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ABSTRACT

Motivation: The most commonly utilized microarrays for
mRNA profiling (Affymetrix) include ‘probe sets’ of a series
of perfect match and mismatch probes (typically 22 oligonuc-
leotides per probe set). There are an increasing number of
reported ‘probe set algorithms’ that differ in their interpretation
of a probe set to derive a single normalized ‘signal’ representat-
ive of expression of each mRNA. These algorithms are known
to differ in accuracy and sensitivity, and optimization has been
done using a small set of standardized control microarray
data. We hypothesized that different mRNA profiling projects
have varying sources and degrees of confounding noise, and
that these should alter the choice of a specific probe set
algorithm. Also, we hypothesized that use of the Microarray
Suite (MAS) 5.0 probe set detection p-value as a weight-
ing function would improve the performance of all probe set
algorithms.

Results: We built an interactive visual analysis software tool
(HCE2W) to test and define parameters in Affymetrix ana-
lyses that optimize the ratio of signal (desired biological vari-
able) versus noise (confounding uncontrolled variables). Five
probe set algorithms were studied with and without statistical
weighting of probe sets using the MAS 5.0 probe set detec-
tion p-values. The signal-to-noise ratio optimization method
was tested in two large novel microarray datasets with dif-
ferent levels of confounding noise, a 105 sample U133A
human muscle biopsy dataset (11 groups: mutation-defined,
extensive noise), and a 40 sample U74A inbred mouse lung
dataset (8 groups: little noise). Performance was measured
by the ability of the specific probe set algorithm, with and
without detection p-value weighting, to cluster samples into the
appropriate biological groups (unsupervised agglomerative

*To whom correspondence should be addressed.

clustering with F-measure values). Of the total random
sampling analyses, 50% showed a highly statistically signi-
ficant difference between probe set algorithms by ANOVA
[F(4,10) > 14, p < 0.0001], with weighting by MAS 5.0 detec-
tion p-value showing significance in the mouse data by ANOVA
[F(1,10)>9, p <0.013] and paired t-test [t(9)= — 3.675,
p =0.005]. Probe set detection p-value weighting had the
greatest positive effect on performance of dChip difference
model, ProbeProfiler and RMA algorithms. Importantly, probe
set algorithms did indeed perform differently depending on the
specific project, most probably due to the degree of confound-
ing noise. Our data indicate that significantly improved data
analysis of mRNA profile projects can be achieved by optim-
izing the choice of probe set algorithm with the noise levels
intrinsic to a project, with dChip difference model with MAS 5.0
detection p-value continuous weighting showing the best over-
all performance in both projects. Furthermore, both existing
and newly developed probe set algorithms should incorporate
a detection p-value weighting to improve performance.
Availability: The Hierarchical Clustering Explorer 2.0 is
available at http://www.cs.umd.edu/hcil/hce/. Murine arrays
(40 samples) are publicly available at the PEPR resource
(http://microarray.cnmcresearch.org/pgadatatable.asp; http://
pepr.cnmcresearch.org; Chen et al., 2004).

Contact: ehoffman@cnmcresearch.org

INTRODUCTION

Simultaneous analysis of many thousands of genes on the
microarray leads to an ‘expression profile’ of the original

cell or tissue. This profile represents the subset of the 40 000
genes that are being employed by that cell or tissue, at that
particular point of time. High density oligonucleotide arrays

containing up to 500 000 features are used widely for many
projects in biological and medical research. The most popular
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Affymetrix GeneChip uses about 1 million oligonucleotide entire project. Most reports of new probe set algorithms,
probes to query most (~40 000) human mRNAs in two smalland comparison of existing algorithms, have been perform-
(1.28 cn?) glass arrays. Importantly, Affymetrix arrays have ance using one or a few ‘test datasets’ in the public domain;
intrinsic redundancy of measurements for each gene, witBpecifically ‘spike in’ control datasets from Affymetrix
11-16 ‘perfect match’ probes for different regions of each(http://www.affymetrix.com/analysis/download_center2.affx)
gene sequence, with each perfect match paired with a simand GenelLogic (http:/qolotus02.genelogic.com/datasets.nsf/)
ilar ‘mismatch’ probe with a single destabilizing nucleotide (Li and Wong, 2001b; Irizarret al., 2003b; Bolstackt al.,
change in the center of the 25 nucleotide sequencesfldl, = 2003). These data have shown that using only the perfect
2002; Hubbellet al., 2002). The complete set of 16 probe match probe, and ignoring the mismatch probe of each probe
pairs is called the ‘probe set’ for any single gene. The mispair can considerably increase the sensitivity of the study,
match is meant to serve as a ‘noise filter’; labeled mRNAparticularly at low signal levels (Irizarrgt al., 2003a). The
binding to the ‘mismatch’ is considered to represent a measperformance of different probe set algorithms and normal-
ure of non-specific binding, and thus a measure of ‘noiseization methods is typically done using receiver operating
for the corresponding perfect match (see The Tumor Analysisharacteristic (ROC) curves, providing an assessment of
Best Practices Working Group, 2004). signal-to-noise ratio for the spike-in control mRNAs.

There are many confounding uncontrolled variables As discussed above, different projects are known to have
intrinsic to most microarray projects. For example in humandifferent levels of confounding noise. We hypothesized that
patient samples, the outbred nature of humans leads to exterthe increased sensitivity of probe set algorithms thatignore the
ive genetic heterogeneity between individuals, even if sharingnismatch signal, such as robust multi-array average (RMA)
the same pathological condition or exposed to the same enviftrizarry et al., 2003b), would be expected to come at an
onmental or drug challenge. It is often difficult to precisely increased cost of noise, where the quality of low level signals
match age, sex and ethnic background of human subjects thefined by RMA in ‘noisy’ projects would lead to data inter-
microarray projects, leading to considerable inter-individualpretations of poor integrity. Specifically, detection of spike-in
variability in the analyses. Furthermore, human tissue samplasontrols would be expected to be independent of confounding
typically show extensive tissue heterogeneity, with small sizenoise within arrays and projects. However, the increased sens-
leading to sampling error, and variability in histological sever-itivity of some probe set algorithms would be expected to lead
ity and cell content (e.g. variable amounts of fibrosis, fattyto a high proportion of false positives in projects where there
infiltration, inflammation, regeneration). Many of these vari- was relatively high level of unwanted noise. We hypothesized
ables are not a concern in studies of inbred mouse strainthat different probe set algorithms would show a ‘project-
Inbred mice show very little inter-individual variability, and specific’ performance, based upon the extent of confounding
the experimental manipulation of groups of mice leads tonoise in a particular project.
homogeneous treatment groups often with relatively high The optimization of signal-to-noise ratio is a critical issue
numbers of replicates. Moreover, the use of whole lungs om microarray experiments, where tens of thousands of trans-
other tissues leads to a normalization of tissue heterogeneitgripts are analyzed simultaneously. If a highly sensitive probe

There are also technical variables that could confoundet algorithm is used in a noisy project, then the resulting
interpretation, quality and preservation of the biopsy materdata will have very poor quality and specificity, with many
ial, quality of RNA, cDNA and cRNA, hybridization and thousands of ‘false positives’. This would lead to both mis-
chip image variation, probe set signal algorithms and statelassification of samples, and very noisy results that could
istical analysis methods. Quality Control (QC) and Standardabsorb large amounts of experimental time to parse through.
Operating Procedure (SOP) can mitigate many confoundingven though such noises and noise filtering methods strongly
technical variables with factory-produced Affymetrix arrays, influence data analysis, signal-to-noise ratios are rarely optim-
and these have been found to be a relatively minor source aéfed, or even considered in microarray data analyses. This is
confounding variation if QC parameters are employed (Bakayartly because of the lack of analysis tools that allow research-
et al., 2002a; DiGiovannét al., 2003). ers to interactively test and verify various combinations of

‘Probe set algorithms’ refer to the method of interpretingparameters for noise analysis.
the 11-16 probe pairs (22—32 oligonucleotide probes) in a Another aspect of microarray data interpretation that could
probe set on an Affymetrix microarray that query a parti-alter results is the ‘weighting’ of specific probe sets. Typ-
cular mRNA transcript. Key variables in different probe setically, once a particular probe set algorithm is employed on
algorithms include the penalty weight given to the mismatcha microarray project, each probe set signal is considered as
probe of each probe pair, the weighting of specific probesqual weight with any other probe set signal. However, probe
in a probe set based on empirical ‘performance’, the mansets that detect transcripts expressed at a very high level would
ner by which a single ‘signal value’ is derived from the be expectedto show a‘more robust’ signal with greater quality,
interpretation of the probe set, and how this is normalizeccompared to probe sets that are performing poorly or detect-
relative to other probe sets on the microarray or in theng very low level transcripts (near background). A measure
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of the confidence of the performance of the probe set is §2) compare three more signal algorithms (dChip, dChip dif-
continuous ‘detectiomp-value’ assignment, which is a func- ference model, Probe Profiler), (3) use a novel continuous
tion of the signal difference between the perfect match (PMhoise filtering method instead of the binary 10% ‘present call’
and mismatch (MM) probes in a probe set and the signaliltering used previously and (4) evaluate the unsupervised
intensity. In Affymetrix MAS 5.0, the Discrimination score, clustering results not only using visual inspection but also
R =(PM—-MM)/(PM + MM), is calculated for each probe using a general external evaluation measurer(@asure).
pair, and the one-sided Wilcoxon’s signed rank test against We first explain our permutation study design and datasets
a small positive number (defawt0.015) is performed to in detail. Then, our novel noise filtering method incorpor-
generate the detectignvalue (Affymetrix, 2001a,b,c http:// ated into the unsupervised hierarchical clustering algorithm
www. affymetrix.com/products/software/specific/mas.affx, is presented. An external clustering evaluation measure—
https://www.affymetrix.com/support/downloads/manuals/ F-measure is explained and application of the measure to
data_analysis_fundamentals_manual.pdf). Two threshold hierarchical clustering result is explained in the follow-
values and are assigned where poor detectipmalues (less  ing section. Then, we talk about how those two methods
thanws) are assigned an ‘absent’ call, while more robust detecare implemented irHCE2W (the improved version of the
tion p-values (greater thamy) are assigned a ‘present’ call Hierarchical Clustering Explorer 2.0 with+value weighting
(defaultey; = 0.04 andx2 = 0.06). It is now standard prac- andF-measure). After presenting results with discussions, we
tice in many publications using Affymetrix arrays to use theconclude our paper.
‘present/absent’ calls as a form of noise filters. For example,
a ‘10% present call’ noise filter requires any specific probe
set to show a ‘present’ call in at least 1 in 10 microarraysSYSTENIS AND METHODS
in that project, otherwise it is excluded from all further ana-We selected two large Affymetrix datasets that were expected
lyses (DiGiovannet al., 2003, 2004; Zhaet al., 2002, 2003). to differ in amount of mitigating, uncontrolled biolo-
Use of a threshold is not as statistically valid as a continuouglical noise. Data generation for both datasets was subjec-
weighting method, and here we tested the effect of weightinged to standardized quality control and standard operating
of all probe set algorithms by MAS 5.0 detectiprvalues. procedure. The first dataset was a mouse experimental
We hypothesized that it would be possible to identify theasthma project, of 40 individual mouse lungs studied
most appropriate probe set analysis and noise filtering metha 8 biological groups (5 mice as independent replicates
ods by conducting permutational analysis of the probe setithin each group) (see http://microarray.cnmcresearch.org/
‘signal’ algorithm, and noise filters using continuous MAS pgadatatable.asp; U74A microarrays utilized). The studied
5.0 probe set detectiop-values. The goal was to use unsu- biological variables were exposed to dust mite allergen and
pervised hierarchical clustering to find the signal algorithmtime points after exposure. This dataset was expected to be
that maximized the separation of the ‘known’ biological vari- relatively low in confounding biological noise; entire lungs
able, while minimizing confounding ‘noise’. We enhanced were used that effectively removed tissue heterogeneity as an
our interactive visual analysistool, the Hierarchical Clusteringuncontrolled variable, and the inbred nature of the mouse lines
Explorer to enable researchers to perform the permutationaised effectively removed uncontrolled genetic heterogeneity
study and to help them interactively evaluate the result. Wdetween individuals.
report the analysis results of such permutational studies with The second datasetwas a human muscle biopsy project, with
very noisy human muscle biopsies samples and much clean&d5 muscle biopsies used individually on U133A microarrays,
inbred mouse lung biopsies samples. in 11 biological (diagnostic) groups. Clinical heterogeneity,
In our previous work (Seet al., 2003, http://ieeexplore.iee. different human patients may or may not share the same exact
org/ie15/8655/27434/01221348.pdf), we performed a pilounderlying initiating biochemical problem, is a major con-
permutational study with a small subset (25 samples ofounding variable in most human mRNA profiling studies. It
3 groups) of our 105 human muscle biopsies. We varied probis important to point out that clinical heterogeneity was not a
set signal algorithms (MAS 5.0, RMA), ‘present call’ filter confounding variable in the human samples studied here, as
thresholds, and clustering linkage methods, and ‘visually’patients within a diagnostic group were mutation-positive for
investigated the results in HCE2 (the Hierarchical Clusteringhe same gene (e.g. shared the same ‘ground truth’ in primary
Explorer 2.0). For the dataset, the strength of the biologicabiochemical disorder) (Duchenne muscular dystrophy, Becker
variable was maximized, and noise minimized, using MASmuscular dystrophy, spastic paraplegia, dysferlin deficiency,
5.0, 10% present call filter, and average linkage (or averagBukutin related protein deficiency, Calpain Il deficiency,
group linkage). In this paper, we extend the pilot study toFascioscapulohumeral muscular dystrophy, Emery Dreifuss
the extent that (1) we test not only the human muscle datenuscular dystrophy). In two groups, there is no known
with extensive noise but also the inbred mouse lung dataingle gene causative of the disorder, but all patients in
expected to show considerably less biological noise [varyindhese groups were clearly affected by the condition as dia-
genetic background (polymorphisms), tissue heterogeneityjnosed by an acknowledged leader in that specific disorder
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Fig. 1. Permutation study framework using unsupervised clusteringl@E2W (the improved version of the Hierarchical Clustering
Explorer 2.0 withp-value weighting andF-measure). Inputs to the Hierarchical Clustering Explorer are two files, signal data file and
p-value file. Each column of the two input files has values for a sample (or a chip), and the known target biological group index is assigned
to each column of the signal data file. Success is measured Hsingasure of a dendrogram and the known biological grouping.

(Acute Quadriplegic, Juvenile dermatomyositis). The 11 diaRMA. MAS 5.0 results were obtained using Affymet-
gnostic groups were normal skeletal muscle from volunteersix Laboratory Information Management Systems (LIMS)
in exercise studiegn = 19) (Chenet al., 2003), Duch- software, dChip results were generated using the official
enne muscular dystrophgz = 9) (dystrophin mutations; software release (Li and Wong, 2001a), Probe Profiler
Chenet al., 2000; Bakayet al., 2002a,b), Acute Quadriplegic results were obtained using the Probe Profiler software by
Myopathy (n = 5) (TGFbeta/MAPK activation; DiGiovanni Corimbia Inc. (www.corimbia.com) and the RMA results
et al., 2004), spastic paraplegia =4) (spastin mutations; were obtained using the affycomp package of the Biocon-
Molon et al., 2004), dysferlin deficiencyn =9) (dysferlin  ductor Project (http://www.bioconductor.org).
gene mutations; unpublished data), Juvenile Dermatomyos- Previous comparison studies using well-known benchmark
itis (n = 18) (autoimmune disease; Tezak al., 2002), datasets such as spike-in and dilution experiments have evalu-
Fukutin related protein hypomorgh = 7) (homozygous mis-  ated probe set signal algorithms in terms of the known expec-
sense for glycosylation enzyme, M. Bakay, K. Gorni andted features (Baugét al., 2001; Hillet al., 2001). Copet al.
E. P. Hoffman, unpublished data), Becker muscular dystrophy2003) have developed a graphical tool to evaluate probe set
(n = 5) (hypomorph for dystrophin; see Hoffmatal., 1988,  signal algorithms using statistical plots and summaries. They
1989; M. Bakay, Y.-W. Chen and E. P. Hoffman, unpub- also utilized the benchmark datasets to identify the statistical
lished microarray data), Calpain Ill deficien¢y = 11) features of the data for which the expected outcome is known
(Calpain Ill gene mutations; see Chetual., 1999; M. Bakay in advance. These studies can provide a general guideline of
and E. P. Hoffman, unpublished microarray data), Fasciowhich method is suitable for a specific investigation. While
scapulohumeral muscular dystroptyy = 13) (deletion of  one method is better than others in general, according to the
chromosome 4q; Winokuat al., 2004) and Emery Dreifuss studies using the benchmark data, the ‘ideal’ method of probe
muscular dystrophyn = 4) (lamin A/C missense muta- set analysis could be different for different projects. What we
tions; M. Bakay, G. Melcon and E. P. Hoffman, unpublishedsuggestin this paper is a permutation study framework (Fig. 1)
microarray data). This dataset was expected to have considdo help researchers choose a probe set signal algorithm that
ably greater confounding biological noise. The age and sex adptimizes the signal-to-noise balance for their projects.
subjects varied, tissue heterogeneity is known to be signific- Samples (or columns in the input file) were clustered
ant, and genetic heterogeneity between subjects is substantiaking the unsupervised hierarchical agglomerative clustering
Moreover, the differences between groups were expected @lgorithm in HCE2W (the improved version of the Hier-
be relatively minor for some groups. For example, Duchennearchical Clustering Explorer 2.0), and the ‘unsupervised’
muscular dystrophy and Becker muscular dystrophy are botblustering results are compared with the grouping by our tar-
caused by mutations of the same dystrophin gene; howevegget biological variable. In this manner, we can evaluate the
Duchenne affects children and is caused by nonsense mutprobe set signal algorithms by comparing the groupings nat-
tions, while Becker muscular dystrophy affects adults andurally derived from the input dataset to the groupings formed
is caused by partial-loss-of-function mutations. Thus, anyby our target biological variable.
attempt to distinguish some groups using unsupervised meth- Hierarchical agglomerative clustering has been the most
ods is expected to be considerably more challenging than farommonly used method for microarray data clustering
the murine lung dataset. Note that all data were subjecte(Moreauet al., 2002) since Eisert al. (1998) first applied
to the same QC/SOP protocols, as described on our websiteto microarray data analysis. In hierarchical agglomerative
(http://microarray.cnmcresearch.org), and was generated iclustering, when we want to cluster data items, each data
the same laboratory (Center for Genetic Medicine, Children’stem initially occupies a cluster by itself. The most similar
National Medical Center, Washington DC). two clusters are then merged to construct a new cluster. The
For the two datasets, we processed CEL files using fiveimilarity/distance values between the new cluster and the
different probe set signal algorithms; MAS 5.0, dChip remaining clusters are then updated using a specific linkage
perfect match only, dChip difference, Probe Profiler andalgorithm. We ran HCE2W using the average linkage method
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(aka UPGMA: Unweighted Pair Group Method with Arith- contributes to determining the detection call for the corres-
metic Mean) in this study. We have previously studied theponding probe set. When the probe set detecjievalue
effect of different linkage algorithms in agglomerative clus-reaches a certain level of significance, then the probe set is
tering, and found that the UPGMA linkage method providedassigned a ‘present’ call, while all these probe sets with less
the best sample distinction by visual output (Setoal., robust signal-to-noise ratios are assigned an ‘absent’ call. This
2003). Typically for microarray data, the average linkageenables the use of a ‘present call’ threshold noise filter that
method gives acceptable results (Quackenbush, 2001). litas been used in many published studies (Gheh, 2000,
is at least included or used as default measures in marg002; DiGiovanniet al., 2003, 2004; Hittekt al., 2003).
standard microarray analysis tools (GeneSpring, Spotfirén our previous study (Seet al., 2003), we reported that
DecistionSite, S-plus ArrayAnalyzer, R and so on). a ‘10% present call’ noise filter did improve the perform-
Average linkage is summarized as follows. gtbe anew ance of probe set signal algorithms. While such ‘present call’
cluster, a merger of’; and C; at a stage of the hierarch- based filtering improves performance, itis clearly an arbitrary
ical agglomerative clustering process. l&t be one of the threshold method, and thusitis highly possible that potentially
remaining clusters. Then the distance betw€gandC; can  important signals that might be conveyed by the probe sets are
be calculated using the following equation where Digt(C,)  filtered out.

is the distance (or dissimilarity) betwe€h andCy, |C,] is Affymetrix MAS 5.0 uses a two-step procedure to deter-
the number of items in a clustér,: mine the detectiomp-value for a probe set. It calculates the
_ . discrimination scoreR = (PM — MM)/(PM + MM) for each
Dist(Cy, Cx) = Dist(C;, C)*|Ci|/(ICi| + |C;]) probe pair, and then tesisagainst a small positive threshold
+ Dist(C;, CO*|Cj1/(Cil + C; ). value. It assigns arank to each probe pair according to the dis-

tance fromR and the given threshold, and then the one-sided

The merge and update are repeated until there remains onfilcoxon’s signed rank testis used to generate the detegtion
one cluster of size. value for the probe set. The discrimination sc@rdescribes

We also developed a novel probe set weighting scheme fdhe ability of a probe pair to detect its intended target, so the
data analysis. Newer Affymetrix MAS 5.0 software generategletectionp-values are a reliable continuous indicator of how
a probe set detectiop-value; this provides an assessment ofwell the measured transcript is detected. Even though these ¢
the assuredness of the distinction between perfect match ag¢tectionp-values are given by Affymetrix MAS 5.0, they
mismatch probes across the entire 22 feature probe set, af@n be used with other signal algorithms since (1) all signal
thus a measure of the ‘performance’ of the probe set. It would@lgorithms used the CEL files as their inputs and detection
be expected of probe sets that performed well (e.g. highly-values are directly calculated from CEL files and (2) the
significant detectiop-value) would provide ‘better’ datathan Signal algorithm and detection algorithm are independent of
poorly performing probe sets. A corollary to this hypothesis iseach other in MAS 5.0. We used the detectjgmalues from
that weighting of probe sets so that clustering is driven mordVAS 5.0 as a continuous weighting for probe sets for all five
strongly by well-performing probe sets would provide a noveltested signal algorithms in this study. By involving this con-
noise filter that would improve clustering results. Towardsfidence factor in the clustering process, we believe it would
this end, we used each probe set algorithm tested with an@ve greater potential sensitivity by considering all probe sets
without a continuous weighting of all probe sets based upoiin an analysis without the cost of poor signal-to-noise ratio.
MAS 5.0 probe set detectiop-value. For each input signal ~ There are many possible similarity measures for unsuper-
dataset, we ran HCE twice to obtain 20 comparison result¥ised clustering methods, and it is also possible to develop
in total (2 experiments 5 signal algorithms< 2). First, we ~ weighted versions of most similarity measures. For example,
ran HCE without weighting using the Affymetrix MAS 5.0 we can derive a weighted Pearson correlation coefficient as
detectionp-values. Second, we ran HCE with weighting eachfollows from the Pearson correlation coefficient that has been
signal value in the input dataset with the detectimalues ~ widely used in the microarray analysis. bet= (x1, ..., x,)
as explained in the following section. By comparing the twoandy = (y1,...,y,) be the vectors representing two arrays to
results, the effect of noise filtering methods can be verifiede compared, and lgt(y) = [p(y1), ..., p(y»)] andp(x) =
across the five probe set signal algorithms and two datasets b#(x1), - - -, p(x»)] be the vectors representingvalues for
different noise-level. x andy, respectively. Then the weighted Pearson correlation

coefficient is given by
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I ncorporating probe set detection p-valueto

similarity calculation S wi (xi — %) (Vi — Yw)
Affymetrix noise calculations give us two outputs: one is the Ty = VS witi —x0)2 Y wi(yi — yw)2
continuous detectiop-value assignment, and the other is a

simple detection call (‘present/absent’). Each signal intenswherew; = [(1 — p(x;) + (1 — p(yi)1/2, Y, = > wiyi/
ity value has a confidence factor—detectigtvalue, which > w;, Xy, = Y wixi/ > w;.

@)
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Overall_F-measure=0
FOR EACH class i
BEGIN
F(1)=0 // the current maximum f-measure F(i) for class i
FOR EACH subtree j
BEGIN
cacluate F(i,j) using [equation 2]
IF F(i,j) is greater than F(i) THEN F(i)=F(i.j)
END
Overall_F-measure = Overall_F-measure
+ (the number of samples of class i)*F(i)/(the total number of samples)
END

Fig. 2. The pseudo code for the overallmeasure calculation.

The weighted Pearson correlation coefficient has been useatktermined by the minimum similarity thresholdHHCE2W.
in many microarray data analysis tools, e.g. in Eisen’s Clustetet Cy,...,C;, ..., C, be the right clusters according to the
software (http://rana.lbl.gov/manuals/ClusterTreeView.pdf) target biological variable. LekC1,...,HCj,..., HC,, be
Our extension is that we use the complement of detectiothe clusters from the hierarchical clustering results.Fin

p-value to calculate the weight for each term since the smallemeasure, each cluster is considered as a query and each clas

the p-value is, the more significant the signal is. Other similar-(or each correct cluster) is considered the correct answer of
ity measures such as Euclidean distance, Manhattan distanttee query. TheF-measure of a correct cluster (or a claSs)
and cosine coefficient can be extended to their weighte@nd an actual clustéd C; is defined as follows:
version in a similar way to the weighted Pearson correlation o o
coefficient. Fi, j) = 2P, j) - RG, )
. . P(@i,j)+ RG, J)
Using external measure for evaluation of

unsupervised clustering results where
In our previous pilot study (Seet al., 2003), we visually o |IC; N HC|| o |Ci N HCj|
inspected the unsupervised clustering results to see how well £ /) = \HCj| RG,j) = T (2)

the clustering result fit to the known biological variable. Visual

inspection was the right choice for the study since we only The precision value® (i, j)and recall valueR(, j) are
have 25 arrays of 3 different groups of samples. But sincelefined by the information retrieval concepts. Theneasure
we now have 105 arrays of 11 different groups of samplespf a classC; is given by

visual inspection is not realistic. Therefore, we decided to "

use reasonable clustering evaluation measures in addition to F(i) = maxF(, j). 3)

visual inspection in this study. j=1

There are two kinds of clustering result evaluation measginally, the F-measure of the entire clustering result is
ures, internal and external. The former is for the casgjiven by

where one is not certain what the correct clustering is. "

L |Cil .
It compares the clusters using internal measures, such as E N F(i), 4
distance matrix without any external knowledge. The lat- i=1

ter is for the case where we already know the correciyhereN is the total number of arrays in the experiment.
classes of our samples. In this study, we already know The F-measure score is between 0 and 1. The higher the
the correct class labels of samples, and thus use externglmeasure score is, the better the clustering result is. When
measures. Possible external measures include purity, entroye calculate theF-measure for the entire cluster hierarchy,
andF-measures. Among themi-measures (Van Rijsbergen, for each external class we traverse the hierarchy recursively
1979,  http:/lwww.dcs.gla.ac.uk/Keith/Preface.html) haveand consider each subtree as a cluster. TheRtmeasure for
been used as an external clustering result evaluation meagn external class is the maximum Bfmeasures for all sub-

ure in many studies across many fields including informationrees. The pseudo code for the overalmeasure calculation
retrieval and text-mining (Lewis and Gale, 1994; Bjornaris shown in Figure 2.

and Aone, 1999; Cohen and Richman, 2002). Furthermore, ) ) ) ) )
F-measure has been successfully applied to hierarchica&lnter""(_:t'veV'Sual analysis of hierarchical
clustering results (Bjornar and Aone, 1999). clustering results
We applied F-measure to the entire hierarchical struc- HCE2 (the Hierarchical Clustering Explorer 2.0) is an inter-
ture of clustering results and also to the set of clustersactive visualization tool for hierarchical clustering results
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(a) Clusterig DialogBox (b) Visualization of a clustergresult of human muscle samples

Fig. 3. Software development of HCE2W for probe set selection and deteptimalue weighting. 4) Researchers can check the option
checkbox (highlighted with a red oval) to use the MAS 5.0 detechiemlues as weights for distance/similarity measuresE@ch sample
name is color-coded by its biological class. Overélineasure is highlighted with a green oval. Theneasure distribution is shown, as the
distance from the left-hand side, over the dendrogram display as indicated by an arrow mark.

(Seo and Shneiderman, 2002, http://www.cs.umd.edu/hcilThrough this comparison, users can determine clustering
hce/). HCE2 users load a microarray experiment dataset fropparameters that most faithfully assemble items into the appro-
a tab-delimited file, and apply their desired hierarchical cluspriate biological groups according to their known biological
tering methods to generate a dendrogram and a color mosaitnction.

Users can immediately observe the entire clustering resultin a Since sample clustering is the main task of this study, we
single screen that enables identification of high-level patterngmplemented an improved version of HCERICE2W, to

major clusters and distinct outliers. They can adjust the coloenable users to better understand sample (or chip) clustering

mapping to highlight the separation of groups in the datasetesults. WithHCE2W, users can focus on either sample clus-
Then they start their exploration of the groupings. Instead ofering or gene clustering by switching the main dendrogram
using fingers and pencils on a static clustering results, HCEZiew between sample and gene. When the sample clustering
users can use a dynamic query device called ‘minimum similresult is on the main dendrogram view, each sample name
arity bar’ to find meaningful groups. THé-coordinate of the is color-coded according to its biological class so that users
bar determines the minimum similarity threshold. A cluster (acan assess the quality of clustering from the visual representa-
subtree of the dendrogram) will be shown only if any two itemstion. To facilitate signal-to-noise ratio analyses for microarray
in the cluster are more similar than the minimum similarity experiments, we incorporated a weighting method for dis-
threshold specified by the minimum similarity bar. Thus, usergance/similarity function and an external clustering evaluation
see tighter clusters as they pull the bar lower to increase themethod intoHCE2W as described in the previous sections.
minimum similarity threshold. HCEZ2 is provided as a public HCE2W users can choose the option of usipgralues as
domain software tool. weights in the clustering dialogue box (Fig. 3a) and get
A troublesome problem related to clustering analysis is thaan instantaneous graphical feedbackFemeasure for each
there is no perfect clustering algorithm. Clustering resultaninimum similarity threshold value (Fig. 3b).
highly depend on the distance calculation method and linkage As users drag the minimum similarity bar, a line graph of
method used in the clustering process. Therefore, molecuF-measure score is overlaid on the main dendrogram view so
lar biologists and other researchers need some mechanismttuat they can easily see the overall distributionfefneasure
examine and compare two clustering results. HCE2 users caralues right on the clustering result. Since the maximiam
select two different clustering methods and compare the twoneasure value is highlighted with red dot on theneasure
clustering results in a single screen. When users double clicllistribution curve, users can easily know when to stop drag-
on a cluster in one clustering result, HCE2 shows the mapging the minimum similarity bar to get the best clustering
ping to the other clustering result by connecting the same itemesults in terms of-measure. Thig'-measure is calculated
with a line (for detail see http://www.cs.umd.edu/hcil/hce/). based on the current grouping determined by the current value
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of minimum similarity threshold. While thig-measure helps following the same quality control and standard operating
users find natural groupings in the dataset, we need anothprocedures, thus minimizing non-biological technical noise
measure that evaluates the clustering structure as a whoie both projects.
to compare many clustering results reasonably. We used theAll arrays were analyzed using five different signal
overall F-measure described in the previous section for thisalgorithms, including Affymetrix MAS 5.0, dChip perfect
purpose. The overall-measure evaluates the entire clustermatch only model, dChip difference model, Probe Profiler and
hierarchy instead of considering only the groups by the curRMA method. We used the continuous probe set detegtion
rent minimum similarity thresholdHCE2W shows the overall  value as a ‘weighting’ function. Spreadsheets corresponding
F-measure value at the top center of the main dendrograrno each profile were then loaded ifHCE2W. Unsupervised
view that is calculated by the pseudo code in the previouslustering of the profiles was done using permutations of
section (Fig. 2). signal algorithms, with and without a noise filter (continu-
ous probe set detectignvalue weighting). For each signal
algorithm, we prepared two data files; a signal value file and a
RESULTS AND DISCUSSION detectionp-value file where each column is a sample and each
We felt that the ‘ideal’ method of probe set analysis was likelyrow is a probe set. OMCE2W program supports five differ-

different for different projects. Application of any noise fil- entlinkage methods: average, average group, complete, single g

ter can be appropriate in one context, and inappropriate iand one-by-one linkage (Seo and Shneiderman, 2002). In this
another, depending on the sensitivity desired, and the relativetudy, we choose average linkage since it is the most widely
cost of noise that generally accompanies increased sensitiused linkage method and it was one of the most desirable
ity. For example, the RMA method performs very well with linkage methods in our previous study (Sz@l., 2003).
known ‘spike-in’ RNAs, providing greater sensitivity and  For each signal algorithm, we first ratiCE2W without
more stable ‘signals’ from probe sets. However, the greateapplying any noise filter. ThenHCE2W was run again
sensitivity of the RMA method would be expected to comeapplying the noise filter (using the detectiptvalues as a con-
at a cost to specificity; the less weight given to the mismatchinuous weighting function) to the dataset. We visualized the
‘noise’ filter by RMA would be expected to lead to greater unsupervised clustering of the dataset to determine the method
signal-to-noise ratio problems in complex solutions. The testthat provided the best clustering according to our ‘known’
ing of two cell samples that vary only due to a single highly biological variable (specific biochemical defect, patient dia-
controlled variable would be best analyzed by RMA. On thegnosis), and thus was most effective in reducing undesirable
other hand, comparison of human muscle biopsy profilesoise. In the following bar graphs (Fig. 4), we have deter-
(as below) are complicated by many uncontrolled variablesmined the ‘performance’ for each probe set algorithm using
such as inter-individual variation, and the biopsy content ofF-measure, either weighted by Affymetrix MAS 5.0 probe
different constituent cell types (myofiber, connective tissueset detectionp-value (the ‘wt’ bars) or unweighted (the
vasculature). In the latter experiment, the greater sensitivity oiho-wt’ bars).
RMA would be offset by the high cost of specificity and noise  As expected, the two projects showed different results, with
resulting from non-specific hybridization and uncontrolledthe inbred mouse lung data (low noise) showing greater suc-
variables. cess of unsupervised clustering into appropriate biological
We investigated the systematic alteration of signal-to-noise@ariables by all probe set algorithms and weighting meth-
ratios by iteratively altering the probe set analysis algorithmods. This reflects the much more highly controlled nature of
(five methods), and weighting of genes using MAS 5.0 probeghe mouse data, with less confounding biological noise, as
set detectiomp-value. The latter is, to our knowledge, a novel described above.
method of continuous weighting based upon the observed per- Using probe sep-value as a weight improved the perform-
formance of each probe set, with better performing probeance of dChip difference model, Probe Profiler and RMA
given greater weight in the resulting clustering. We alsoprobe set algorithms in both datasets (Fig. 4). There was
developed a new implementatiolfCE2W, of our public  no detectable change in the performance of MAS 5.0 and
domain HCE2 software, to effectively interrogate optimal dChip PM only algorithms using unsupervised clustering and
signal-to-noise ratios by visualizing-measures in unsuper- F-measure (Fig. 4). This suggests that utilizing a continuous
vised clustering analyses. To test the effectiveness of thesgeighting with MAS 5.0 detectiorp-value would improve
methods, we utilized two large datasets that were expedata analysis with three of the most commonly used probe set
ted to differ considerably in the amount of confounding algorithms and clustering methods.
and uncontrolled biological noise intrinsic to the projects; We then compared the relative performance of the differ-
a ‘noisy’ 105 human muscle biopsy U133A dataset, and a&nt probe set algorithms. Most obvious was the differences
‘less noisy’ 40 microarray U74A inbred mouse lung datasein performance of RMA in the two datasets. RMA, a probe
(see Systems and Methods section for description of the dataet algorithm that is thought to be among the most sensitive
sets). All microarrays were processed in the same laboratoryyith low signal intensities, performed very well in the mouse
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Fig. 4. External evaluation results usigrmeasure of unsupervised clustering for the human muscular dystrophy data and the mouse lung

biopsy data. ‘no-wt’ bar represents the result without MAS 5.0 detegtivalue weighting, and ‘wt’ bar represents the result withalue
weighting.
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Fig. 5. Experiment results with 50% random sampled datasaslChip difference model with detectigrirvalue weighting outperformed
other probe set signal algorithms in human muscle @at@, 10 > 14,p <0.0001]. b) The result withp-value weighting (‘wt’) was
statistically significantly better than that without weighting (‘no-wt’) for mouse lung f& = —3.675,p = 0.005].

dataset, if used with MAS 5.0 detectignvalue weighting There was no statistically significant difference in the human
(Fig. 4b). However, this same RMA algorithm showed themuscle data. This is because the performance of MAS 5.0 and
poorest performance of all algorithms in the human datalChip PM only model was unchanged or slightly worse with
(Fig. 4a). We can conclude that the greater sensitivity of thehe p-value weighting while those of others get better. Exclud-
RMA algorithm with low signal strengths is an advantage ining the two cases, the difference was statistically significant.
projects with low confounding noise (e.g. inbred mouse data)There was a statistically significant difference in the mouse
but this same advantage becomes a liability driving poor pertung datgz(4) = —3.687,p = 0.021]. We conclude that use
formance in the human data with high levels of confoundingof MAS 5.0 detectiorp-value weighting is recommended for
noise. It is important to point out that the large majority of dChip difference model, ProbeProfiler and RMA.
human subjects studied had a ‘known’ primary genetic defect We then used a random-sampling permutation study
(e.g. gene mutation positive), as described in the Systent® determine the statistical significance of differences in
and Methods section. Thus, underlying clinical heterogeneityperformance found between the different probe set algorithms
could be ruled out in this specific project. and to verify the previous-test result on the effect of
We performed paired-tests with the two results to see if continuous detectiop-value weighting with more samples
there is a statistically significant difference between the resultéig. 5). We random-sampled 50% of probe sets to partition
with or without continuous detectiop-value weighting. our original datasets into two small datasets with only half the
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number of probe sets. For each randomly sampled partition SEONCLUSION
input data, we repeated the previously mentioned permutatiogy; data suggest that large microarray projects should
study to get two-times larger external evaluation result. undergo a systematic ‘signal-to-noise ratio’ analysis, as we
We then conducted & 2 two-way ANOVA on the effect  paye presented here. By using permutations of probe set sig-
of five probe set signal algorithms and our novel detectiomg| aigorithms, and noise reduction filters (continuous variable
p-value weighting. The analysis showed that the probe sl ohe set detectiop-values), with unsupervised clustering,
signal algorithms did have a statistically significant effect onye analysis method that most faithfully assembles profiles
the external evaluation measure for both the mouse and humggyg the appropriate biological groups should maximize the
experiment§F (4,10 > 14,p < 0.0001]. The effect of the ~sjgnal from the biological variable, while minimizing the
detectionp-value weighting was statistically significant only confounding noise intrinsic to the project. This results in a
for the inbred mouse lung daf#'(1,10 > 9,p < 0.013].  pajanced signal-to-noise ratio assay that should provide the
We also re-ran pairedtests to verify the significance of the pest palance between sensitivity and specificity. Our future
detectionp-value weighting with more samples. Theest  pjans are to implement a more extensive and automated pro-
results showed that the continuous detecpievalue weight-  ject analysis, where these and other variables are systemically

ing made a more statistically significant difference for theyaried to achieve the best clustering into the desired biological
inbred mouse lung dafa(9) = —3.675,p = 0.005]thanthe yariaple groupings.

previous result, but this again did not reach significance for
the human muscle data.
Our data provide guidance of how researchers might optimLA\CK'\lOW'-EDGE'\/'E\”_S
ize probe set algorithms and signal weights for individualThis work was supported by NO1 NS-1-2339 from the NIH.
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