Experimental Investigations of
Computer Program Debugging and Modification

Ben Shneilderman
Don McKay
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TEcHNICAL ReporT No. 48

EXPERIMENTAL INVESTIGATIONS OF
CoMPUTER PrROGRAM DEBUGGING AND MODIFICATION

BEN SHNEIDERMAN
Don McKay

ApriL, 1976

Prepared for 6th Congress of the International

Ergonomics Association hosted by the Human Factors Society,
July 12-16, 1976, College Park, Maryland.

EXPERIMENTAL INVESTIGATIONS OF COMPUTER PROGRAM DEBUGGING AND MODIFICATION

Ben Shneiderman and Don McKay

Indiana University, Bloomington, Indiana 47401

ABSTRACT

Although greater emphasis is placed on the task of computer program
composition, debugging and modification often consume more time and

expense in production environments.

Debugging is the task of locating

syntactic and semantic errors in programs and correcting these errors.
Modification is the change of a working program to perform alternate

tasks.

The factors and techniques which facilitate debugging and modi-
fication are poorly understood, but are subject to experimental inves-
tigation. Controlled experiments can be performed by presenting two
groups of subjects with two forms of a program or different programming

aids and requiring the same task.

For example, in one study we presented

an 81 line FORTRAN program containing three bugs to distinet groups of
subjects. One of the groups receilved a detailed flowchart, but our

results indicated that this ald did not facilitate the debugging procedure.
Similar negative results were obtained for a modification task.

In other experiments, comments and meaningful variable names were
useful in debugging and modularity facilitated modification.
Other potentially influential factors, which are subject to experimental
study, include indentation rules, type of control structures, data
structure complexity and program design.

These and other human factor experiments in programming have led to
a cognitive model of programmer behavior which distinguishes between the
hierarchically structured, meaningfully acguired semantic knowledge and
the rotely memorized syntactic knowledge. Errors can be classed into
syntactic mistakes which are relatively easy to locate and correct and

two forms of semantic mistakes.

Semantic errors occur while constructing

an internal semantic structure to a representation in the syntax of a
programming language. Modification is interpreted as the acquisition of
an internal semantic structure by studying a program, followed by modi-
fication of this structure and revision of the code.

INTRODUCTION

Debugging of computer programs is a
complex human information processing task
which consumes 25-50% (Boehm, 1973) of the
initial program development process. Modi-
fication or maintenance of computer pro-
grams which are already in use require the
total programmer resources of some
organizations (Boehm, 1975). An improvement
which simplifies or facilitates these tasks
can have substantial impact on the program-
ming process by reducing costs, speeding up
the implementation process, making adapta-
tion easier and improving the reliability
of computer-based systems.

This paper reviews previous human
factors research in this area, presents
results from recent experiments and inter-
prets debugging and modification in terms
of a recently proposed cognitive model of
proggammer behavior (Shneiderman and Mayer,
1975) .

Previous Research

Most authors distingulsh two types of

debugging errors: syntactic errors which
the compiler recognizes and semantic errors
{(or logic errors) which the compiler cannot
recognize. This 1s a crude dichotomy since
different compilers for the same language
have varying error checking facilities.
Still, this dichotomy is useful and is
operationally effective since a subject's
perception of a syntactic or semantic error
is dependent on the compiler that he/she
works with.

Studies of syntactic errors have been
made in conjunction with an assigned
program composition task to a selected
group of subjects (Gannon and Horning,
1975; Youngs, 1974; Miller, 1973; Sime,
Green and Guest, 1973) or by merely
capturing the output of compilers in a
large computing facility (Boies and Gould,
1974; Litecky and Davis, 1975). These
studies of bugs made during program compo-
sition tasks gives realistic insights to
programmer behavior and suggest improve-
ments to compilers and/or languages to
minimize the impact of syntactic errors.

Another approach to debugging

LA

experiments has been to present subjects
with program listings contalning one or
more semantic errors and require the
subjects to locate the errors. This arti-
fiecial, but more controlled, environment 1s
defended by researchers on experimental
design grounds, on the existence of debug-
ging consultants in many computing centers,
and on the reports from many installations
that debugging is often done by a person
other than the original creator of the
pr$§§am (Gould and Drongowski, 1974; Gould,
19 .

Classifying semantic errors is more of
a challenge, since the cause of an error is
difficult to determine. Gould (1974) and
Gould and Drongowski (1974) both focus on
assignment bugs (errors in assignment
statements), array bugs (errors which cause
array bounds to be exceeded) and iteration
bugs (errors which cause an incorrect
number of executions of a loop) but all of
their bugs result from a minor error in the
programming language representation of an
algorithm. We will classify these errors
as well as the syntactic errors as "compo-
sition errors” since they result from the
improper representation of an algorithm.
A more complex error, called a "formulation
error", results from an improper under-
standing of the solution to a problem.
These errors may be more global than one
line errors and more difficult to detect.

Although maintenaace and program modi-
fication, that is, changes made to a
functioning program, consume a large part
of the resources of a programming instal-
lation, relatively little research has been
done in this area. Lucas and Kaplan (1974)
attempted a modification experiment in con-
junction with work on structured programming.
Their results are an initial confirmation of
the ease of modification of programs written
in a structured manner, but much work
remains to be done to confirm these results.

Debugging and modification are similar
in that they each require a programmer to
take a program listing and a program
description and make changes to the listing.
In the case of debugging the change is
designed to correct a fault, while in modi-
fication the change is designed to alter
the present function of the given program.
Research in this area could simplify
debugging and modification by providing
suggestions for improved stylistic standards
(for example, commenting techniques,
indentation rules, standards for variable
name selection), program design guidellnes
(modularization rules, parameter passing
techniques, flowchart rules, top-down vs.
bottom-up standards) or new language
features (improved control structures, new
operators, simplified programming language
syntax, machine checkable assertions).

Other benefits of such research would be to
directly simplify debugging and medification
by improving on-line or batch debugging

faellities such as traces, snapshots, dumps
and monitors. Longer range goals would be
to understand the intellectual skills
necessary for these two tasks, which might
eventually lead to improved programming
techniques. Wirth's stepwise refinement
technigque (1971), Mills' top-down

design and Dijkstra's approach to structured
programming (1972) are all geared to sim-
plifying debugging and modification as well
as program composition. Although these
ideas were outgrowths of programming exper-
ience, they all have familiar analogues in
the problem solving and cognitive psychology
literature (Shneiderman and Mayer, 1975).

It may be possible to take other lessons
directly from cognitive psychology as well.
Geller (1975) proposes debugging other
languages in APL since he feels that APL is
a convenient high level language in which

to represent programs. Others have advocated
LISP as the ideal language for discussing
algorithms to be implemented in other
languages. These approaches reflect the
popular technique of using "pseudo-code"

(an informal high level problem oriented
notation familiar to the programmer) in
early stages of program development to
minimize notational errors.

Although the potential benefits are
great, experimentation in this area 1s a
challenge. The complex human information
processing tasks involved are difficult to
isolate and study. New techniques will
have to be developed and validated and the
results will have to be carefully replicated
and verified.

The three basic experimental paradigms
might be called case study, protocol
analysis and controlled experiment. The
case study approach is to take data about
programmers pursuing their normal activities
with as little interference as possible. An
enormous amount of data can be captured,
but it may be difficult to pinpoint critical
issues and new techniques cannot be tested.
The protocol analysis technique is to have
programmers introspect and attempt to reveal
to the experimenter what mental processes
he/she uses during debugging or modification.
This method reveals more complex behaviors,
but it is a purely subjective experiment
and the introspection process can interfere
with normal performance. The controlled
experiment approach requires careful
planning and must focus on a small number
of specific issues 1if reliable results are
to be obtained. Controlled experiments are
more objective and it is possible to test
techniques which programmers might not
normally use. Combinations of these
approaches are also feasible.

We have favored the controlled experi-
ment technique in our previous work
(Shneiderman, 1975; Shneiderman, Mayer,
McKay and Heller, 1975; Shneiderman and
Mayer, 1975) and report on further research
in this paper. We feel that a series of

replicable specific objective results will
eventually give us a more complete and pre-
cise picture of programmer behavior; much
like a mosaiec which 1s made up of small but
numerous discrete tiles.

The obvious experimental technique for
testing debugging is to present subjects
with a program description and listing
which contains one or more bugs and require
the subject to find the bugs. Issues that
can be tested in this manner include: the
utility of detalled and/or macro flowcharts;
the effect of meaningful variable names,
comments, indentations; the impact of
various modularization schemes or data
sharing technigues; the usefulness of dif-
ferent output listings, dumps, traces or
snapshots; or the use of various control
structures. Our experiments are compara-
tive; groups of subjects receive different
program alds and we evaluate the bug-
finding performance of one group against
the other. Full credit is given if the
bugs are located and corrected. Partial
eredit can be given 1f the bug is only
located but not corrected properly. In one
of our experiments we allowed subjects to
make several guesses at the bug's loccation
(if they were not sure of the bug's location);
the credit given was inversely proportional
to the number of guesses. Grading the
correction can be difficult, if the subject
does not precisely make the correction
expected. Partial credit was assigned by
experienced graders, but the technique
could be made more reliable if multiple
graders were used.

A more objective, but questionable,
testing technique is to give multiple choice
questions about the location and/or correc-
tion of a bug. This approach i1s easy to
grade but may eliminate central issues in
the debugging experiments.

Timing data may also be useful, but
since accuracy in bug finding is the criti-
cal issue, the subjects might be given
immediate responses as to the correctness
of thelr guesses and the time to accurately
find the bug would be recorded. Finally,

a subjective estimate of the difficulty of
locating the bug could be recorded.

Experimental testing of modification
is as difficult since the new or deleted
segments of code must be graded on a
qualitative basis. Multiple experienced
graders should be used and criteria should
be established to ensure consistent grading.

Besides the testing technique, a number
of important experimental factors such as
program size, program application area,
program complexity, subject experience and
subject motivation must be considered.
Programmers working on long programs may
apply different strategies than those
working on short programs. Experience with
an application area should help in locating

-3-

certain kinds of bugs. A final factor of
importance is that unmotivated programmers
may be able to find certain bugs but would
not invest the intellectual effort to locate
more subtle and complex bugs.

Experlments

We investigated four factors in earlier
studies (Yasukawa, 1974; McKay, 1974;
Kinicki and Ramsey, 1974; Shneiderman,
Mayer, McKay and Heller, 1975): commenting,
choice of variable name, modularity and use
of flowcharts. In these experiments
debugging and modification are consldered
two different task domains. Debugging is
the task of correcting a program which does
not run appropriately. Modification is the
changing of a program to meet new require-
ments. Program comprehension is an impor-
tant factor within each experiment since
either modification or debugging 1is
attempted by an individual who is not the
original author of the program.

Commenting, Debugging and Modification

In an experiment on commenting techni-
ques (Yasukawa, 1974), subjects from an
introductory programming course were given
a 30 line FORTRAN program and asked multiple
choice questions to determine program com-
prehension. The pregram contained either
high level organizational comments or no
comments. Subjects who received the program
with organizational comments performed well
on questions which required a general under-
standing of the program. Subjects who had
only the program performed as well as the
comment group on questions which required
program execution. In a further experiment,
novice programmers were asked to memorize a
26 line FORTRAN program with either high
level organizational comments or low level
detaliled comments which merely explained a
line of code. The subjects in the organi-
zational group recalled significantly more
of the program than the detail group.
Subjects were also given three modification
tasks for three different programs. Each
program contained either organizational
comments or detailed comments. On two out
of three modifications, the high level
comment group performed better than the low
level comment group.- The results of the
two experiments indicate high level organi-
zational comments facilitate program compre-
hension. The high level comments aid the
"chunking" of the program into logical
modules while low level comments do not
impose a loglical structure to the program.
As a documentation tool, high level comments
appear useful.

In a second experiment by Yasukawa
(1974), subjects who were novice programmers
received a 25 line FORTRAN program either
with high level comments or without comments.
The program contained one error. Their task
was to locate the bug and to correct the
program. Subjects in both groups performed

i

equally well. Many subjJects said they did
not use the comments (if present) but used
some sort of hand-simulation to find the
error. The results of the experiment and
the remarks of the subjects 1ndicate that
comments are not useful for a debugging
task. The fact that many of the subjects
did not use the comments suggests that they
have already learned that comments may
"hide" the error by providing the programmer
with misleading information as to what the
code really does.

In summary, high level organizational
comments facilitate program comprehension
as measured by a multiple choice quiz and
a recall task; but comments do not appear
to aid a debugging task. Since high level
comments seem to convey information which
is useful in understanding a working
program, one would expect a modification
task to be facilitated by high level
comments. In a debugging task the problem
is to find the error in the code itself.
gomﬂents seem to be ignored for a debugglng

ask.

Modularity and Modification

Modularity, the blocking of a program
into logical "chunks", was the subject of
another experiment (Kinicki and Ramsey,
1974). Subjects were novice-intermediate
programmers in a second semester introduc-
tory assembly language course and interme-
diate programmers in an upper division
computer science course. Both groups of
subjects had just recently learned the
assembly language used for the experiment.
Subjects were provided a modular, non-
modular, or random modular version of the
same assembly language program. After a
period of study, the subjects were given a
quiz to determine program comprehension,
included in the guiz were items which
required the subjects to modify the program.
The results showed the modular group per-
formed the best for both types of quiz

.questions, followed by the non-modular and
random modular groups. While this experi-
ment suggests programs be decomposed into
conceptual modules, it does not supply any
guidelines as to how a program should be
modularized. Certainly the degree of
modularization would vary with the sophis-
tication of the programmer. The danger
here is what one programmer views as a
module may not be comprehensible to another
programmer. Further experimentation with
module decomposition is required.

Flowcharts, Debugging and Modification

The use of flowcharts, which supplement
a program, as a documentation tool has been
an issue for a number of years. We recently
concluded a number of experiments on the
utility of flowcharts (Shneiderman, Mayer,
McKay and Heller, 1975), two of which are
relevant to this paper.

The first experiment dealt with
debugging and comprehension. Subjects were
students from a second semester programming
course and from two different flowcharting
backgrounds. Half the subjects had been
required to turn in flowcharts with their
programming assignments while the other
half had not been reguired to do so. Each
subject was given an 81 line FORTRAN program
which contained three errors. In addition
to the program, the subjects were given
elther a one page macro (high level), a
four page micro (detailed), or no flowchart.
Initially, the subjects attempted to find
the errors. After 45 minutes, the subjects
were told what the errors were and how to
correct them. The subjects were then
given a comprehension quiz. While none of
the main effects were significant (micro vs
macro, mMacro vs none, micro vs none), for
the debugging score, comprehension quiz or
total score, there was a mild interaction
effect. For those subjects who had used
flowcharts as part of their programming
routine, the group which was supplied with
the micro flowchart performed slightly
better. For the group which had not used
flowcharts, the subjects who had only the
program performed slightly better. The
results suggest that flowcharting as a
debugging tocl is marginally useful to those
who have been trained with flowcharts.

A second flowchart experiment with a
modification task was alsoc conducted. The
same experimental design was used as in the
previous flowchart experiment. Subjects
were grouped according to experience and
then randomly assigned to one of the experi-
mental groups, either a no flowchart group,
a macro flowchart group, or a micro flow-
chart group. Each subject was provided with
a listing of a 70 line FORTRAN program,
output and a 1list of modifications. The
most critical type of error, incorrect
placement of the modification within the
existing program, was as frequent in each
of the six experimental groups. The trend
concerning flowcharting experilence observed
in the first experiment was not observed in
the modification experiment. While the
results for the program-only group Versus
the micro flowchart group were not expected
to differ, the program-only group versus the
macro flowchart group results were surpris-
ing. A macro flowchart is not equivalent
to the program it describes since a one to
one correspondence does not exist between
the program statements and the flowchart.

A macro flowchart, as a high level descrip-
tion of a program, "chunks" the program into
modules which should facilitate placement

of a modification. Further experiments with
macro flowcharts are necessary.

From the results of these two experi-
ments and other experiments with flowcharts,
we concluded flowcharts do not seem to be
useful in a debugging or modification task.
Since the experiments were conducted
utilizing small programs, further research
with larger complex programs is needed.

Variable names and debugging

Another factor influencing program
comprehension is the choice of wariable
names used within a program. Newsted (1973)
gave subjects an "easy" or "hard" program
and measured comprehension with a multiple
cholice quiz. The program contained either
mnemonic or nonmnemonic variable names.
Newsted reported significant results for
the difficulty of program, choice of
variable name and thelr interaction. The
nonmnemonic groups performed as well on
both the "easy" and "hard" programs. The
mnemonic groups performed better on the
"hard" program than on the "easy" program.
The nonmnemonic groups performed better
than the mnemonic groups for both the "easy"
and "hard" programs. The results of
Newsted's experiment may have been bilased
since the programs contained a short para-
graph defining the variables, thus possibly
negating the initial advantage of the mean-
ingful variable names.

We conducted an experiment similar to
Newsted (McKay, 1974), but the programs did
not contain any comments. Four different
programs were used and ranked by experienced
programmers as to difficulty. The programs
were then given to novice programmers who
were given a comprehension quiz after a
period of study. The mnemonic groups
performed better than the nonmnemonic Eroups
for all four programs. For the most diffi-
cult program, the difference between the
mnemonic and nonmnemonic groups was nearly
significant. These results indicated
mnemonic variable names facilitate compre-
hension as program complexity increases.

For short simple programs, the choice of
variable name was not critical.

In a recent experiment, intermediate
level student programmers were subjects in
an investigation of variable names and
debugging. The experiment was administered
as part of a course quiz.

Two algorithms, sequential search and
recursive binary search, were coded in
PASCAL using either mnemonic or nonmnemonic
variable names. Subjects were randomly
assigned to one of two groups. One group
received a mnemonic sequential search
program followed by a nonmnemonic recursive
binary search program. A second group was
provided with a nonmnemonic version of the
sequential search followed by a mnemonic
recursive binary search program. Subjects
were told each program contained one bug.
Their task was to find the bug and correct
it.

A method was devised to give partial
credit. Full credit was given for locating
and correcting the bug. Partial credit was
awarded on the following basis: four-fifths
credit for finding the bug but not correct-
ing it, three-fifths credit for making two
guesses as to which program statement was

-5-=

incorrect and one of them contained the bug,
two-fifths credit for three guesses and
locating the bug. No credit was given 1if
the bug was not found.

The raw means appear in Table I. None
of the main effects nor interactions were
significant by an analysis of variance.

Program
Recursive
Sequential Binary
Search Search
Type of Mnemonic 12.9 12.9
FarLabke Nonmnemonic 12.6 10.0

Table I
Means for Variable Name Experiment

Since the subjects were familiar with
the programs, both programs were previously
discussed in class, the results are not too
surprising. The familiarity of the algo-
rithms resulted in the program being fairly
"easy" to understand. From the results of
the previous experiment, the performance of
the mnemonic group versus the nonmnemonic
group should not differ. The observed
performance for the nonmnemonic recursive
binary search appears to be different than
the other groups. Since recursion was
introduced shortly before the quiz, the
recursive program may have been more diffi-
cult for the subjects. The more complex
the program, the more mnemonic variable
names aid comprehension.

While we have not clearly shown
mnemonic variable names to aid in a
debugging task, the results of this experi-
ment display a trend in that direction. A
further experiment 1s needed to discern the
importance of presentation order of the
mnemonic or nonmnemcnic program and to vali-
date the use of mnemonic variable names in
debugging.

Indentation and Debugging

When writing programs in a block
oriented programming language such as ALGOL,
PL/I or PASCAL, programmers usually adopt
some indenting scheme to present the code
in a more readable form. Some programmers
even use an indenting scheme in languages
such as FORTRAN or COBOL.

Another recent experiment similar to
the previous variable name and debugging
experiment was conducted as part of the
same quiz. Subjects were assigned to one
of two groups. One group received an in-
dented form of an iterative binary search
program followed by a nonindented merge

10.

11.

12.

13.

14,

15.

16.

Boehm, B.W., The High Cost of Software.
Practical Strategies for developing
Large Software Systems, Horowitz, E.
(ed.), Addison-Wesley, 1975. '

Boies, S.J., and Gould, J.D., A
Behavigral Analysis of Programming:

On the Frequency of Syntactical Errors.
IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, RC 3907,
1972, 1-18.

Brooks, F.P., The Mythical Man-month,
Essays on Software Engineering. Addison-

Wesley, Reading, Ma., 1975.

Gannon, J.D., and Horning, J.J. The
Impact of Language Design on the
Production of Reliable Software. IEEE-

TSE, Vol. 1, No. 2, 1975.
Geller, D.P., Debugging other Languages

in APL. Software Practice and Experience,

Yol.: 5 No. 2, 1975.

Gould, J.D, Some Psychological Evidence
on How People Debug Computer Programs.
International Journal of Man-Machine
Studies, Vol. 7, No. 2, 1975.

Gould, J.D., and Drongowski, P., An
Exploratory Study of Computer Program
Debugging. Human Factors, Vol. 16, No.
3, 1974.

Kinicki, R., and Ramsey, M., An Experi-
ment in Programming Methodology.
Unpublished paper.

Litecky, C.R., and Davis, G.B., A Study
of Errors, Error-proneness, and Error
Diagnosis 1n COBOL. CACM, Vol. 19,

No. 1, 1976.

Lucas, H.C., and Kaplan, R.B., A
Structured Programming Experiment.
Research Paper Series, Research Paper
No. 196, Graduate School of Business,
Stanford University, February, 1974.

McKay, D., Effects of Variable Names
on Program Understandability. Unpub-
lished paper.

Miller, L., Programming by Non-
Programmers. IBM Research Report RC
4280, 1973.

Mills, H.D., How to Write Correct
Programs and Know It. §
Maryland, 1972.

Newsted, P.R., FORTRAN program compre-
hension as a function of documentation.

School of Business, Administration Report,

University of Wisconsin, Milwaukee,
Wisconsin.

Shneiderman, B., Experimental Testing
in Programming Languages, Stylistic
Considerations and Design Techniques,

Gaithersburg,

17.

13.

19.

20.

21.

22.

Proc. National Computer Conference,
AEIPS Press, Montuale, NJ, 1975, 653-
565.

Shneiderman, B., and Mayer, R., Towards
a Cognitive Model of Programmer
Behavior. Indiana University Computer
Science Department, Technical Report
No. 37, Bloomington, Indiana, 1975.

Shneiderman, B., Mayer, R., McKay, D.,
and Heller, P., Experimental Investi-
gations of the Utility of Flowcharts
in Programming. Indiana University
Computer Science Department, Technical
Report No. 36, Bloomington, Indiana,
1975.

Sime, M.E., Green, T.R.G., and Guest,
D.J., Psychological Evaluation of Two
Conditional Constructions Used in
Computer Languages. International
Journal of Man-Machine Studies, Vol. 5,
No. 2, EOL3.

Wirth, N., Program Development by
Stepwise Refinement. CACM, Vol. 14,
No. 4, 1971.

Yasukawa, K., The Effect of Comments
on Program Understandability and
Error Correction. Unpublished paper.

Youngs, E.A., Human Factors in
Programming, International Journal of
Man-Machine Studies, Vol. 6, No. 3,
1974.

e

program. The other group was provided with
a nonindented binary search program followed
by an indented form of the merge program. °
Both programs were written in PASCAL and
contained one bug. Again, the task was to
locate and repair the bug. The same grading
scheme was used as in the previocus experi-
ment.

Table II displays the raw means. While
none of the main effects were significant,
the interaction of mnemonic versus non-
mnemonic groups was significant (F=11.9,
df=1/24,p<.01). The means for the binary
search are comparable to the means obtained
in the previous experiment (Table I).

Again, since the binary search program was
discussed in class, performance on that
part of the quiz should have been good.

Program
Binary
Search Merge
S —_— Indented 13.6 9.2
Program y.,indented 13.5 7.6
Table II

Means for Indentation Experiment

The merge program was not presented in
class. Performance for both the indented
and nonindented versions of the programs
indicate the merge algorithm was more dif-
ficult than the binary search program. The
performance for both versions of the merge
program suggests that as program complexity
increases, program comprehension is aided
by an indentation scheme. Again, we have
not satisfactorily investigated the effect
of presentation order but speculate that as
program complexity increases, program com-
prehension 1s aided by an indentation scheme.

Conclusions

Qur experience in conducting psycholo-
gical experiments on programmers has led us
to insights into the programming process
and to a better understanding of the experi-
mental methodology that should be applied.
We feel that we have found support for the
cognitive model of programmer behavior,
proposed by Shneiderman and Mayer (1975),
which suggests that semantic knowledge about
programming is heirarchically structured.
The effectiveness of high level organiza-
tional comments and functionally organized
modules support this model.

Comments and mnemonic variable names
are of increasing value as the complexity
of a program increases. Comments which

reiterate the function of a single line or
flowcharts which are straightforward repre-
sentations of the program do not help and
may even hinder debugging and modification.
Low level comments and detailed flowcharts
may interfere with the ability of the
programmer to concentrate on reading the
actual source code.

The critical importance of previous
experience and the high variability of
performance among subjects were constantly
brought forward in our experimental results.
Subjects could deal with familiar algorithms
far more easily than with novel algorithms.
This suggests that programmers in large
programming shops should be allowed to work
on the same type of problems rather than be
arbitrarily shifted to new projects.

Qur results reinforce previcus findings
of the wide range of programming ability.
Managers should recognize that programming
is a high level skill and that proficient
programmers should be appreciated and
properly rewarded. This finding supports
Frederick Brooks, Jr., the author of The
Mythical Man-Month, who recognized that the
"man-month" concept i1s not applicable to
programmers, since it is not possible to
ensure that a month's work of two different
programmers would yield the same results.
Qur experiments confirm the wide variance
in performance and ability, which must be
taken in account in professional environ-
ments ard in the design of experiments.

Other methodological insights include
the recognition of the range of skills that
are required in programming tasks. Even
the basic task of program comprehension has
multiple dimensions: low-level execution
details, comprehension of input/output
relationships, high level conceptudl under-
standing, etc. Experimental designs must
take a cross-section of these comprehension
levels if the results are to be reliable,
replicable and generalizable. The complex
tasks of program debugging and modification
are difficult to deal with experimentally
and care must be taken to avoid inadvertent
biasing of the experiment. The choice of
the program, the bug and the modification
are extremely delicate matters. A final
methodological point: although initially
skeptical of the usefulness of subjective
measures, we now support the collection of
this information.

Much work remains to be done and the
benefits of research in this area are
attractive. We have the opportunity to
significantly improve productivity and
quality in the vital field of software
development, and to investigate complex
human problem solving behavior.

REFERENCES

1. Boehm, B.W., Software and its impact:

A quantitative assessment. Datamation,
May, 1973, 48-59.

