
Management/ R. Benjamin
Data Base Systems Editor

Optimum Data Base
Reorganization Points
Ben Shneiderman
State University of New York at Stony Brook

In certain data base organization schemes the cost
per access may increase due to structural inefficiencies
caused by updates. By reorganizing the data base the
cost per access may be reduced. However, the high cost
of a reorganization prohibits frequent reorganizations.
This paper examines strategies for selecting the optimum
reorganization points.

Key Words and Phrases: data base, reorganization,
files, information retrieval

CR Categories: 3.73

Copyright @ 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Department of Computer Science, Indiana
University, Bloomington, IN 47401.

362

Part I

The selection of optimum reorganization points is a
central problem in the maintenance of large data bases.
As additions and deletions are made to a data base, the
search cost deteriorates and a reorganization to reduce
the search cost is called for. However, since the cost of
performing a reorganization is relatively high, the fre-
quency of reorganization should be kept low. Reor-
ganization can be performed at fixed time intervals or
when the average search cost has deteriorated to a
certain level. The goal of this analysis is to minimize the
total cost of operation by determining the optimum time
interval or the optimum cost level at which a reorganiza--
tion is called for.

In the deterministic case in. which the deterioration
proceeds directly as a function of time, the two strategies
are equivalent. If we consider the deterioration of the
search cost to be random, then Eisen and Leibowitz
[1] have shown, in related research, that the total cost
will be minimized if the reorganization point is deter-
mined by a cost cutoff.

The techniques of analysis will be kept general so
that they may be modified to fit a wide variety of data
base designs. A number of examples seem to clarify
the possible application of this technique. We could
represent a simple one-way linked list of records sorted
in ascending order as a graph (see Figure 1). The access

Fig. 1.

cost between records might be a. If a new record were
to be inserted in the proper sequence but stored in an
overflow area, then we would have the graph shown in
Figure 2 where the access cost to the overflow area is b,

Fig. 2.

and b is greater than a. The deletion of a record might
be accomplished by changing pointers to make the
record unreachable, but without actually removing the
record from its place on the storage medium (see Figure
3). Now, although the number of records in the list

Fig. 3.

is the same as when we started (Figure 1), the average
search cost is greater. A reorganization would recoup
the space taken by the deleted record and would produce
the graph shown in Figure 4 whose search time is less
than the search time for the graph in Figure 3. Since

Communications June 1973
of Volume 16
the ACM Number 6

the cost of reorganization is high, care must be taken
in determining how frequently it is performed. In this
analysis, no worth is affixed to the storage space which
is reclaimed.

Fig. 4.

Other examples of occasions when this technique
could be applied are: (1) when the growth of a binary
sort-search tree may be unbalanced, resulting in high
search costs which can be reduced by a reorganization
to produce a balanced tree [2]; (2) with garbage collec-
tion in paged virtual memory systems; (3) when a table
of values which has pointers to overflows and deletion
flags can be reorganized to reduce the average search
cost; and (4) (the most pressing problem) in large on-
line data bases using sophisticated data management
facilities such as ISAM [3]. Long overflow chains require
multiple disk accesses and lead to serious deterioration
of the response time and, as a result, the search cost.

In a large DBMS (data base management system) as
envisaged in the CODASYL Data Base Task Group Re-
port [4] or the GUIDE/SHARE Report [5], one of the func-
tions of the data base administrator would be to de-
termine optimum reorganization points. The users need
not be aware of when a reorganization has taken place;
their accessing programs execute properly whether or
not the data base has been recently reorganized, but the
efficiency of the DBMS is improved.

As a first example, consider the case in which:
1. Reorganizations occur at fixed time intervals t.
2. The rate of additions to the file equals the rate of
deletion (i.e. the number of records remains constant).
Thus, after a reorganization, the search cost returns to
the initial search cost So.
3. The cost of a reorganization is always the same, R.
4. The search cost deteriorates at a fixed rate 0. Thus
after a time t since the last reorganization, the search
cost is So + Ot.
5. The file is in existence a total time T and the num-
ber of reorganizations is N = T/ t .
6. The number of accesses from the file is constant over
time.

Using these assumptions the cost of searching the
file is the area under the graph in Figure 5. The total

Fig. 5.

cost over time is the sum of the search cost and the
reorganization cost. Notice that the function is the same
in each of the N intervals. We are interested in minimiz-
ing C (T) , the sum of the excess search cost (shaded
area in Figure 5) and the reorganization costs:

N

C(T) = ~ [J'~ or' at' + nj,
i = 1

N

= ~ [½0t 2 + R] = ~NOt 2 + NR,
i = 1

= ½TOt + T R / t .

By taking the derivative with respect to time and setting
it to zero,

d C / d t = 1TO -- T R / t 2 = O,

we find that the optimum time between reorganization is

t = (2n/o)L (1)

We can generalize the formulat ion by introducing
the function ~,i(t) which gives the search cost as a
function of time in the ith interval, and 6~ (t) which gives
the search cost in the ith interval if the file is always in a
reorganized state. If R~ (t) is the cost of reorganization
in the ith interval we have

N

C(T) = ~ [f~ (' - C) - ~,(t '))dr ' + R,(t)]. (2)
i = l

Altering our assumptions to include the fact that
the rate of additions is greater than the rate of deletions
and that the cost of reorganization is a function of the
size of the file, we get

7~+~(t) = ~i(t) + O.,.t "v~(t) = So + Od
6~+l(t) = 6i(t) + 02t 6~(t) = So + O.d
R~+,(t) = R i (t) + ut R~(t) = Ro + ut

where 0t is the rate of deterioration of the search cost
without reorganization, 02 is the rate of deterioration
of the search cost if the file were constantly being re-
organized. So is the initial search cost; R0 is the initial
reorganization cost; and ~ is the rate of increase of
reorganization cost. (Figure 6 is a graph of the cost
functions of this example.)

Note that, since the number of records is directly
proportional to time, we could replace an occurrence
of a time variable with a number of records variable if

Fig. 6.

SEARCH
COST

363

I I t I
t 2l 3t 4t

TIME

SEARCH
COST

~YA
~)--S/..-7~..~ i

t 2t 3t 4t

T/ME

Communications June 1973
of Volume 16
the ACM Number 6

we merely transform all rates to the proper dimensions.
From (2) we get

C(T) = ½(N(O~ -- 02)t 2) + NRo + ½(N + l))ut ,
= ½(T(OI -- 02)t) + TRo/t + ½(T2/t + T)#.

Taking the derivative with respect to time and setting
it to zero,

dC/dt = ½ (T(O~ -- 0,2)) -- TRo/t 2 -- ½ (T2/t2)# = O,

we get t = [(2R0 + uT)/(01 -- 02)] t, which yields (1)
if we substitute 0., = u = 0.

Part lI

To study the case of reorganization with random
deterioration of the search cost, we follow the analysis
of Eisen and Leibowitz [1]. The cost density function in
the ith time interval is a random variable 3'i(t) with
distribution func t ionP(CI t) = prob {3"~(t) < C}.

Strategy L Reorganization at f ixed time intervals.
The total cost of running the system for a period

T = N t i s
N

c (r) = ~ [f ;5 ' , (t ') dt' + R,(~/,(t) , t)].
i ~ l

Our goal is to minimize, E[C(T)] t], the expected total
cost over time T with reorganization at intervals of
length t. Thus

N

E[C(T) It] = ~ [f ~ E [7 , (t ')] d t ' + E[R , (v , (t) , t)]]

Assuming that the cost density function is the same in
each interval 3'~ (t) = 3' (t) I i = 1 • • • , N and that the
cost of reorganization is the same in each interval
R~(3",(t), t) = R(3"(t), t) l i = 1 . . . , N, we get

g [f (T) lt] = Z / t [fo E[v(t ')] dt' + E[R(3"(t), t)]],

where E[3"(t)] = fo C(dP(C] t) / d C) dC

and E[R('y(t) , t)] = fo R(C, t) (d e (C [t) / d C) dC.

Finally, the average cost rate for reorganization at
fixed time intervals is a minimum when t = t,, is selected
to minimize

[C(t)] = (E[C(t) l t]/Z).

Strategy 11. Reorganization when search cost density
has deteriorated to a given level c.

Define the average cost rate for reorganization at
fixed cost density

[C(c)] = lim (E[C(T) Ic]/T)
T ~ o o

and the accumulated operating cost as

A (t) = f~3 , (t ')d t ' .

Eisen and Leibowitz show that

[C(c)] -- (E[A] c] + E[R(c, t) I c])/g[t] e]), (3)

364

where E[tl c], E[A I c], and E[R(c, t) I c] are the expecta-
tions of t, A (t) and R (c, t) respectively, when the cost
density reaches the value c.

The average cost ratio for reorganization at a fixed
cost density is a minimum when c = cm is selected to
minimize (3).

It can be shown that reorganization Strategy II re-
suits in lower total operating costs. The effect is more
pronounced if the deterioration of the search cost with
time is a widely varying random variable. This should be
intuitively clear. If the rate of deterioration of the file
is constant with time, the two strategies yield the same
result. If the rate of deterioration varies widely, a fixed
organization interval will not be efficient--reorganiza-
tions may take place when the file is still efficient, or
alternatively, reorganizations should be called for more
frequently when the efficiency of the file is deteriorating
rapidly in periods of high utilization.

As an example, consider the case where the cost
density is uniformly distributed in the interval t < c < k t
and the reorganization cost is a constant R. The cost
distribution function is

P (c l t) = (c -- t) / [(k - - 1)t], t <_ c <_ kt,
= 0, otherwise.

Using Strategy I we get

[C(t)] = (1/t)[~t2(k÷ 1) +R] ,

which is minimized when

t = t,~ = [4 R / (k + l)] ~"

and

[C(tm)] = [(k+ l)R lk

Using Strategy II we get

[C(c)] = c/2 + (R (k -- 1)) / c In k),
i

which is minimized when c = em= [(2R (k -- 1)) / ln k] ~

and [C(cm)] = [(2 R (k - 1)) / lnk] ~.

In comparing the two strategies we find that

[[C(e,,)]/[C(t,,)]] = [(2 (k - 1)) / ((k ÷ l) l n k)] ~.

Notice that in the deterministic case 3"(t) = t where
k = l, the ratio approaches unity and the strategies
are equivalent.

Where activity varies widely we have large values for
k and the ratio diminishes, implying that Strategy II is
more effective.

Part III

In this part we consider a file structure in which
variable length records are packed into disk regions of
fixed size. We assume that most records can be retrieved
in one-disk access but that a certain number of records

Communications June 1973
of Volume 16
the ACM Number 6

have overflow records requiring two-disk accesses. Over-
flow records may arise if corrections are made to fields
(corrections are made by adding a delete flag to the
field and appending the correct information), in which
case a file reorganization would eliminate the overflow
by replacing the incorrect information. An overflow
might also arise by additions of fields, in which case a
reorganization using larger regions would eliminate the
overflow. We assume that no record requires more than
two accesses.

If the total number of records, n, remains constant
and the number of overflow records is n0, we find that
the average search cost for retrieving a record whose
entry address is known is

C = ((n - no) /n)b d- (no/n)2b
= ((n -k no) /n)b = b(1 --k (no~n)).

Note that if there were no overflow records, the
average search cost would be precisely b, and that if
every record overflowed, the average search cost would
be 2b. After a reorganization, the average search cost
is b.

The loss due to not reorganizing is

L(t) = f~ (nob/n)nsdt,

where n~ is the number of searches per unit time, and
no is a function of t ime-- that is, the number of overflows
increases with time. If we assume that no(t) = ~bt,
then the loss from inefficient searching since the last
reorganization is

L (t) = f~ (~bt'b/n)nsdt' = (~bbn,/n) (t2/2).

The cost of reorganization, R, is a function of the
time since the last reorganization, and can be estimated
as the retrieval time for all records plus the time to
write every record again. Thus, Cost of Reorganization
= (Cost of Retrieval) + (Cost of Rewrite) = (n b +
nob) + (nb) = 2nb + nob. Finally, R (t) = 2nb + ~btb.

Summing the total loss from inefficient searching plus
the cost of reorganization for one interval, we get
C(T) = L (t) q- R (t) = (~bbnJ2/Zn) + (2nb -1- ~tb) .
If the system is to run for a length of time T = Nt
then the total cost is

N

C(T) = ~,b[(~pn,t2/2n) q- 2 n - k ~btJ
/ = 1

= Tb[(~n, t /2n) d- (2n/ t) q- ~b].

Taking the derivative with respect to time, setting the
result to zero,

dC/d t = (~bnJZn) - (2n/ t 2) = O,

and solving for t, we get t = 2n/(d/n,) ~. For a particular
example we assume a file of 1000 records (n = 1000),
the addition of 10 overflows per day (~b = 10), and the
performance of 1000 retrievals per day (n, -- 1000).
Then the optimum time between reorganization is t =
2(1000) / (10 . 1000) ~ = 20 days.

Currently, the complexity and variety of implemen-

365

tation strategies and the difficulty of acquiring all the
pertinent parameters make this type of analysis often
difficult to perform. As the standardization of im-
plementations increases within advanced data base
management systems, and the size of the files increases,
the value and ease of such analyses will improve.

The responsibility for estimating the pertinent pa-
rameters will reside with the data base administrator.
Information on the number of records, the number of
overflows, the rate of addition, and the rate of deletion
may be obtained easily by software monitoring during
normal production runs. Determining the average
search cost as a function of the number of overflows
records is somewhat more involved, but not difficult.
If the overhead from such software measurement is
prohibitive, hardware monitors might be used. Alterna-
tively, occasional measurement programs might be run
against the data base to sample performance. Estima-
tion of the cost of reorganization may be obtained each
time a reorganization is performed.

Finally, it should be remarked that substantial econ-
omies may result from the policy of performing the re-
organization at the same time that a backup of the data
base is created. In fact, if the backup is maintained on
the same medium as the production data base, the non-
reorganized data base might serve as the backup.

Received July 1972; revised December 1972

References
1. Eisen, M., and Leibowitz, M. Replacement of randomly
deteriorating equipment. Management Science 9 (Jan. 1963),
263-276.
2. Martin, W.A., and Ness, N.D. Optimizing binary trees grown
with a sorting algorithm. Comm. ACM 15, 2 (Feb. 1972), 88-93.
3. IBM System/360 Operating System Data Management
Services. Order Number GC 26-3746, IBM, White Plains, N.Y.
4. CODASYL-Data Base Task Group Report (Apr. 1971),
ACM, New York.
5. Data Base Management System Requirements, Joint
GUIDE/SHARE Data Base Requirements Group (Nov. 11, 1970).

Communications June 1973
of Volume 16
the ACM Number 6

