” in some dialog boxes and “Left
Save” and “Right Save” in others.

• The button positions metric detected many inconsis-
tencies. For example, the “Cancel” button had a dif-
ferent right button position for every dialog box. In
the case of the “Close” button, the left position was 8
pixels in two dialog boxes and was 291 in the third,
indicating that the “Close” button was left aligned in
the first case and right aligned in the second case.
Similar inconsistencies existed in “Done,” “Exit,”
“OK,” and other buttons.

4.3.4 Interface Spellchecker.
The spell checking tool detected abbreviations and a few
misspelled terms such as: “qiz,” “veryfying,” “peronal” and
“btrieve.”

4.3.5 Terminology Baskets.
The output from the basket [Browse, Display, Find, Re-
trieve, Search, Select, Show, View] showed that “Display,”
“View” and “Show” were used in this application. Also,
both “Find” and “Search” were used. Similarly the output
from the basket [Cancel, Clear, Delete, Purge, Refresh, Re-
move] indicated that the terms “Cancel,” “Delete,” “Clear,”
“Refresh” and “Remove” were all used in the application.
The use of both “Find” and “Search” was an inconsistency.

4.3.6 Button Layout Table.
The Button Layout Table revealed inconsistencies in button
sizes and placement within a dialog box and across the ap-
plication. For example, the button set [OK, Cancel, Exit,
Help] revealed inconsistencies in the sizes of the “OK,”
“Cancel,” and “Help” buttons. The “Cancel” and “Help”
buttons were often placed next to “OK” buttons in a row,
but other times stacked below the “OK” button in a col-
umn, with the distance between these buttons varying from
0 to 40 pixels. Fig. 4 shows the dialog boxes in which button
placement inconsistencies of “OK” and “Cancel” buttons
were detected.

4.4 Conclusion
Evaluation of the four applications using SHERLOCK
helped us to determine which tools were most successful in
detecting inconsistencies. The dialog box summary table
had limited success in detecting inconsistencies. Certain
metrics of the dialog box summary table such as aspect ra-
tio, margins, distinct typefaces, distinct foreground and
background colors were more successful in finding incon-
sistencies. Many of the extreme values computed by the
metrics like non-widget area, widget density, and area bal-
ances were due to the limitations of SHERLOCK or the Vis-
ual Basic development tool and were not inconsistencies.
These metrics were modified several times to deal with ex-
ceptions and further work is required to validate these met-
rics. The Button Concordance and the Button Layout Table
proved to be the most useful tools and were able to detect
inconsistencies in the size, position, typeface, color, and
terminology used in buttons. The Interface Concordance
and the Interface Spellchecker tools were successful in de-
tecting terminology inconsistencies such as variant capitali-
zation, abbreviations, and spelling errors. The Terminology
Basket tool helped in detecting misleading synonyms. In
summary, SHERLOCK was successful in detecting major
terminology inconsistencies and certain inconsistencies in
visual design of the evaluated interfaces.

SHERLOCK is a collection of programs that requires
detailed knowledge to use effectively. Additional pro-
gramming and a graphic user interface would be necessary
to make it viable as a widely used software engineering
tool. The source code and documentation that exists are
available (http://www.cs.umd.edu/projects/hcil in the FTP area
under Demo software).

732 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

TABLE 6
BUTTON CONCORDANCE

%87721 ',$/2* %87721 %87721 %87721 %87721�326,7,21

/$%(/ %2; 7<3()$&(FG_COLOR �+��:� /()7 5,*+7 723

([LW DWWDSS�� � � ������� ��� �� ���

FRYHU � � ������� ��� ��� ���

FRYHUDI � � ������ ��� � ���

FRYHUXI � � ������ ��� �� ���

IUPKDQG � � ������� ��� �� ���

IUPORJLQ � � ������ ��� �� ���

ZLQVWDW � � ������� ��� �� ���

(;,7 GHOHWH � � ������ ��� �� ���

V\OODEXV � � ������� ��� � ���

/HIW�6$9(IHHG ������ ��� ��� ���

/HIW�6DYH RPS ������ ��� ��� ���

5LJKW�6$9(IHHG ������ ��� ��� ���

5LJKW�6DYH RPS ������ ��� ��� ���

6$9(�/HIW PXOT ������ ��� ��� ���

6$9(�5LJKW PXOT ������ ��� ��� ���

',67,1&7�7<3()$&(6�,1�%877216� ',67,1&7�)25(*5281'�&2/256�,1�%877216�

�� �06�6DQV�6HULI������%ROG �� �'HIDXOW�&RORU

�� �06�6DQV�6HULI��� �� �IIIIIIII��������

�� �06�6DQV�6HULI����� �� ��

�� �06�6DQV�6HULI����%ROG �� �II����

�� �06�6DQV�6HULI��O���%ROG

�� �06�6HULI����%ROG

Fig. 4. Button placement inconsistencies in OK and cancel buttons.

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 733

4.5 Limitations of SHERLOCK
SHERLOCK evaluations are limited to certain visual design
and terminology aspects of user interfaces. Screen layout
issues such as proper placement of widgets in a dialog box,
violations of design constraints, and inappropriate widgets
types are not evaluated by SHERLOCK. Other evaluation
methods, such as usability testing and heuristic evaluation,
are needed to locate typical user interface design problems
such as inappropriate metaphors, missing functionality,
chaotic screen layouts, unexpected sequencing of screens,
misleading menus, excessive demands on short-term mem-
ory, poor error messages, or inadequate help screens.

5 FEEDBACK FROM DESIGNERS

Output from the tools and the screen shots of the interface
along with the analyses were forwarded to the developers
and designers to elicit feedback.

5.1 GEIS Interfaces
We worked closely with the people at GE Information
Services to get feedback on the effectiveness of SHERLOCK,
as these tools were being iteratively refined. The feedback
suggested that the outputs of the dialog box summary table
were simple for the designers to interpret. They were able to
detect inconsistencies by scanning down the columns for
extreme values, guided by the statistical analysis at the bot-
tom. They recommended that we develop some “goodness”
measures for the metrics after analyzing more applications.
We have succeeded partly in assigning measures to certain
metrics after analyzing the four applications. Detailed analy-
sis of each metric was recommended by the designers for
future implementations.

The incorporation of a spell checking tool in SHERLOCK
had a positive response from the designers, since none of
the current GUI building environments on the PCs had one.
Button typeface, terminology, and placement inconsisten-
cies detected by Button Concordance and Button Layout
Table were corrected by the GEIS designers. The Terminol-
ogy Basket tool helped GEIS designers in rectifying a few
terminology inconsistencies. Overall the use of SHERLOCK
helped to modify the layout, visibility, and terminology of
GEIS interfaces by detecting many small inconsistencies.

5.2 University of Maryland Interface
Since this application was a combination of several applica-
tions, the output was given to two design groups. Their feed-
back on the dialog box summary table was positive for some
metrics. They showed interest in the ability of the dialog box
summary table to detect the typeface and color inconsisten-
cies in their application. When asked for an explanation of
these inconsistencies, they explained that different designers
worked on different portions of the application, with few
guidelines on visual design. Similar reasons were given for
other inconsistencies such as different aspect ratios for func-
tionally similar screens and the use of inconsistent margins.

Designers liked the statistical analysis at the end of the ta-
ble with mean, maximum, and minimum values and wanted
an additional function that listed the optimum values for the

metrics. Many of the terminology inconsistencies detected by
the Button Layout Table and the Terminology Basket tool
were valid inconsistencies that they will take into considera-
tion in preparing the next version of the application.

6 RECOMMENDATIONS

6.1 Recommendations for the GUI Application
Developers

The following guidelines are recommended as a step to-
wards creating consistent interfaces:

• Aspect ratio should be consistent, especially for dialog
boxes having similar visual design and functionality.

• Nonwidget area (white space) should be at least 20
percent of total area enclosed by the dialog box.

• Margins should be consistent within and across dia-
log boxes.

• Widgets within a dialog box should be horizontally
and vertically aligned.

• Designs with many widgets in a small area should be
avoided.

• Background colors, foreground colors, and typefaces
should be consistent.

• Location and size of frequently used widgets should
be consistent.

• Terminology should be consistent.
• Button Labels should be consistent across the interface,

for example synonyms like “Abort,” “Cancel,” “Close,”
and “Exit” should not be used for similar tasks.

• In addition to these consistencies within the dialog
boxes, the interface should be consistent in terminol-
ogy with the current commercial applications running
on that system, and in accordance with the user’s task
domain.

6.2 Recommendations for Designers Looking for
GUI Evaluation Metrics

• Use metrics such as nonwidget area and widget den-
sity. Explore the use of other metrics for dialog box
crowdedness like the Local Density [32] and Hot-Spot
metric [30].

• Use metrics such as aspect ratio, margins, and balance
to evaluate size of dialog boxes and create a more
consistent layout.

• Explore metrics using additional visual techniques of
regularity, proportion, neutrality, transparency and
grouping [34].

• Develop metrics to check consistency in typefaces and
colors across dialog boxes and for every widget type.

• Develop a better metric for detecting misaligned wid-
gets similar to the gridedness metric and layout com-
plexity and alignment metrics [32], [30].

• Develop metrics to check consistency in size and lo-
cation of widget types across dialog boxes. These met-
rics may be similar to those used in SHERLOCK’s
Button Concordance and Button Layout Table tools.

• Expand the Terminology Basket tool to detect mis-
leading synonyms for specific widget types and
across all the widgets.

734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 11, NOVEMBER 1997

• Implement tools similar to Interface Concordance and
Interface Speller to detect variant capitalization,
spelling errors and abbreviations.

6.3 Recommendations for Designers of New GUI
Tools

The applicability of SHERLOCK’s canonical format to other
GUI development tools beyond Visual Basic was explored.
The following are recommendations for designers of new
GUI tools after analyzing existing tools like Visual Basic,
Visual C++, Galaxy, and Tcl/Tk.

• Store visual design and textual properties of dialog
boxes including widget labels, widget coordinates,
widget sizes, typefaces, and colors in an ASCII re-
source file. Many existing GUI development tools
store this information as binary files.

• Do not allow a widget in the dialog box to extend be-
yond the area of the dialog box.

• Create default left, right, top and bottom margins for
dialog boxes beyond which widgets may not be ex-
tended

• Promote consistency by creating default dialog box
templates so that developers are aware of the posi-
tioning of frequently used widgets.

• Incorporate a spell checking tool.
• If the GUI development tool allows the user to dy-

namically change the widget size and position within
the code, these changes should be updated to the cor-
responding resource files.

7 FUTURE DIRECTIONS

We recommend work on these extensions to SHERLOCK:

• Refine the dialog box summary table metrics.
• Validate the canonical format with other GUI build-

ing tools.
• Subdivide the dialog box summary table into smaller

tools. This subdivision would enable reporting ex-
ceptions to facilitate the interpretation of results.

• Link the dialog box summary table to a spreadsheet
program, such as Microsoft Excel, to graph the metric
values.

• Add tools to detect visual design and textual incon-
sistencies in any widget, including combo boxes, drop
down boxes, and text boxes.

• Expand the terminology thesaurus in button sets of
the button layout table and baskets of the terminology
basket tool.

• Enable users to fix inconsistencies in margins, aspect
ratio, typefaces and colors by mapping the canonical
format files back to the Visual Basic .frm files.

SHERLOCK is a foundation for the next generation of GUI
consistency checking tools. More work needs to be done to
build a complete structure on this foundation.

ACKNOWLEDGMENTS

Funding for this research was provided by the GE Infor-
mation Services and the Maryland Industrial Partnership

Program. We would like to thank Ren Stimart at GE Infor-
mation Services for his help and support and Ninad Jog for
his early work on this project. We appreciate the efforts of
the staff of the AT&T Teaching Theater at the University of
Maryland and the Italian company, Sogei, for providing
test applications. We thank American Management Sys-
tems, Microsoft, and NASA for inviting us to present this
work, and for their supportive feedback.

REFERENCES

[1] Apple Computer Inc., Macintosh Human Interface Guidelines.
Reading, Mass.: Addison-Wesley, 1992.

[2] S. Bajwa, “Effects of Inconsistencies on Users Performance and
Subjective Satisfaction,” unpublished report, Dept. of Computer
Science, Univ. of Maryland, 1995.

[3] P. Barnard, J. Hammond, J. Morton, J. Long, and I. Clark,
“Consistency and Compatibility in Human-Computer Dialogue,”
Int’l J. Man-Machine Studies, vol. 15, pp. 87-134, 1981.

[4] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, and J. Vander-
donckt, “Towards a Dynamic Strategy for Computer-Aided Vis-
ual Placement,” T. Catarci, M. Costabile, S. Levialdi, and G. San-
tucci, eds., Proc. Advanced Visual Interfaces Conf., pp. 78-87, New
York: ACM Press, 1994.

[5] R. Chimera and B. Shneiderman, “User Interface Consistency: An
Evaluation of Original and Revised Interfaces for a Videodisk Li-
brary,” B. Shneiderman, ed., Sparks of Innovation in Human-
Computer Interaction, pp. 259-273, Norwood, N.J.: Ablex Publish-
ers, 1993.

[6] J.P. Chin, V.A. Diehl, and K. Norman, “Development of an In-
strument Measuring User Satisfaction of the Human-Computer
Interface,” Proc. Conf. Human Factors in Computing Systems, CHI
’90, New York: ACM, pp. 213-218, 1988.

[7] R. Coll, and A. Wingertsman, “The Effect of Screen Complexity
on User Preference and Performance,” Int’l J. Human-Computer In-
teraction, vol. 2, no. 3, pp. 255-265, 1990.

[8] T. Comber and J. Maltby, “Investigating Layout Complexity,” J.
Vanderdonckt, ed., Computer-Aided Design of User Interfaces, Press
Universitaires de Namur, Namur, Belgium, pp. 209-227, 1996.

[9] N. Frederiksen, J. Grudin, and B. Laursen, “Inseparability of De-
sign and Use: An Experimental Study of Design Consistency:
Proc. Computers in Context’95, Aarhus, Aarhus Univ., pp. 83-89,
1995.

[10] J. Grudin, “The Case against User Interface Consistency,” Comm.
ACM, vol. 32, no. 10, pp. 1,164-1,173, New York: ACM Press, 1989.

[11] J. Grudin and D. Norman, “Language Evolution and Human-
Computer Interaction,” Proc. 13th Ann. Conf. Cognitive Science Soc.,
Hillsdale, N.J., pp. 611-616, 1991.

[12] M.D. Harrison and H.W. Thimbleby, “Formalizing Guidelines for
the Design of Interactive Systems,” Proc. BCS HCI Specialist Group
Conf. HCI85, pp. 161-171, 1985.

[13] R. Jeffries, J. Miller, C. Wharton, and K. Uyeda, “User Interface
Evaluation in the Real World: A Comparison of Four Tech-
niques,” Proc. CHI ‘91, pp. 119-127, New York: ACM, 1991.

[14] C.-M. Karat, “Cost-Justifying Human Factors Support in Devel-
opment Projects,” Human Factors Soc. Bull., vol. 35, no. 8, 1992.

[15] W. Kellogg, “Conceptual Consistency in the User Interface: Ef-
fects on User Performance,” Proc. Interact ‘87 Conf. Human-Com-
puter Interaction, Stuttgart, Germany, 1987.

[16] P. Lynch, “Visual Design for the User Interface, Part 1 Design
Fundamentals,” J. Biocommunications, vol. 21, no. 1, pp. 22-30,
1994.

[17] F. MacIntyre, K.W. Estep, and J.M. Sieburth, “Cost of User-
Friendly Programming,” J. Fourth Application and Research, vol. 6,
no. 2, pp. 103-115, 1990.

[18] R. Mahajan and B. Shneiderman, “A Family of User Interface
Consistency Checking Tools: Design Analysis of SHERLOCK,
Proc. NASA 20th Ann. Software Eng. Workshop, pp. 169-188, 1995.

[19] Microsoft, Inc., The Windows Interface: An Application Design Guide.
Redmond, Wash.: Microsoft Press, 1992.

[20] K. Mullet, “Organizing Information Spatially,” Interactions, pp.
15-20, July 1995.

[21] H. Nielsen, “Coordinating User Interfaces for Consistency
Checking,” J. Nielsen, ed., London: Academic Press, 1989.

MAHAJAN AND SHNEIDERMAN: VISUAL AND TEXTUAL CONSISTENCY CHECKING TOOLS FOR GRAPHICAL USER INTERFACES 735

[22] P. Polson, E. Muncher, and G. Engelbeck,“ A test of a common
elements theory of transfer, Proc. CHI ’86, pp. 78- 83, New York:
ACM, 1986.

[23] P. Reisner, “What is Consistency?” Proc. IFIP Third Int’l Conf.
Human-Computer Interaction, Interact ‘90, pp. 175-181, Elsevier Sci-
ence, B.V., North-Holland, 1990.

[24] D. Rosenberg, “Cost Benefit Analysis for Corporate User Interface
Standards: What Price to Pay for Consistent Look and Feel?” Co-
ordinating User Interfaces for Consistency Checking, J. Nielsen, ed.,
pp. 21-34, London: Academic Press, 1989.

[25] A. Sears, “Layout Appropriateness: A Metric for Evaluating User
Interface Widget Layouts,” IEEE Trans. Software Eng., vol. 19, no.
7, pp. 707-719, 1993.

[26] A. Sears, “AIDE: A Step Towards Metric-Based Interface Devel-
opment Tools,” Proc. UIST ‘95, pp. 101-110, New York: ACM,
1994.

[27] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction: Third Edition. Reading Mass.: Addi-
son-Wesley, 1998.

[28] B. Shneiderman, R. Chimera, N. Jog, R. Stimart, and D. White,
“Evaluating Spatial and Textual Style of Displays,” L.W. Mac-
Donald and A.C. Lowe, eds., Display Systems: Design and Applica-
tions. Chichester, U.K.: John Wiley & Sons, pp. 83-96, 1997.

[29] D.C. Smith, C. Irby, R. Kimball, B. Verplank, E. Harslem,
“Designing the Star User Interface,” Byte 7, no. 4, pp. 242-282,
1982.

[30] D. Streveler and A. Wasserman, “Quantitative Measures of the
Spatial Properties of Screen Designs,” Proc. INTERACT ‘87, Am-
sterdam: Elsevier Science, pp. 125-133, 1987.

[31] T.S. Tullis, “The Formatting of Alphanumeric Displays: A Review
and Analysis,” Human Factors, vol. 25, pp. 657-682, 1983.

[32] T.S. Tullis, “A System for Evaluating Screen Formats: Research
and Application,” Hartson, H. Rex and Hix, Hartson, ed., Ad-
vances in Human-Computer Interaction: vol. 2. Norwood N.J.: Ablex
Publishing Corp., pp. 214-286, 1988.

[33] T.S. Tullis, “Screen Design,” M. Helander, T. Landauer, and P.
Prabhu, eds., Handbook of Human-Computer Interaction: Second Edi-
tion. Amsterdam, The Netherlands: Elsevier Science, pp. 503-531,
1997.

[34] J. Vanderdonckt and X. Gillo, “Visual Techniques for Traditional
and Multimedia Layouts,” T. Catarci, M. Costabile, S. Levialdi,
and G. Santucci, eds., Proc. Advanced Visual Interfaces Conf. ‘94,
New York: ACM Press, pp. 95-104, 1994.

[35] C. Wiecha, W. Bennett, S. Boies, and J. Gould, “Generating Highly
Interactive User Interface,” Proc. CHI ’89, pp. 277-282, New York:
ACM, 1989.

[36] R. Wolf, “Consistency as Process,” Coordinating User Interfaces for
Consistency Checking, J. Nielsen, ed., pp. 89-92, London: Academic
Press, 1989.

Rohit Mahajan received a BS degree in electrical
engineering in 1993 and an MS degree in systems
engineering in 1996, both from the University of
Maryland at College Park. Mr. Mahajan is a soft-
ware engineer at BDM International in McLean,
Virginia. Mr. Mahajan was a graduate research
assistant in the Human-Computer Interaction
Laboratory, University of Maryland from 1994–
1996.

Ben Shneiderman received his BS degree from
City College of New York in 1968 and his PhD
degree from the State University of New York at
Stony Brook in 1973. He received an honorary
doctorate of science from the University of
Guelph, Ontario, Canada in 1996. He is a pro-
fessor in the Department of Computer Science,
head of the Human-Computer Interaction Labo-
ratory, and a member of the Institutes for Ad-
vanced Computer Studies and for Systems Re-
search, all at the University of Maryland, College

Park. Dr. Shneiderman is the author of Software Psychology: Human
Factors in Computer and Information Systems (1980) and Designing
the User Interaface: Stategies for Effective Human Computer Interac-
tion (1987, second edition 1992, third edition 1998) Addison-Wesley,
Reading, Massachusetts. Dr. Shneiderman was elected a fellow of the
Association of Computing Machinery in 1997.

