
Experimental testing in programming 
languages, stylistic considerations and design 
techniques 

by BEN SHNEIDERMAN 
Indiana University 
Bloomington, Indiana 

BACKGROUND 

In the early stages of the development of high-level lan­
guages, radically differing alternatives were often promul­
gated. Each language had a dedicated corps of adherents 
who advocated the primacy of their facility. Turbulent de­
bates among the protagonists were a common affair at 
conferences and in the trade journals. Now as the field 
matures, the vehement discussions have subsided and 
there is a widespread recognition of the usefulness of a va­
riety of languages. Even the proponents of a single 
universal language have softened their tone and have ac­
cepted the multiple language condition. 

New proposals for algorithmic languages offer only 
slight variations, and much effort has been devoted to 
standardization. Simultaneously, there has been a pro­
liferation of modest language extensions producing a con­
glomeration of dialects of the accepted standard. Widely 
varying languages are still developing, but primarily for 
specific problem domains, such as data description, data 
manipulation, or artificial intelligence research. 

As the issues become more subtle, it is no longer ac­
ceptable for developers and implementors to make highly 
subjective and personalized statements concerning the 
worthiness of a particular language feature or stylistic 
technique. The rampant proliferation of new dialects or 
entirely new languages is counterproductive since it limits 
the sharing of programs. A concerted effort must be made 
to ensure that new features, dialects, languages, and tech­
niques are truly improvements. Control cards for operat­
ing systems and utility programs could also be improved 
by proper experiments with users. 

As computer utilization becomes more widespread, large 
numbers of programming amateurs in diverse disciplines 
will demand facilities which are simple to use. 
Professional parametric users, such as bank tellers and 
reservations clerks, with a minimum of training will also 
have to be accommodated. Since the background and 
orientation of these users is profoundly different from that 
of the programming language designer, experimental tech­
niques must be devised to guide the designer to the op­
timum language specification. 

Although Dijkstra explicitly stated that computer 
programming was primarily a human activity as early as 
1965,* it was not until the publication, in 1971, of Gerald 
Weinberg's text The Psychology of Computer Program­
ming2 that this notion was widely recognized. This stimu­
lating and insightful work set the stage for research into 
the human factors in programming. Weinberg's text 
concentrates on defining the programming task in the 
context of the professional environment and promotes the 
notion of "egoless programming teams." This team organi­
zation concept may be contrasted with the "chief program­
mer team" strategy advocated by IBM.3 Experimental 
comparison of interactions in these personal organization 
strategies would be an intriguing task for social 
psychologists. 

Other sections of Weinberg's book concentrate on indi­
vidual personality factors, training, and motivational fac­
tors. Although the conference reports of the ACM Special 
Interest Group on Computer Personnel Research describe 
initial steps, much more research needs to be done on the 
psychological make-up of programmers. Fortunately, 
psychologists have begun to study programming behavior 
as an aspect of problem solving.4 

Training and teaching of programming has long been of 
interest to academically oriented researchers, as witnessed 
by the papers presented at the annual conferences of the 
ACM Special Interest Group on Computer Science 
Education. Programming has only recently become a 
subject for re lated disciplines such as educat ional 
psychology.5 

Although experimentation in all of the above mentioned 
areas would undoubtedly be welcome, the focus of this 
paper is on experiments in programming language fea­
tures, stylistic considerations and design techniques. 

Research in programming language design 

The volume of written material on programming lan­
guage design is enormous. Thorough comparative surveys 
can be found in the work of Sammet,6 Higman7 or Elson8. 
Detailed remarks by the designers occur in the classic 

653 



654 National Computer Conference, 1975 

reports on languages such as FORTRAN, COBOL, 
ALGOL 60, ALGOL 68, or PASCAL. Standardization 
reports on FORTRAN and COBOL also provide certain 
insights. Recently the overall topic of programming lan­
guage design has been discussed by Hoare,9 Wirth10 and 
Carlson.11 All of these works are based on the observations 
of individuals or small groups. The controversy over struc­
tured programming is closely related to program design 
issues. Although much has been written on this topic, the 
experimental evidence for eliminating the GOTO state­
ment in favor of the three Bohm and Jacopini12 structures 
has never been collected or reported. While individual 
experiences are useful,13,14 they do not provide meaningful 
results to make judgments for the entire community of 
programmers. 

Two groups of researchers have recognized the useful­
ness of studying non-programmers in the hopes of develop­
ing languages more closely conforming to "na tu ra l " 
thought processes. Sime, Green, and Guest15 describe a 
fascinating experiment on non-programmers to determine 
which of two conditional statements these subjects found 
easier to use. Motivated by psycho-linguistic considera­
tions, they attempted to compare the ease of use of 
the IF-THEN-ELSE construction and the IF(CONDI-
TlON)GOTO statement. Their result, based on a rela­
tively small sample size in a carefully controlled, but arti­
ficial programming environment, was that the IF-THEN-
ELSE construction was easier to use and resulted in fewer 
bugs, particularly with more complex problems. The 
paper does not mention structured programming, but the 
results are an initial confirmation of the concept. 

Miller16 also tested non-programmers using a highly sim­
plified, specially constructed programming language. His 
subjects constructed programs for a series of simple card-
sorting problems (the cards had a single name printed on 
them) containing conjunctive ("and") and inclusive dis­
junctive ("or") conditions expressed in the negative or af­
firmative. An example of the inclusive disjunctive form 
where one clause was in the affirmative and one was in the 
negative, was the problem of writing a program to "put a 
card in box three if either the name's second letter is not 
*L' or if its last letter is * N ' . . . count the number of cards 
in box three using counter 1. Put the remaining cards in 
box 2." The results indicate that it was more difficult for 
the subjects to deal with the inclusive disjunctive than the 
conjunctive and that a negative clause made the problem 
still more challenging. The difficulty was measured by the 
time used and by the number of errors, both of which were 
significantly higher for "or" problems. Although this ex­
periment does not directly shed light on language design 
issues, the experimental methodology is useful, and it sug­
gests that further work with non-programmers would be 
very useful. 

A third group17 is comparing two proposed data retrieval 
sublanguages by testing programmers and non-program­
mers. This is the first time that a thorough and carefully 
controlled experiment has been performed prior to imple­
mentation. 

Research in stylistic considerations 

A number of texts have focussed on issues of program­
ming style.18,19 Although these texts offer valid practical 
suggestions for reducing execution time or storage utiliza­
tion, they can only proffer subjective suggestions for 
stylistic decisions. Those stylistic issues include docu­
mentation standards, keypunching rules to increase 
clarity, guidelines for the selection of variable names, sug­
gestions about programming techniques to increase the 
readability of programs and principles of program design. 

Newsted20 has elevated the discussion by conducting an 
experiment to determine the influence of comment cards 
in FORTRAN programs. His results indicate that on short 
FORTRAN programs (less than 30 lines) comments and 
mnemonic names may actually interfere with attempts to 
understand programs. 

Weissman21"23 has carried out a number of interesting 
experiments, concentrating on stylistic issues such as com­
menting, meaningful variable name selection, indentation, 
choice of flow of control techniques and subroutine use. 
Unfortunately, none of these experiments resulted in 
clear-cut recommendations for programmers. Weissman 
focuses heavily on issues of experimental design and tech­
niques for measuring comprehension. 

Research in design techniques 

Some of the most provocative current debates are on the 
topic of program design methodologies such as modularity, 
step-wise refinement, and top-down design, each of which is 
often coupled to the structured programming concept. Al­
though Baker24 has reported on remarkable successes in a 
single project and Weissman conducted a single inconclu­
sive experiment, no steps have been taken to confirm or 
refute these proposed design techniques. Personal testimo­
nials do not suffice; replicable experimental results from a 
wide range of subjects are necessary. 

Even the fundamental technique of flowcharting can be 
controversial. While some programmers reject the useful­
ness of flowcharting, others find it essential in planning 
and documenting large programs. A pilot experiment has 
demonstrated that for short programs, preliminary flow­
charting does not simplify the programming task. A new 
flowcharting technique for structured programming25 is 
gaining acceptance, but it has not yet been experimentally 
validated. 

EXPERIMENTAL PARADIGMS 

The fundamental difficulty in this research area is that 
it is so broad and so ill defined. Basic research into the 
way people think about programs would serve as a step­
ping stone to more precise experiments to resolve 



Experimental Testing in Programming Languages 655 

particular issues. But first, the underlying experimental 
methodologies must be developed and verified. 

Problem domains 

There are at least five highly interwoven tasks which 
unify the questions of programming language design, 
stylistic considerations and design techniques. In each 
case the goal is to facilitate the interrelated tasks of: 

• learning 
• program understanding 
• program writing 
• debugging 
• modification 

Preferred improvements would impact positively for 
each of these tasks, but it is conceivable that an improve­
ment in one area would hinder another. For example, a 
complex indentation or keypunching rule might make the 
program easier to read and understand, but more difficult 
to write. While modularity may simplify debugging and 
modification, errors might be committed in passing 
parameters when the program is composed. Finally, a 
powerful but complex and difficult to learn concept may 
ease the burden of program writing. 

Complications result from the fact that a technique 
which is beneficial in long programs may be a hindrance 
in short programs. Different stylistic and design rules 
seem appropriate for programs of differing lengths. 

Another variable that must be explored is programmer 
ability. Useful principles for professional programmers 
may be too complex for novices. Preliminary results from 
several studies indicate that techniques appropriate for 
novice programmers working on short simple programs are 
substantially different from the techniques applied by 
professionals on large difficult projects. 

In summary, proposed improvements must be evaluated 
with respect to the tasks of learning, program understand­
ing, writing, debugging, and modification, while si­
multaneously considering the spectrum of programmer 
abilities and program complexity. 

Experimental techniques 

Developing suitable experimental techniques is a non-
trivial task. Care must be taken to minimize the number 
of variables, and proper experimental controls must be es­
tablished. A sufficiently large group of subjects must be 
secured and pre-tests or other measures obtained to ensure 
the homogeneity of the subjects. Replicable, objective tests 
must be constructed and validated. Finally, accepted 
statistical techniques should be applied to the data to 
produce results which would be acknowledged by other re­
searchers. 

Testing program understandability is the most straight­
forward of the tasks. After studying a program for a 

prescribed length of time, subjects are asked to describe in 
words the function of the program. Grading the responses 
can be difficult, but if more than one person scores each 
response, it should be possible to obtain reliable results. 
The subjects may be asked to introspect and respond as to 
the difficulty of the problem, say, on a scale ranging from 
one to ten. This simple experimental procedure may be 
used to compare two proposed language features or 
stylistic rules. Alternatively, the subjects may be told to 
study until they feel their comprehension is adequate, 
making time and correctness the measured variables. 

The numerous other methods of measuring understand­
ing include asking subjects to determine the output for a 
given set of inputs. Weissman utilized detailed hand 
simulations of execution and paragraph fill-in techniques 
as measures of comprehension. Simpler traces such as list­
ing the line number executed for a given input may be use­
ful. Two other measures are the correctness and time 
needed to make a specific modification or to locate a bug 
(which has been included in the program). Although sub­
jective measures of difficulty have dubious value, they 
may be used to enhance each of the above techniques. 

Finally, subjects may be asked to memorize the 
program. Since memorization is best accomplished by 
"chunking" of the program, to gain meaningful (as op­
posed to rote) learning, more detailed recollection suggests 
more thorough comprehension. This t echnique is 
described in the companion paper, entitled "Two Explora­
tory Experiments in Program Comprehension."26 

To simplify grading, Newsted used multiple choice ques­
tions rather than fill-ins in testing the subject's ability to 
comprehend, trace execution, determine outputs, etc. 
Multiple choice questions ensure objective and clear-cut 
grading standards. 

A number of recent studies have concentrated on errors 
in programming and in debugging techniques.27"30 By 
including monitoring code in compilers researchers have 
been able to capture the diagnostic reports and determine 
which errors are most frequently made. Controlled experi­
ments can be conducted by providing programmer sub­
jects with listings containing one or more errors and study­
ing how they attempt to locate the errors. 

CONCLUSION 

Experimental techniques are being developed to resolve 
the human factors issues in program development. These 
experimental techniques can be applied to objectively vali­
date proposals for programming language features, 
stylistic guidelines, and design paradigms. Much work 
remains to be done to extend the scope of these experi­
ments so that concrete recommendations can be made to 
professional programmers for improving the quality of 
their work and their productivity. Additional experimental 
results should enable instructors to provide better training 
programs. 



656 National Computer Conference, 1975 

REFERENCES 

1. Dijkstra, E. W., "Programming Considered as a Human Activity," 
Proc. IFIP Congress 1, 1965, pp. 213-217. 

2. Weinberg, G. M., The Psychology of Computer Programming, Van 
Nostrand Reinhold, New York, New York, 1971. 

3. Baker, F. T., "Chief Programmer Teams," IBM Systems Journal 11, 
1, 1972. 

4. Mayer, R. E., Instructional Variables in Meaningful Learning of 
Computer Programming. I n d i a n a M a t h e m a t i c a l Psychology 
Program, Report No. 75-1, 1975. 

5. Kreitzberg, C. and L. Swanson, "A Cognitive Model for Structuring 
an Introductory Programming Curriculum," AFIPS Proc. National 
Computer Conference, 1974. 

6. Sammet , J . E., Programming Languages: History and Funda­
mentals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. 

7. Higman, B. , A Comparative Study of Programming Lan­
guages, American Elsevier Publishing Company, Inc., New York, 
1967. 

8. Elson, M., Concepts of Programming Languages, Science Research 
Associates, Inc., Chicago, Illinois, 1973. 

9. Hoare, C. A. R., Hints on Programming Language Design, invited ad­
dress at SIGACT/SIGPLAN Symposium on Principles of Program­
ming Languages, Boston, Mass., October 1-3, 1973. 

10. Wirth, N., On Certain Basic Concepts of Programming Languages, 
Technical Report No. CS 65, Computer Science Department, Stan­
ford University, Stanford, California, May 1, 1967. 

11. Carlson, C. R., Programming Language Design, Computer Sciences 
Department, The Technological Institute, Northwestern University, 
Evanston, Illinois, 1973. 

12. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines and 
Languages with Only Two Formation Rules," Comm. ACM 9, May, 
1966, pp. 366-371. 

13. Henderson, P. and R. Snowdon, "An Experiment in Structured 
Programming, BIT 12, 1972, pp. 38-53. 

14. Standish, T. A., Observations and Hypotheses About Program Syn­
thesis Mechanisms. Automatic Programming Memo 9, Report No. 
2780, Computer Science Division, Bolt Beranek and Newman, 
Cambridge, Mass., December 19, 1973. 

15. Sime, M., T. Green, and D. Guest, "Psychological Evaluation of Two 

Conditional Constructions Used in Computer Languages," Interna­
tional Journal of Man-Machine Studies, Vol. 5, No. 1, 1973. 

16. Miller, L., Programming by Non-Programmers, IBM Research 
Report RC 4280, 1973. 

17. Reisner, P., R. F. Boyce, and D. D. Chamberlin, "Human Factors 
Evaluation of Two Data Base Query Languages: SQUARE and SE­
QUEL, Proc. National Computer Conference, AFIPS Press, Mont-
vale, New Jersey, 1975. 

18. Kreitzberg, C. B. and B. Shneiderman, The Elements of FORTRAN 
Style: Techniques for Effective Programming, Harcourt Brace 
Jovanovich, Inc., New York, New York, 1972. 

19. Van Tassel, D. Program Style, Design, Efficiency, Debugging, Test­
ing, Prentice-Hall, Englewood Cliffs, New Jersey, June, 1974. 

20. Newsted, P. R., FORTRAN Program Comprehension as a Function 
of Documentation, School of Business Administration Report, The 
University of Wisconsin, Milwaukee, Wisconsin. 

21. Weissman, L., Psychological Complexity of Computer Programs: An 
Initial Experiment, Technical Report CSRG-26, Computer Systems 
Research Group, University of Toronto, Toronto, Canada, 1973. 

22. , "Psychological Complexity of Computer Programs: An Experi­
mental Methodology," SIGPLAN Notices 9, 6, June, 1974. 

23. , A Methodology for Studying the Psychological Complexity of 
Computer Programs, Ph.D. thesis, University of Toronto, 1974 
(available as Technical Report, Computer Science Research Group 
CSRG-37). 

24. Baker, F. T., "System Quality Through Structured Programming," 
Proc. FJCC, 1972, pp. 339-343. 

25. Nassi, I. and B. Shneiderman, "Flowchart Techniques for Struc­
tured Programming, SIGPLAN Notices 8, 8, August, 1973, pp. 12-26. 

26. Shneiderman, B. and Mao-Hsian Ho, Two Exploratory Experiments 
in Program Comprehension, Technical Report No. 27, Computer 
Science Department, Indiana University, 1974. 

27. Gould, J. D. Some Psychological Evidence on How People Debug 
Computer Programs, IBM Research Report RC 4542, 1973. 

28. Boies, S. J. and J. D. Gould, "Syntactic Errors in Computer 
Programming, Human Factors 16, 3, 1974, pp. 253-257. 

29. Young, E. A., "Human Errors in Programming," International 
Journal of Man-Machine Studies 6, 1974, pp.361-376. 

30. Gould, J. D. and P. Drongowski, "An Exploratory Study of Com­
puter Program Debugging," Human Factors 16, 3, 1974, pp. 258-277. 




