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When sequential file structures must be used and 
binary searching is not feasible, jump searching 
becomes an appealing alternative. This paper explores 
variants of the classic jump searching scheme where the 
optimum jump size is the square root of the number of 
records. Multiple level and variable size jump strategies 
are explored, appropriate applications are discussed 
and performance is evaluated. 

Key Words and Phrases: jump searching, sequential 
files, file management, search strategies, database 
structures, index searching 

CR Categories: 3.74, 4.34 

831 

I. Introduction 

Locat ing  a record  with  a given target  key,  or  deter-  
min ing  its absence f rom a file, is a centra l  p r o b l e m  in 
file managemen t .  F o r  sequent ia l ly  o rgan ized  files which  
are sor ted by  a single key  field, K n u t h  [4] descr ibes  a 
var ie ty  o f  useful  a lgor i thms.  I f  s torage has  been  a l loca ted  
cont iguously ,  b ina ry  searching can  be used to p roduce  
very good  per formance .  In t e rpo la t ion  or  curve fi t t ing 
techniques  based  on l inear  or  h igher  degree  po lynomia l s  
[10] have seen l imi ted  use because  o f  the high cost o f  
compu ta t i on  and  uneven  per fo rmance .  Sequent ia l  
searching is s imple  to p r o g r a m  but  is costly, when  com-  
pa red  to b ina ry  searching.  I f  records  are p laced  in a 
r a n d o m  access m e m o r y  and  l inked  toge ther  wi th  explici t  
pointers ,  the b ina ry  tree search techn ique  or  its var iants  
[7] are preferred.  
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Some situations which require efficient sequential 
searching are unsuited to the binary search techniques. 
In such eases a jump search, or a "block search" as it has 
been called [5], may be appropriate. Jump search algo- 
rithms jump over portions of the sorted file until the 
search is localized to a small block or section of the file. 
Then smaller jumps may be taken or a sequential search 
is performed until the target key is located or its absence 
demonstrated. The traditional simple jump search algo- 
rithm requires jumps the size of the square root of the 
number of records in the file. We assume equal proba- 
bility of request for all records. For example, in a file of 
one hundred records arranged in ascending order, the 
10th, 20th, 30th, 4 0 t h . . .  record keys are examined until 
the target key value is reached or exceeded. If  the target 
value is bypassed, a sequential search of the remaining 
records is performed. 

Jump searching is applied in a number of diverse 
situations. It is used to search the sequence sets in the 
lowest level of the indexes constructed by VSAM [8]. 
Jump searching is used because the keys have been 
compressed, producing variable length keys and pre- 
venting the use of binary search schemes. Pointers are 
used to jump over approximately ~ keys, where N is 
the number of keys in the sequence set. 

For tape oriented searches where records may be 
blocked, jump searching is the natural form of processing 
a random request. The blocks are brought in and the key 
of the last record in the block is examined. Blocks are 
examined until the right one is found, then each record 
is examined. For this environment, where the cost of a 
jump differs from the cost of the sequential scan, the 
optimum jump size is ~ where r is the ratio of the 
jump cost to the sequential scan cost. 

In index searches, Maruyama and Smith [6] demon- 
strate that jump searching can be more efficient than 
binary searching when each node of the tree structured 
index has certain properties. Wagner [14] describes an 
"index record in which two or more levels are incorpo- 
rated in a single record" when referring to a jumping 
strategy for index searching. Strong, Markowsky, and 
Chandra [ 13] describe a "family of root  search strategies" 
in a comparison with B*-trees and binary tree search for 
index page searching. Their square and cube root strat- 
egies correspond to the simple and two level simple jump 
searches in this paper. 

In data communications, a variation of the jump 
searching scheme may be employed to decide how often 
to examine an ordered message stream when trying to 
locate a particular item. If  the message stream contains 
100 ordered records, then every tenth record should be 
examined to see if the expected message has arrived. If  
it has, a sequential scan of the last packet of messages is 
performed. 

In summary, when binary searching can be done it 
is hard to do better, but some situations exist when jump 
searching is preferred. The most common situation is in 
sorted files which are linked to maintain a sequential 

ordering. This may be the case for highly volatile files or 
for variable length records. The next section compares 
performance of several variations on the jump searching 
theme. 

2. Jump Searching Variations 

2.1 Simple Jump Searching 
Demonstrating the optimum jump size to be the 

square root of the number of keys can be done by writing 
down the average expected cost of the search, C ( N ) ,  over 
N records: 

C ( N )  = ½N/n  + ½(n - 1) (1) 

where n is the size of the jump. Assuming continuity of 
this function, taking the derivative with respect to n and 
setting the result to zero yields n = ~ Placing this 
result back into (1) gives the cost in terms of the number 
of keys examined as 

If the cost of a jump is a, and the cost of a sequential 
search is b, then the optimum jump size is x / ( a / b ) N  and 
the search cost is 

2.2 Two Level Simple Jump Searching 
Recognizing that jump searching may be performed 

within a block leads to the easily programmable two 
level simple jump search, where the square root jump 
size is reapplied to the (n - 1) records in a block. The 
expected number of keys that must be examined is 
½v/N'+ N W4, which is about twice as fast as simple jump 
searching. Repeating this idea for more than two levels 
produces a decreasing benefit. 

2.3 Two Level Fixed Jump Searching 
If  two levels of jumping are anticipated then it is no 

longer optimal to have the first level jumps as small as 
~/~-. If  the first level jumps are of size nl and the second 
level jumps nz then the approximate search cost for a two 
level fixed jump search is given by: 

C z ( N )  = ½N/n ,  + ½n,/n2 + ½nz. (2) 

Taking partial derivatives with respect to nl and nz, 
setting the results to zero and solving the pair of equa- 
tions yields optimum fixed jump sizes of n, = AP/3 and 
nz = N ~/3. Placing these results back in (2) gives the 
search cost as C2(N) = ( 3 / 2 ) N  1/3. 

Assuming the first level jumps cost a, the second level 
jumps b, and a sequential search c, then the optimum 
jump sizes are 

nl = (N2a2/ (bc) )  2/3 and nz = (Nab /c2 )  1/~ 

and the search cost is 

CZabc(N) = ½Ni/3((bc/a2) 1/3 + (ae/bZ) 1/3 + (ab/cZ)'/3).  

Of course this process can be repeated for an arbitrary 
number of levels, in which case the solution of the system 
of equations becomes increasingly complex [11]. If  the 

832 Communications October 1978 
of Volume 21 
the ACM Number 10 



number of levels becomes as large as logzN, optimum 
jump searching is the same as binary searching. 

2.4 Variable Jump Searching 
In some applications of jump searching, it may not 

be more difficult to vary the size of successive jumps and 
to obtain a faster algorithm. Initially, this approach 
would have larger jumps than the simple jump search, 
but as the jumps neared the end of the file, the jumps 
would become smaller. As the size of the file left to 
search decreases so should the size of the jumps. If we 
specify the jump size as a function, 0 < f i N )  < N, of the 
decreasing file size N, then the average cost of the search 
can be written as a recurrence: 

Co(N) = l*(l/N) + (l + ½(f(N) - 1))*(f(N) - l ) / N  

+ ( N - f ( N ) ) / N * ( 1  + C , , ( N - f i N ) ) )  

= 1 + (ft.(N) - f ( N ) ) / ( 2 * N )  
+ (N - f ( N ) ) / N *  Co(N - f ( N ) ) .  

A numerical solution showed that the optimum jump 
size was approximately 2w/2-N -. The precise determination 
of the functionf(N) which minimizes Co(N) was accom- 
plished by James Spriggs of the University of Maryland 
Mathematics Department, who proved by induction that 

1 (f(U)*(f(U) + l)*(2f(U) + 1) 
Co(N) = N ~ - -  6 

and that 

f(N) = t ~ x / ~  + l -  0J. 

Sincef(N)*(f(N) + 1) is approximately 2N, a good 
estimate for the cost is: 

C,,(U) ~ ~2f(U) + 1) = ~x/-g~ + 1. (2) 

This solution has the pleasing property that the jump 
sizes are the inverse of the "triangle number" function. 
This integer function, derived from successive sums of 
the integers, follows the progression 1, 3, 6, 10, 15, 21, 
28 ... and implies that if N = 28 the jump sizes are 7, 6, 
5, 4, 3, 2, 1. Furthermore, the number of jumps, if we 
were to follow the jumps to the last key in the file, is 
given by the same function, fiN). 

Comparing formulas (1) and (2) reveals that variable 
jump searching yields a performance improvement of 
approximately six percent over simple jump searching; 
a modest but helpful margin if the implementation cost 
is reasonable. With contiguous array allocation there is 
some overhead in computing the jump sizes and with 
pointer-linked implementations there is a slight increase 
in the number of pointers required. 

2.5 Two Level Variable Jump Searching 
By repeating the variable jump searching process 
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within the block which contains the target key, perform- 
ance can be improved substantially. The cost function 
for a two level variable jump search can be written as" 

C2v(N) = I*(1/N) + (1 + Co(g(N) - 1))*(g(N) 

- 1)/N + (N - g(N))/N*(1 + C2v(N - g(N))) 

where 0 < g(N) < N is the function which determines 
the jump size at the first level. 

Although an analytic solution was not obtained, the 
conjectured solution was validated by implementation. 
For a two level variable jump search, the first level of 
jumps is determined by the inverse of the "tetragonal 
numbers" function and the second level jumps are car- 
ried out by the method of the previous section. The 
tetragonal numbers are the successive sums of the tri- 
angle numbers. Table I shows the values of the triangle 
and tetragonal numbers. Let r(N) be the triangle number 
function, s(N) be the tetragonal number function, and t: 
r(N) --, s(N), that is, t-l(s(N)) = r(N). The first level of 
jumps are made according to t-l(N), which is what we 
called g(N), and the second level of jumps are made 
according to r-l(N), which is what we calledf(N) earlier. 

For example in an array of 120 values, if the target 
value were in position 77, it would be located after 
examination of positions 36, 64, 85, 70, 75, 79, 76, and 
77 (jumps of 36, 28, 21, 6, 5, 4, 1, and 1). 

The approximate cost of this algorithm can be ex- 
pressed succinctly as 

Czo(N) ~ Co(g(N)) + 1. 

Two level variable jump searching produces perform- 
ance superior to any of the other jump searches and can 
be competitive with binary searching. Of course, multiple 
level variable jump search strategies are possible. 

Table II gives sample values for the five jump search 
algorithms presented in this paper. 

3. Implementation Considerations and Applications 

Jump searching is a useful technique because of its 
simplicity and efficiency in sequential searching when 
binary searching is unfeasible. A particularly appealing 
application would be for owner-member coupled sets of 
the data-structure-set approach described in the Data 
Base Task Group Report [1]. Owner records are linked 
to member records which are typically kept in ascending 
or descending order. Sequential order is often main- 
tained by pointer links which may traverse pages of disk- 
based storage. Locating a specific member may require 
a costly search through multiple pages. With jump 
searching the number of pages brought into main mem- 
or), may be reduced. With careful programming, inser- 
tions and deletions can be made without disrupting the 
jump pointers. 

In some sequential files the records closest to the 
beginning of the file may be requested more often than 
others. This is typical in transaction oriented on-line 
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Table I. The triangle and tetragonal numbers. 

r( N) s( N) 
N (triangle numbers) (tetragonal numbers) 

1 1 1 
2 3 4 
3 6 10 
4 10 20 
5 15 35 
6 21 56 
7 28 84 
8 36 120 
9 45 165 

10 55 220 
11 66 286 
12 78 364 
13 91 455 
14 105 560 
15 120 680 

Table II. Approximate average number of keys examined for five 
jump searching strategies. 

No. Two Two Two 
keys in level level Varia- level 

file Simple simple fixed ble variable 

50 7.1 6.2 5.5 6.7 5.2 
100 10.0 8.2 7.0 9.4 6.3 
500 22.4 15.9 11.9 21.1 10.3 

systems where the most recently entered transactions are 
queried frequently. We assume records are ordered by 
date, descending. Variants of jump searching based on 
unequal probabilities of record requests will do well in 
such systems since the jumps can be chosen to match the 
distribution of record requests. If records at the end of 
the file are frequently requested, then the jump search 
can start from the end of the file and jump towards the 
beginning. 

List merging algorithms can be improved by applying 
a jump search strategy. The first element of the shortest 
list is taken as a target key for a jump search through the 
longer list or lists. Since there is a high probability of 
locating the target key near the front of the longer list, 
jump search variants may have an advantage over class- 
ical sequential merge or binary merge techniques [3], 
when the number of comparisons is the criterion of 
performance. 

Key compression algorithms [2] often require 
searches to begin at the start of the file and scan sequen- 
tially. By applying a jump search strategy, it is possible 
to provide improved search times with only a minor 
deterioration in the compression ratio. 

a jump differs from the cost of a sequential scan, sub- 
stantial performance improvements can be made b y  
adjusting the jump size. Significant gains can be made 
by using a two level jumping process before a sequential 
scan is used. 

Potential applications include scanning contiguous 
arrays, traversing pointer linked lists, searching through 
index blocks, list merging, and compressed key searches. 
Relationship to group testing algorithms should be stud- 
ied [9] and performance when unequal probability of 
request is assumed or when requests are batched [12] 
should be examined. 
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4. Conclusions 

Jump searching and its variants are useful algorithms 
for searching sequential files when binary searching is 
unfeasible. Variable jump searching is marginally better 
than simple and fixed jump searching. When the cost of 
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