
18. Peterson, M., and Bulgren, W. Studies in Markov models of
computer systems. Proc. 1975 ACM Annual Conf., Minneapolis,
Minn., pp. 102-107.
19. Price, T.G. Models of multiprogrammed computer systems with
I/O buffering. Proc. Fourth Texas Conf. on Comptng. Syst., U. of
Texas at Austin, 1975.
20. Rose, C.A, Validation of a queueing model with classes of
customers. Proc. Int. Symp. on Comptr. Performance Modeling,
Measurement and Evaluation, Harvard U., Cambridge, Mass., March
1976, 318-325.
21. Sauer, C.H., and Chandy, K.M. Approximate analysis of central
server models. I B M J. Res. and Develop. 19, 1, (Jan. 1975), pp.
301-313.
22. Sauer, C.H., and Chandy, K.M. Parametric modeling of multi-
miniprocessor systems. IBM Res. Rep. RC5978, IBM T.J. Watson
Res. Ctr., Yorktown Heights, N.Y., 1976.
23. Shedler, G.S. A cyclic queue model of a paging machine. IBM
Res. Rep. RC2814, IBM T.J. Watson Res. Ctr., Yorktown Heights,
N.Y., 1970.
24. Smith, W.L. Renewal theory and its ramifications. J. Royal
Statist. Soc. B20 (1958), 243-302.
25. Towsley, D. Local Balance Models of Computer Systems. Ph.D.
Th., Dept. Comptr. Sci., U. of Texas at Austin, 1975.

P r o g r a m m i n g
Techniques

S.L. G r a h a m , R.L. Rives t
Edi tors

Jump Search!ng: A
Fast Sequential Search
Technique
Ben Shneiderman
University of Maryland

When sequential file structures must be used and
binary searching is not feasible, jump searching
becomes an appealing alternative. This paper explores
variants of the classic jump searching scheme where the
optimum jump size is the square root of the number of
records. Multiple level and variable size jump strategies
are explored, appropriate applications are discussed
and performance is evaluated.

Key Words and Phrases: jump searching, sequential
files, file management, search strategies, database
structures, index searching

CR Categories: 3.74, 4.34

831

I. Introduction

Locat ing a record with a given target key, or deter-
min ing its absence f rom a file, is a centra l p r o b l e m in
file managemen t . F o r sequent ia l ly o rgan ized files which
are sor ted by a single key field, K n u t h [4] descr ibes a
var ie ty o f useful a lgor i thms. I f s torage has been a l loca ted
cont iguously , b ina ry searching can be used to p roduce
very good per formance . In t e rpo la t ion or curve fi t t ing
techniques based on l inear or h igher degree po lynomia l s
[10] have seen l imi ted use because o f the high cost o f
compu ta t i on and uneven per fo rmance . Sequent ia l
searching is s imple to p r o g r a m but is costly, when com-
pa red to b ina ry searching. I f records are p laced in a
r a n d o m access m e m o r y and l inked toge ther wi th explici t
pointers , the b ina ry tree search techn ique or its var iants
[7] are preferred.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: Dept. of Information Systems Management,
University of Maryland, College Park, MD 20742.
© 1978 ACM 0001-0782/78/1000-0831 $00.75

Communications October 1978
of Volume 21
the ACM Number 10

Some situations which require efficient sequential
searching are unsuited to the binary search techniques.
In such eases a jump search, or a "block search" as it has
been called [5], may be appropriate. Jump search algo-
rithms jump over portions of the sorted file until the
search is localized to a small block or section of the file.
Then smaller jumps may be taken or a sequential search
is performed until the target key is located or its absence
demonstrated. The traditional simple jump search algo-
rithm requires jumps the size of the square root of the
number of records in the file. We assume equal proba-
bility of request for all records. For example, in a file of
one hundred records arranged in ascending order, the
10th, 20th, 30th, 4 0 t h . . . record keys are examined until
the target key value is reached or exceeded. If the target
value is bypassed, a sequential search of the remaining
records is performed.

Jump searching is applied in a number of diverse
situations. It is used to search the sequence sets in the
lowest level of the indexes constructed by VSAM [8].
Jump searching is used because the keys have been
compressed, producing variable length keys and pre-
venting the use of binary search schemes. Pointers are
used to jump over approximately ~ keys, where N is
the number of keys in the sequence set.

For tape oriented searches where records may be
blocked, jump searching is the natural form of processing
a random request. The blocks are brought in and the key
of the last record in the block is examined. Blocks are
examined until the right one is found, then each record
is examined. For this environment, where the cost of a
jump differs from the cost of the sequential scan, the
optimum jump size is ~ where r is the ratio of the
jump cost to the sequential scan cost.

In index searches, Maruyama and Smith [6] demon-
strate that jump searching can be more efficient than
binary searching when each node of the tree structured
index has certain properties. Wagner [14] describes an
"index record in which two or more levels are incorpo-
rated in a single record" when referring to a jumping
strategy for index searching. Strong, Markowsky, and
Chandra [13] describe a "family of root search strategies"
in a comparison with B*-trees and binary tree search for
index page searching. Their square and cube root strat-
egies correspond to the simple and two level simple jump
searches in this paper.

In data communications, a variation of the jump
searching scheme may be employed to decide how often
to examine an ordered message stream when trying to
locate a particular item. If the message stream contains
100 ordered records, then every tenth record should be
examined to see if the expected message has arrived. If
it has, a sequential scan of the last packet of messages is
performed.

In summary, when binary searching can be done it
is hard to do better, but some situations exist when jump
searching is preferred. The most common situation is in
sorted files which are linked to maintain a sequential

ordering. This may be the case for highly volatile files or
for variable length records. The next section compares
performance of several variations on the jump searching
theme.

2. Jump Searching Variations

2.1 Simple Jump Searching
Demonstrating the optimum jump size to be the

square root of the number of keys can be done by writing
down the average expected cost of the search, C (N) , over
N records:

C (N) = ½N/n + ½(n - 1) (1)

where n is the size of the jump. Assuming continuity of
this function, taking the derivative with respect to n and
setting the result to zero yields n = ~ Placing this
result back into (1) gives the cost in terms of the number
of keys examined as

If the cost of a jump is a, and the cost of a sequential
search is b, then the optimum jump size is x / (a / b) N and
the search cost is

2.2 Two Level Simple Jump Searching
Recognizing that jump searching may be performed

within a block leads to the easily programmable two
level simple jump search, where the square root jump
size is reapplied to the (n - 1) records in a block. The
expected number of keys that must be examined is
½v/N'+ N W4, which is about twice as fast as simple jump
searching. Repeating this idea for more than two levels
produces a decreasing benefit.

2.3 Two Level Fixed Jump Searching
If two levels of jumping are anticipated then it is no

longer optimal to have the first level jumps as small as
~/~-. If the first level jumps are of size nl and the second
level jumps nz then the approximate search cost for a two
level fixed jump search is given by:

C z (N) = ½N/n , + ½n,/n2 + ½nz. (2)

Taking partial derivatives with respect to nl and nz,
setting the results to zero and solving the pair of equa-
tions yields optimum fixed jump sizes of n, = AP/3 and
nz = N ~/3. Placing these results back in (2) gives the
search cost as C2(N) = (3 / 2) N 1/3.

Assuming the first level jumps cost a, the second level
jumps b, and a sequential search c, then the optimum
jump sizes are

nl = (N2a2/ (bc)) 2/3 and nz = (Nab /c2) 1/~

and the search cost is

CZabc(N) = ½Ni/3((bc/a2) 1/3 + (ae/bZ) 1/3 + (ab/cZ)'/3).

Of course this process can be repeated for an arbitrary
number of levels, in which case the solution of the system
of equations becomes increasingly complex [11]. If the

832 Communications October 1978
of Volume 21
the ACM Number 10

number of levels becomes as large as logzN, optimum
jump searching is the same as binary searching.

2.4 Variable Jump Searching
In some applications of jump searching, it may not

be more difficult to vary the size of successive jumps and
to obtain a faster algorithm. Initially, this approach
would have larger jumps than the simple jump search,
but as the jumps neared the end of the file, the jumps
would become smaller. As the size of the file left to
search decreases so should the size of the jumps. If we
specify the jump size as a function, 0 < f i N) < N, of the
decreasing file size N, then the average cost of the search
can be written as a recurrence:

Co(N) = l*(l/N) + (l + ½(f(N) - 1))*(f(N) - l) / N

+ (N - f (N)) / N * (1 + C , , (N - f i N)))

= 1 + (ft.(N) - f (N)) / (2 * N)
+ (N - f (N)) / N * Co(N - f (N)) .

A numerical solution showed that the optimum jump
size was approximately 2w/2-N -. The precise determination
of the functionf(N) which minimizes Co(N) was accom-
plished by James Spriggs of the University of Maryland
Mathematics Department, who proved by induction that

1 (f(U)*(f(U) + l)*(2f(U) + 1)
Co(N) = N ~ - - 6

and that

f(N) = t ~ x / ~ + l - 0J.

Sincef(N)*(f(N) + 1) is approximately 2N, a good
estimate for the cost is:

C,,(U) ~ ~2f(U) + 1) = ~x/-g~ + 1. (2)

This solution has the pleasing property that the jump
sizes are the inverse of the "triangle number" function.
This integer function, derived from successive sums of
the integers, follows the progression 1, 3, 6, 10, 15, 21,
28 ... and implies that if N = 28 the jump sizes are 7, 6,
5, 4, 3, 2, 1. Furthermore, the number of jumps, if we
were to follow the jumps to the last key in the file, is
given by the same function, fiN).

Comparing formulas (1) and (2) reveals that variable
jump searching yields a performance improvement of
approximately six percent over simple jump searching;
a modest but helpful margin if the implementation cost
is reasonable. With contiguous array allocation there is
some overhead in computing the jump sizes and with
pointer-linked implementations there is a slight increase
in the number of pointers required.

2.5 Two Level Variable Jump Searching
By repeating the variable jump searching process

833

within the block which contains the target key, perform-
ance can be improved substantially. The cost function
for a two level variable jump search can be written as"

C2v(N) = I*(1/N) + (1 + Co(g(N) - 1))*(g(N)

- 1)/N + (N - g(N))/N*(1 + C2v(N - g(N)))

where 0 < g(N) < N is the function which determines
the jump size at the first level.

Although an analytic solution was not obtained, the
conjectured solution was validated by implementation.
For a two level variable jump search, the first level of
jumps is determined by the inverse of the "tetragonal
numbers" function and the second level jumps are car-
ried out by the method of the previous section. The
tetragonal numbers are the successive sums of the tri-
angle numbers. Table I shows the values of the triangle
and tetragonal numbers. Let r(N) be the triangle number
function, s(N) be the tetragonal number function, and t:
r(N) --, s(N), that is, t-l(s(N)) = r(N). The first level of
jumps are made according to t-l(N), which is what we
called g(N), and the second level of jumps are made
according to r-l(N), which is what we calledf(N) earlier.

For example in an array of 120 values, if the target
value were in position 77, it would be located after
examination of positions 36, 64, 85, 70, 75, 79, 76, and
77 (jumps of 36, 28, 21, 6, 5, 4, 1, and 1).

The approximate cost of this algorithm can be ex-
pressed succinctly as

Czo(N) ~ Co(g(N)) + 1.

Two level variable jump searching produces perform-
ance superior to any of the other jump searches and can
be competitive with binary searching. Of course, multiple
level variable jump search strategies are possible.

Table II gives sample values for the five jump search
algorithms presented in this paper.

3. Implementation Considerations and Applications

Jump searching is a useful technique because of its
simplicity and efficiency in sequential searching when
binary searching is unfeasible. A particularly appealing
application would be for owner-member coupled sets of
the data-structure-set approach described in the Data
Base Task Group Report [1]. Owner records are linked
to member records which are typically kept in ascending
or descending order. Sequential order is often main-
tained by pointer links which may traverse pages of disk-
based storage. Locating a specific member may require
a costly search through multiple pages. With jump
searching the number of pages brought into main mem-
or), may be reduced. With careful programming, inser-
tions and deletions can be made without disrupting the
jump pointers.

In some sequential files the records closest to the
beginning of the file may be requested more often than
others. This is typical in transaction oriented on-line

Communications October 1978
of Volume 21
the ACM Number 10

Table I. The triangle and tetragonal numbers.

r(N) s(N)
N (triangle numbers) (tetragonal numbers)

1 1 1
2 3 4
3 6 10
4 10 20
5 15 35
6 21 56
7 28 84
8 36 120
9 45 165

10 55 220
11 66 286
12 78 364
13 91 455
14 105 560
15 120 680

Table II. Approximate average number of keys examined for five
jump searching strategies.

No. Two Two Two
keys in level level Varia- level

file Simple simple fixed ble variable

50 7.1 6.2 5.5 6.7 5.2
100 10.0 8.2 7.0 9.4 6.3
500 22.4 15.9 11.9 21.1 10.3

systems where the most recently entered transactions are
queried frequently. We assume records are ordered by
date, descending. Variants of jump searching based on
unequal probabilities of record requests will do well in
such systems since the jumps can be chosen to match the
distribution of record requests. If records at the end of
the file are frequently requested, then the jump search
can start from the end of the file and jump towards the
beginning.

List merging algorithms can be improved by applying
a jump search strategy. The first element of the shortest
list is taken as a target key for a jump search through the
longer list or lists. Since there is a high probability of
locating the target key near the front of the longer list,
jump search variants may have an advantage over class-
ical sequential merge or binary merge techniques [3],
when the number of comparisons is the criterion of
performance.

Key compression algorithms [2] often require
searches to begin at the start of the file and scan sequen-
tially. By applying a jump search strategy, it is possible
to provide improved search times with only a minor
deterioration in the compression ratio.

a jump differs from the cost of a sequential scan, sub-
stantial performance improvements can be made b y
adjusting the jump size. Significant gains can be made
by using a two level jumping process before a sequential
scan is used.

Potential applications include scanning contiguous
arrays, traversing pointer linked lists, searching through
index blocks, list merging, and compressed key searches.
Relationship to group testing algorithms should be stud-
ied [9] and performance when unequal probability of
request is assumed or when requests are batched [12]
should be examined.

Received May 1977; revised May 1978

References
1. CODASYL Data Base Task Group Report, April 1971.
Available from ACM, New York.
2. Date, C.J. An Introduction to Database Systems. Addison-Wesley,
Reading, Mass., 2nd Ed., 1977.
3. Hwang, F.K., and Lin, S. A simple algorithm for merging two
disjointed linearly ordered sets. SlAM J. Comptng. 1, 1 (March 1972),
31-39.
4. Knuth, D. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley; Reading, Mass., 1973.
5. Martin, J. Computer Data-Base Organization. Prentice-Hall,
Englewood Cliffs, N.J., 2nd Ed., 1977.
6. Maruyama, K., and Smith, S.E. Analysis of design alternatives
for virtual memory indexes. Comm. ACM 20, 4 (April 1977),
245-254.
7. Nievergelt, J. Binary search trees and file organization. A CM
Computing Surveys 6, 3 (Sept. 1974), 195-207.
8. OS/VS Virtual Storage Method (VSAM) Planning Guide. Order
No. GC26-3799, IBM Corp., White Plains, N.Y.
9. Pippenger, N. Group testing. IBM Res. Rep. RC.6218, IBM T. J.
Watson Res. Ctr., Yorktown Heights, N.Y., Sept. 1976.
10. Shneiderman, B. Polynomial search. Software--Practice and
Experience 3 (1973), 5-8.
11. Shneiderman, B. A model for optimizing indexed file structures.
Int. J. Comptr. and Inform. Sci. 3, 1 (1974).
12. Shneiderman, B., and Goodman, V. Batched searching of
sequential and tree structured files. A CM Trans. Database Systems 1,
3 (Sept. 1976), 268-275.
13. Strong, H.R., Markowsky, G., and Chandra, A.K. Searching
within a page. IBM Res. Rep. RJ 2080, IBM Res. Lab., San Jose,
Calif., Sept. 1977.
14. Wagner, R.E. Indexing design considerations. IBM Syst. J. 10, 4
(1973), 351-367.

4. Conclusions

Jump searching and its variants are useful algorithms
for searching sequential files when binary searching is
unfeasible. Variable jump searching is marginally better
than simple and fixed jump searching. When the cost of

834 Communications October 1978
of Volume 21
the ACM Number 10

