
Technical Note
Human Aspects of Computing

Henry Ledgard
Editor

Control Flow and Data Structure
Documentation: Two Experiments

Ben Shneiderman
University of Maryland

Two experiments were carried out to assess the utility
of external documentation aids such as macro flowcharts,
pseudocode, data structure diagrams, and data structure
descriptions. A 223 line Pascal program which manipu-
lates four arrays was used. The program interactively
handles commands that allow the user to manage five
lists of items. A comprehension test was given to partic-
ipants along with varying kinds of external documenta-
tion. The results indicate that for this program the data
structure information was more helpful than the control
flow information, independently of whether textual or
graphic formats were used.

CR Categories and Subject Descriptors: D.2.2 [Soft-
ware Engineering]: Tools and Techniques--flow charts.

General Terms: Documentation; Experimentation;
Human Factors

Additional Key Words and Phrases: pseudocode,
data structure diagrams

1. Introduction

Proposals for program documentation techniques
that allegedly aid comprehension frequently appear in
journal articles and textbooks. This healthy outpouring
of new ideas stimulates discussion but often leads to
controversy. Usually these proposals are based on an
individual's experience with a limited number of proj-
ects, languages, and problem domains, so disagreements
are not surprising. In recent years there has been in-
creased interest in controlled experimental evaluations
to ascertain under which conditions a particular docu-
mentation technique is most effective [5].

In five previous experiments Shneiderman et al. [7]
could not demonstrate that detailed standard flowcharts
were of assistance to undergraduate Fortran program-
mers in comprehending, debugging, or modifying when
a copy of the program was available. The detailed flow-

Author's present address: B. Shneiderman, Department of Com-
puter Science, University of Maryland, College Park, MD 20742.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© i 982 ACM 0001-0782/82/0100-0055 $00.75

55

charts had approximately one box per Fortran statement,
making them larger than the programs, but information
from declarations, FORMAT statements, and comments
were not included. Two unpublished student projects
run under my direction during the past three years have
supported these results with up to 200 line Fortran
programs.

Knowledgeable programmers apparently prefer to
work with the code itself rather than the lengthier de-
tailed flowcharts. This is not surprising since a detailed
flowchart is merely a syntactic recoding of the Fortran
program and provides little additional aid. This coincides
with the syntactic/semantic model of programmer be-
havior [6] which suggests that a useful aid must facilitate
encoding of the program syntax into higher level seman-
tic units. Competent programmers deal more with prob-
lem domain related units than with program domain
related syntactic tokens. High level comments using
problem domain terminology have been shown to be
more effective in aiding comprehension than numerous
low level comments using program domain terminology.

These results and the syntactic/semantic model sug-
gest that helpful documentation would provide a high
level framework which reveals information that is diffi-
cult to obtain from the code itself. With a high level
framework, a programmer can anchor the knowledge
acquired from reading each line or small unit of code.

There are two kinds of knowledge which are difficult
to obtain from the code and can serve as a high level
framework for anchoring detailed knowledge. The first
is control flow information which might be represented
by pseudocode or by various forms of a macro or system
flowchart. Numerous proposals and examples appear in
the literature. Some proposals even blend the graphic
representation of a macro flowchart with the textual
form of pseudocode by suggesting indentation strategies
or limited use of boxes and arrows. Control flow infor-
mation in a macro flowchart or pseudocode should prob-
ably be about one-tenth of the code length for it to be
effective. A one-page macro flowchart that shows the
calling relationships among 20 one-page modules is
probably useful because it shows information which is
difficult to obtain from reading the code.

The second form of program documentation which
contains high level semantic concepts is data structure
information which might be represented by a diagram
or by a textual description. Linked list structures or
arrays are often shown pictorially while some texts rec-
ommend a textual description of data structure contents
be included in a comment block. Database management
system programmers have traditionally used Bachman
diagrams or variants to describe complex record relation-
ships. Fitter and Green [3] provide an excellent survey
of graphic notations in programming.

Ramsey and Atwood [4] studied the use otra foma of
pseudocode called Program Design Langtm4ge (PDL) and
flowcharts during the design and implemeltation phases
of a two-pass assembler for a minicomputer. Throe using

Communications January 1982
of Volume 25
the ACM Number 1

Fig. 1. Listing of Program UPKEEPER (used for Experiments 1 and 2).

(* THE PURPOSE OF THE PROGRAM UPKEEPER
IS TO CREATE LISTS OF ITEMS *)

(* *)
PROGRAM UPKEEPER (INPUT, OUTPUT);

CONST
MAXLIST = 5;
MAXENTRIES = 101;
MAXLENGTH = 25;
MAXITEMS = 20;

TYPE
PACKCHARS = PACKED ARRAY [I . . 8 0] OF CHAR;

VAR
CMD : PACKCHARS;
N : O,.MAXLIST;
STATUS : ARRAY [I . . M A X L I S T] OF CHAR;
TOTAL : ARRAY [I . . M A X L I S T] OF INTEGER;
TITLES : ARRAY [I . . M A X L I S T] OF PACKCHARS;
ENTRIES : ARRAY [I . .MAXENTRIES] OF PACKCHARS;
X : INTEGER;

(* ASSUME PROCEDURE GETWORD IS IN THE FOLLOWING PROGRAM. ,)
(* THEREFORE, THE STATEMENT GETWORD(CMD) RETRIEVES *)
(* THE NEXT WORD INPUT. *)

(* *)
FUNCTION FINDINDX(POS: INTEGER; COUNTER: INTEGER): INTEGER;

BEGIN
FINDINDX : : (20*(POS - l) + COUNTER)

END;
(* *)

FUNCTION LOCATE(LISTNAME: PACKCHARS): INTEGER;
VAR

X : INTEGER;
SEARCHING : BOOLEAN;

BEGIN
LOCATE := O;
X := l ;
SEARCHING := TRUE;
WHILE SEARCHING AND (X <= MAXLIST) DO BEGIN

IF STATUS [X] : 'E ~

THEN
IF TITLES [X] = LISTNAME

THEN BEGIN
LOCATE := X;
SEARCHING := FALSE

END;
X : : SUCC(X)

END;
END;

PROCEDURE CREATPROC;
VAR

LISTNAME : PACKCHARS;
DONE : BOOLEAN;
X : INTEGER;

BEGIN

(* *)

the PDL in the design phase apparently included greater
detail and were judged to have higher quality designs.
For the implementation phase the PDL and flowchart
were found to be equally comprehensible although sub-
jective ratings indicated a mild preference for the PDL.
The authors indicate that data structure issues were not
addressed, but that this would be a worthwhile topic for
further research.

Sheppard, Kruesi, and Curtis [9] compared compre-
hension with nine forms of program description. Natural
language, a program design language, and flowchart
symbols were prepared in three spatial arrangements:
sequential (vertical flow), branching (flowchart style),
and hierarchical (treelike). Subjects did not have access
to the program text. Different results were obtained for
different types of questions, but no style appeared to
dominate.

Sheppard and Kruesi [8] studied program coding
from the nine documentation forms and found that
the program design language and the flowchart symbol
notations were more helpful than the natural language
descriptions. The spatial arrangement did not signifi-
cantly affect the outcome but the branching style ap-

DONE : : FALSE;
GETWORD(LISTNAME);
IF N >= MAXLIST

THEN BEGIN
WRITELN ('MAXIMUM ALLOWED LISTS');

END;
X := l ;
WHILE (X <= MAXLIST) AND (NOT DONE) DO BEGIN

IF STATUS [X] ~ 'F' THEN
IF TITLES [x] = LISTNAME

THEN ~GIN
WRITELN('ALREADY HAS BEEN CREATED');
DONE := TRUE

END;
X :=.SUCC(X)

END;
X : : 1;
WHILE (X <= MAXLIST) AND (NOT DONE) DO BEGIN

IF STATUS IX] - 'E'
THEN BEGIN

STATUS [X] := ' F ' ;
TITLES [X] := LISTNAME;
N : : N + 1;
DONE := TRUE

END;
X := SUCC(X)

END;
END;

(* *)
PROCEDURE DELETEPROC;

VAR
LISTNAME : PACKCHARS;
POG : O..MAXLIST;

BEGIN
GETWORD(LISTNAME);
POS := LOCATE(LISTNAME);
IF POS = 0

THEN
WRITELN('DOES NOT EXIST')

ELSE BEGIN
STATUS[POS] := 'E ' ;
TOTAL[POS] := O;
N := N - I ;

END;
END;

(* *)
PROCEDURE ADDENT(ENTITEM: PACKCHARS; POS: INTEGER);

VAR
INSERTPOS, NEWPOSITION: I..MAXENTRIES;

BEGIN
INSERTPOS := TOTAL[POS] + l ;
NEWPOSITION := FINDINDX(POS, INSERTPOS);
ENTRIES[NEWPOSITION] : : ENTITEM;
TOTAL[POS] := INSERTPOS

END;
(* *)

PROCEDURE ADDPROC;

peared to be superior. Brooke and Duncan [1, 2] found
that flowcharts were more useful than a program listing
in tracing execution sequences in a debugging task.

Although texts and industrial reports emphasize con-
trol flow documentation strategies such as macro
flowcharts and pseudocode, it seems clear that in some
instances the data structure information may be more
useful. Some programs do have complex control flow
with relatively simple data structures--traditional nu-
merical analysis programs might be an example. But
other programs have complex data structures with rela-
tively simple control flow--traditional commercial ap-
plications with multiple record structures might be an
example.

A pressing and practical problem is to fred out what
documentation aids assist programmers in comprehend-
ing, debugging, and modifying programs. For a knowl-
edgeable programmer with a program listing, supple-
mentary documentation must perform a different func-
tion than for a programmer or nonprogrammer with no
listing. While detailed flowcharts may be preferable to
prose in some problem solving situations, when the
program listing is available macro flowcharts, pseudo-

Communications January 1982
of Volume 25
the ACM Number 1

VAR
POS : O..MAXLIST;
LISTNAME : PACKCHARS;
ENTITEM : PACKCHARS;
COUNTER, INDEX : INTEGER;
INVALID : BOOLEAN;

BEGIN
INVALID := FALSE;
GETWORD(LISTNAME);
GETWORD(ENTITEM);
POS := LOCATE(LISTNAME);
IF POS = 0

THEN WRITELN('DOES NOT EXIST')
ELSE BEGIN

IF TOTAL[POS] : MAXITEMS
THEN BEGIN

WRITELN('MAXIMUM ALLOWED FILLED');
INVALID := TRUE

END
ELSE BEGIN

COUNTER := O;
WHILE COUNTER <= TOTAL[POS] DO BEGIN

COUNTER := SUCC(COUNTER);
(* GET VALUE FOR FINDINDEX FUNCTION *)

INDEX := FINDINDX(POS, COUNTER);
(* COMPARE ENTRY ITEM TO CURRENT *)
(* ITEMS IN LIST *)

IF ENTRIES[INDEX] : ENTITEM
THEN

INVALID := TRUE
END;

END;
END;

IF NOT INVALID THEN (* VALID *)
ADDENT(ENTITEM, POS)

END;

PROCEDURE DISPLAYPROC;
VAR

LISTNAME : PACKCHARS;
POS : O..MAXLIST;
INDX, X : INTEGER;

BEGIN
GETWORD(LISTNAME);
POS : : LOCATE(LISTNAME);
IF POS = 0

END;

(* *)

THEN
WRITELN('DOES NOT EXIST')

ELSE BEGIN
WRITELN(LISTNAME, ' L I S T ') ;
FOR X := 1 TO TOTAL[POS] DO BEGIN

INDX := FINDINDX(POS, X);
WRITELN(' ',ENTRIES[INDX])

END;
END;

(* *)

code, or data structure diagrams may become more
useful. We conducted two experiments to explore the
utility of several documentation materials as an aid to
programmer comprehension of an available listing.

2. Experiment 1: Pseudocode vs Data Structure
Diagram

This experiment, conducted by Betty Mastorakis and
Karen Schlossberg, tested the utility of pseudocode and
data structure diagrams as aids to program comprehen-
sion. For this 1 × 3 factorial design, subjects were
presented with a coded program under one of three
experimental conditions:

(1) Program with input specifications only.
(2) Program, input specifications plus pseudocode.
(3) Program, input specifications plus graphic represen-

tation of data structures used.

2.1. Materials
Experimental materials included a program, one of

the three program supplements, and a comprehension
test. The 223 line program written in Pascal, was an
interactive system to maintain lists of items (Figure 1).

57

PROCEDURE PRINTPROC;
VAR

CMD : PACKCHARS;
X : INTEGER;

BEGIN
GETWORD(CMD);
IF CMD <> 'LISTS'

THEN WRITELN('INCORRECT COMMAND')
ELSE BEGIN

FOR X := l TO MAXLIST DO
WRITELN(' ' ,TITLES[X])

END
END;

FUNCTION CHECKCMD(VAR CMD: PACKCHARS): INTEGER;
BEGIN

IF CMD = 'CREATE' THEN CHECKCMD : : l
ELSE IF CMD = 'DELETE' THEN CHECKCMD := 2
ELSE IF CMD = 'ADD' THEN CHECKCMD := 3
ELSE IF CMD = 'DISPLAY' THEN CHECKCMD := a
ELSE IF CMD = 'PRINT' THEN CHECKCMD := 5
ELSE CHECKCMD := 0

END;
(* *)

PROCEDURE GETLEGALCMD(VAR CMD: PACKCHARS);
VAR

CODE : 0 . .6 ;
BEGIN

CODE := CHECKCMD(CMD);
CASE CODE OF

0 : WRITELN(CMD,'IS NOT A LEGAL COMMAND');
l : CREATPROC;
2 : DELETEPROC;
3 : ADDPROC;
4 : DISPLAYPROC;
5 : PRINTPROC

END;
END;

(* MAIN PROCEDURE *)
BEGIN

N := O;
FOR X : : I TO MAXLIST DO BEGIN

STATUS[X] := ' E ' ;
TOTAL[X] := 0

END;
GETWORD(CMD);
WHILE NOT EOF(INPUT) DO BEGIN

GETLEGALCMD(CMD);
GETWORD(CMD)

END;
END.

Seven procedures and three functions were included in
the program. The program is a typical student program
similar in quality to commercial software. The applica-
tion domain was chosen to be familiar to our undergrad-
uate student participants. The first of three program
supplements (one for each condition) was a sheet con-
taining the format of the five possible input commands
(Figure 2). The second supplement was the same input
specifications plus one and a half pages of pseudocode
(Figure 3). The third supplement was the same input
specifications plus a pictorial layout of the four arrays
used in the program with arrows indicating the relation-
ship among the arrays (Figure 4).

The comprehension test (Figure 5) provided specific
input commands to be used as a continuous stream when
answering the questions (instructions explaining this
were included in the test.) The beginning questions
required tracing the control flow in the program so as to
introduce participants to the program's function and to
demonstrate the input command usage. Later questions
were designed to test overall comprehension of the pro-
gram logic.

2.2. Administration
A pilot study with 30 students was conducted during

a 50 minute session of an intermediate undergraduate

Communications January 1982
of Volume 25
the ACM Number 1

Fig. 2. Input specifications only for Program UPKEEPER (used for
Experiments 1 and 2).

Program: UPKEEPER

Data for the program consist only of input commands. The
following is the format for the commands which are used in the
program:

CREATE (listname) (*Creates a new list*)
DELETE (listname) (*Deletes a current list*)
ADD (listname) (entry) (*Adds a new entry to the given list*)
DISPLAY (listname) (*Output commands*)
PRINT LISTS

Fig. 3. Input specifications plus pseudocode for Program UPKEEPER
(used for Experiments 1 and 2).

Program: UPKEEPER
(algorithm)

Data for the program consists of only input commands. The
following is the format for the commands which are used in the
program:

CREATE (listname) (*Creates a new list*)
DELETE (lismame) (*Deletes a current list*)
ADD (listname) (entry) (*Adds a new entry to given list*)
DISPLAY (lismame) (*Output commands*)
PRINT LISTS

* * * * * * * * * *

Main Procedure
Initialize Status array and entry Total array
While there are more commands

Read command
Determine command type
Perform procedure for appropriate command type

End.

Create Procedure
Read list name
If maximum number of lists already exists

Print list name given and an appropriate message
Else

Add list name to Title array of list names
Change status for list added

End.

Delete Procedure
Read list name
Search for given list name in Title array of list names
If not found

Print list name and appropriate message
Else

Change corresponding element in Total array to 0
Change status for given list

End.

Add Procedure
Read list name and entry item given
Search Status array for indication of a current list name
If list name given is not found

Print given list name and appropriate message
Else

If list contains maximum number of entries
Print appropriate error message

Else
Search current list o f entries to fred given entry item
If found

Print given entry item and appropriate error message

58

Else
Find position where entry item it to be added
Insert entry item at this position
Increment number of current entry items by 1

End
End.

Display Procedure
Read list name given
Search Status array for indication of a current list name
If given list name is not found

Print given list name and appropriate error message
Else

Print list name and entries
End.

Print Procedure
Read command flag
If not equal to LISTS

Print error message
Else

Search Status array for indication of current list name
Print current list names

End.

programming course using Pascal. The students had no
training in data structure diagrams although pseudocode
was occasionally used in the course. Test materials were
revised, the task was simplified, and the time extended.

The experiment was conducted in November 1979
during a 75 minute class period with 57 different students
from the same intermediate programming course. Ex-
perimental consent sheets were provided for all students
to sign. All students present agreed to participate. Stu-
dents were told to use the entire class period if necessary,
to please remain seated if finished early, to ask any
questions they had during the test, and to feel free to
write on the blank sheet provided or on the other mate-
rials if they desired. Also, students were told that they
were each given a program supplement (below the cover
sheet in the packet) which should be used as an aid when
answering questions. However, because only a few stu-
dents were actually using the supplement while taking
the test, students were reminded that the supplement
would be useful, and they then began using the aid.

Several questions were asked during the administra-
tion of the test. Because of typographical errors on the
test, students were twice interrupted to make note of the
necessary changes on the test. One student questioned
the use of input commands as continuous input, but
seemed to understand this idea after a brief explanation.

Most students needed the entire class time to com-
plete the test. After the test, a number of students asked
whether the program actually ran and also asked to keep
a copy of the program.

2.3. Results
Initially there were 19 students for each of the three

conditions. It was decided that if any of the students
completed less than the first seven questions, their tests
would be excluded from the analysis. Two such cases
occurred in the data structures group and one in the

Communications January 1982
of Volume 25
the ACM Number i

Fig. 4. Input specifications plus data structure diagram for Program UPKEEPER (used for Experiments I and 2).

Program: UPKEEPER
Data for the program consist only of input commands. The following is the format for the commands which are used in the program*:

CREATE (lismame) (*Creates a new list*)
DELETE (listname) (*Deletes a current list*)
ADD (lismame) (entry) (*Adds a new entry to the given list*)
DISPLAY (listname) (*Output commands*)
PRINT LISTS

The following are the data structures for UPKEEPER. Consider them as a pictoral representation of the arrays used in the program:

TITLES STATUS TOTAL ENTRIES

I
II
III
IV

V

ARRAY [1..5] ARRAY [1..5] ARRAY [1..5]
OF PACKCHARS OF CHAR OF INTEGER

TYPE
PACKCHARS: PACKED ARRAY [1..80] OF CHAR;

specifications-only group. Such occurrences could have
resulted from a lack of motivation to complete the test
or possibly from a serious lack of understanding of the
program and test. Those who answered only the first few
questions may not have been willing to invest the time
and effort to complete the 15-question test and, conse-
quently, their incomplete results may have demonstrated
low motivation rather than poor comprehension; these
cases were discarded. To maintain equal numbers of
students for the three groups, two tests from the pseu-
docode and one from the specifications-only condition
were randomly chosen to be excluded.

Each question was graded as right or wrong; one
point was given for each correct answer and the score
was unaffected by an incorrect answer. Most questions
were multiple choice but for those requiring a short
answer, acceptable correct responses were established
before grading to maintain objectivity. Any uncertainties
were discussed by the experimenters to adhere to these
standards.

Table I presents the mean number of correct scores
and the standard deviation per group for each of 15 test
questions. Two statistical analyses were performed. The
first was a one-way analysis of variance comparing re-
suits for the three experimental treatments. This analysis
revealed a statistically significant difference among the
groups at the 0.01 level.

Two-tailed t-tests were performed in pairs. The data
structures/pseudocode analysis and the data structures/
specifications-only analysis were both significant (p <
0.01) but the specifications-only/pseudocode analysis did

$9

1

20
21

40
41

60
61

80
81

100

I

II

Ill

IV

V

ARRAY [l..100]
OF PACKCHARS

not yield a significant difference. These results reveal
that for this program external documentation did im-
prove comprehension. The data structure diagram was
more helpful than the pseudocode.

Comprehension test questions were designed to assess
understanding of low level details (questions 1 to 7) such
as variable assignments and execution sequencing and
higher level concepts (questions 8 to 15) such as array
use and procedure purpose. For questions focusing on
array usage such as number 11, we might not be surprised
to fred that the data structure diagram group did better.
However, it is striking that the data structure diagram
group had higher mean scores on every question, even
those focusing on procedural details.

These results strongly suggest that for this program
and these subjects, at least, the data structure diagram
facilitated overall program comprehension. This is in
spite o f the greater detail and volume of information in
the pseudocode.

In focusing on only two common documentation
aids, pseudocode and data structure diagrams, we con-
founded the issue of textual vs graphic presentations of
information. To deal with this as an independent variable
we conducted a second experiment.

3. Exper iment 2: Control Flow vs Data Structure in
Textual vs Graphical Formats

This experiment, conducted by Toni Deliso and Gary
Stambaugh, tested program comprehension aids by corn-

Communications January 1982
of Volume 25
the ACM Number 1

Fig. 5. Multiple choice test (used for Experiments 1 and 2).

The following questions pertain to the program UPKEEPER.
Consider the commands given between questions as a continuous
stream of input (i.e., as if they appeared together as data for the
program.)

For each of the multiple choice questions which follow, select the
one best alternative by circling the letter which precedes it.
Assume the input command CREATE CARS is the first for this
program.

1. In the main procedure, beginning with GETWORD (CMD),
what sequence of execution takes place before CARS is read?
(a) PROCEDURE GETLEGALCMD, FUNCTION

CHECKCMD, PROCEDURE CREATPROC.
(b) PROCEDURE GETLEGALCMD, FUNCTION

CHECKCMD, PROCEDURE GETLEGALCMD,
PROCEDURE CREATPROC.

(c) PROCEDURE GETLEGALCMD, FUNCTION
CHECKCMD, MAIN PROCEDURE, PROCEDURE
CREATPROC.

(d) PROCEDURE GETLEGALCMD, PROCEDURE
CREATPROC.

2. In PROCEDURE CREATPROC, what will the variable X
signify after execution of this procedure?
(a) Current number in MAXLIST.
(b) N is changed to assume the value of 1.
(c) First empty position where LISTNAME will be added.
(d) X will always assume the value 1 after execution.
The next two commands in the data are: CREATE ROLLS

ADD ROLLS SCROLL
3. Within PROCEDURE ADDPROC, the FUNCTION LOCATE

returns:
(a) First occurrence of "F" in STATUS.
(b) Position where LISTNAME will be added.
(c) Position of LISTNAME.

4. With the above two commands, this function LOCATE in
PROCEDURE ADDPROC returns the value.

5. In this same procedure, ADDPROC, the function FINDINDX
returns the value

6. With the above two commands, in PROCEDURE ADDPROC,
control will be transferred to PROCEDURE ADDENT.
(a) TRUE
(b) FALSE

7. Assuming control is now in PROCEDURE ADDENT, what is
the first value assigned to INSERTPOS?

8. Why is the number 20 used in the formula in FUNCTION
FINDINDX? (briefly state)

9. Why was TOTAL initialized to 0 at the start of the program in
the main procedure? (briefly state)
Next command in the input data is: ADD ROLLS GOAL

10. When execution of ADDENT is completed for the above
command, the value of TOTAL [POST] will be

11. What does TOTAL array indicate? (briefly state)
Next command in input data is: DISPLAY ROLLS

12. What output will this command generate?
Next command in input data is: DELETE CARS

13. After this command:
(a) LISTNAME still exists in TITLES array.
(b) LISTNAME can no longer be accessed.
(c) STATUS [POS] in PROCEDURE DELETEPROC will be

the location of the next list added.
(d) All of the above.
(e) None of the above.

14. Briefly state the purpose of STATUS in the program (without
using code to answer the question):

15. PROCEDURE PRINTPROC is to print a list of current list
titles. As it is written, the procedure may also print titles which
are not current. What modification (addition or deletion) must be
made in this procedure so that only active titles will be printed?

Table I. Numbers of Correct Scores on Comprehension Test for
Experiment 1 (15 questions, 51 subjects, 17 per cell).

MEAN
(STANDARD DEVIATION)

DATA STRUCTURE
DIAGRAM +
SPECIFICATIONS

PSEUDOCODE +
SPECIFICATIONS

SPECIFICATIONS
ONLY

8.47
(2.48)

6.06
(1.68)

5.06
(2.59)

paring the effect of presentation of the control flow in
pseudocode and flowchart form and the presentation of
the data structures in textual and graphic formats. Our
hypothesis was that the relatively high level data struc-
ture information would be more useful to programmers
than the control flow information. We also believed that
the type of representation, written or graphic, would
have no effect on program comprehension.

Fig. 6. Flowchart for Program UPKEEPER (used for Experiment 2
only).

INITIALIZE _ _ ~ INITIALIZE
STATUS TOTAL

a)

END .)

/ / COMMAND

60 Communications
of
the ACM

January 1982
Volume 25
Number 1

b) ?
/ REdo /

LIST
NAME

< < ~ T /~ PRINT----,
IR O F ~ J - - ~ LIST NAME /

~"...~ ~ - - " /AND MESSAGE_/

ADD LIST
NAME TO

TITLE

L
CHANGE I
STATUS

c) ?
/ ~EAo /

LIST
NAME

SEARCH ~ FOR
LIST NAME]
IN TITLE

I CHANGE ~
| TOTAl. ST~S I ~ _ ~

a)

./ REAOLIST / ,I STATusSEARCH FOR I
~. U / - - ~ NAME, ~ CURRENT
"~--J /~ ENTRY ITEM / (LIST NAME

~ ~ _ FPRINTLIST / f
>>=7 ' ~I~A~ D / -

R ~ ERROR
E ~ [MESSAGE

- SEARCH ~
[CURRENT LIST 1
I OF ENTRIES I
t FOR ENTRY ITEM]

1
~ O R

ITEM

l t NUMBER Of
CURRENT
ITEMS BY I

61

e)

READ
LIST

/ N O T ~ T /PRINT LIST-~
< FOUND ~ NAME AND /

L ERROR MESS~Gy

/ .~R,.T L,ST / ~--
/ NAME AND / ~ . , ~ . ~

ENTRIESJ

f) ©
L /REA0 7 COMMAND

FLAG

/ M~AGE/

SEARCH STATUS J
FOR CURRENT
LIST NAME

i

Communications
o f
the A C M

January 1982
Volume 25
Number 1

3.1. Materials
For this 2 x 2 factorial design, participants were

presented a packet consisting of:

(1) An introduction and explanation of the experiment.
(2) One of four program design aids (i.e. flowcharts,

pseudocode, data structure diagram, or description
of the data structures.)

(3) The program listing.
(4) A comprehension test.

All participants were given the same program as in
Experiment 1 but the comprehension test was shortened
by omitting question 15. Each program supplement con-
tained the format of the five possible input commands.
The first of the four program supplements was a set of
six flowcharts for the program (Figure 6). The second
supplement was the one and a half page pseudocode
(Figure 3). The flowcharts and pseudocode were pre-
sented at the same level of detail with the same termi-
nology. The third supplement was the diagram of the
four arrays used in the program and arrows indicating
the relationship among the arrays (Figure 4). The fourth
supplement was a written description of the data struc-
tures. This gave the title of each array and a brief
description of what each array represented (Figure 7).

3.2. Administration
The experiment was conducted in November 1980

during three 50 minute discussion sections of the same
intermediate programming course in Pascal. Subjects
were introduced to the experiment at the beginning o f
the class; they had no prior knowledge that they would
be participating in an experiment. All 32 students signed
the experimental consent sheets which were provided.
Participants were told to use the entire class period if
necessary, to remain seated if finished early, to ask any
questions they had during the test, and to feel free to
write on any of the materials if they desired. Also,
participants were told that they were each given a pro-
gram supplement (below the cover sheet in the packet)
which should be used as an aid when answering ques-
tions.

Most students needed the entire class time to com-
plete the test. After the test, a number of participants
asked to keep a copy of the program. In short, the
administration was similar to Experiment 1. No student
participated in both studies.

3.3. Results
One point was given for each correct answer and the

score was unaffected by an incorrect answer. The test
consisted of 14 multiple choice and short answer ques-
tions. Most of the questions were multiple choice, but
for those requiring a short answer, acceptable correct
responses were established before grading.

All 32 subjects were used in the experiment. These
students were divided in four groups corresponding to
the four program aids. No data were thrown out and low

62

Fig. 7. Data structure description for Program UPKEEPER (used for
Experiment 2 only).

The following is a description of the data structures for upkeeper.
This program uses 4 arrays.
The array (entries) consists of 100 entries, each entry may be from 1
to 80 characters long. The array (entries) is divided into 5 separate
lists. Each list contains at most 20 entries.
These 5 lists are represented by a separate array (titles). The title of
each list can be 1 to 80 characters long.
The status, (e, f), of each list is represented by the array (status).
The total number of entries in each list is represented by the array
(total).

scores were kept. Table II presents the mean number of
correct answers and standard deviations by group for the
total o f 14 questions.

The two-way analysis of variance showed a signifi-
cant (p < 0.02) main effect for information content (data
structure vs control flow information) but no effect for
the form (textual vs graphic). The interaction effect was
also not significant. These results support the hypothesis
that for this program, at least, the data structure infor-
mation was more helpful than the control information
and that the form of presentation does not matter. These
results are impressive since the control flow information
was far m o r e detailed than the data structure informa-
tion.

4. Conclusions

In this study we sought to test empirically several
forms of external program documentation to assess their
impact on comprehension of a program listing. Earlier
results with detailed standard flowcharts showed them
to be ineffective and a possible distraction from the
program text. Higher level semantic information was
conjectured and demonstrated to facilitate comprehen-
sion. A brief data structure description or half-page
diagram were shown to be more helpful to comprehen-
sion of a 223 line Pascal program than a one and a half
page pseudocode or six-page macro flowchart. The ef-
fectiveness of external documentation was amply dem-
onstrated in Experiment 1 where the specifications-only
group had the poorest performance.

Table II. Number of Correct Scores on Comprehension Test for
Experiment 2 (14 questions, 32 subjects, 8 per cell).

MEAN FORMAT
(STANDARD DEVIATION) TEXTUAL GRAPHIC

CONTENT

DATA
STRUCTURE

CONTROL
FLOW

7.75 8.37
(4.49) (4.40)

4.50 3.87
(3.50) (4.05)

Communications
of
the ACM

January 1982
Volume 25
Number 1

For this program, which used four arrays to manage
data for an interactive list keeping system, the data
structure information was more difficult to extract from
the code than the control flow information. Lengthy
detailed flowcharts or voluminous internal comments do
not appear to aid competent programmers when the code
is available. In fact, excess documentation does interfere
with comprehension.

Henry Ledgard, in a personal communication, argues
that this program could be redesigned in a more lucid
way, in particular

(1) making better use of Pascal's data definition facili-
ties;

(2) choosing better mnemonic variable names;
(3) giving more careful attention to global variables.

Ledgard argues that such an improved program
would be comprehensible without the use of data struc-
ture diagrams. Just as the evolution towards the use of
higher level control structures has reduced the utility of
detailed flowcharts, the use of higher level data structures
would reduce the utility of data structure diagrams.

Replications of this study with other programmers,
programs, and documentation forms would be useful to
obtain a more precise understanding of under which
conditions data structure information is more helpful
than control flow information. It might be interesting to
study control flow information which is less detailed
than the materials used in these experiments.

The syntactic/semantic model and the results of this
experiment suggest that carefully designed high level
semantic information is useful as external documenta-
tion. The compactness brought about by high level ab-
straction appears to aid comprehension too. Maybe a
crude rule of thumb would be to encourage external
documentation to be one-tenth the size of the code while
using problem domain terminology as much as possible.
Of course, exceptionally good external documentation
will only partially compensate for poorly written code.
Functionally oriented modular design, carefully com-
posed algorithms, meaningful variable names, and well-
chosen brief comment blocks in the code are necessary
components of quality programs.

Competent programmers can judge which aspects of
their program require external documentation. Control

flow or data structures are two familiar aspects but others
such as timing information in real-time environments or
interprocedure coordination in multiprocessor architec-
tures are worthy of consideration. External documenta-
tion should provide a guiding abstraction which is above
the level of the code. For large programs two or even
three levels of abstraction or detail may be necessary.

Acknowledgments. I would like to thank J. Gannon,
M. Weiser, and L. Chmura for their comments on earlier
versions of this paper. H. Ledgard was extremely effec-
tive as the section editor by providing numerous reviews
and useful guidance in responding to the referees' diver-
gent comments. I thank M. Johnson for her careful
typing and preparation of figures as she cheerfully en-
dured the multiple revisions.

Received 1/81; revised 5/81; accepted 7/81

References
!. Brooke, J.B. and Duncan, K.D. An experimental study of
flowcharts as an aid to identification of procedural faults.
Ergonomics, 23, 4 (1980) 387-399.
2. Brooke, J.B. and Duncan, K.D. Experimental studies of
flowchart use at different stages of program debugging. Ergonomics,
23, 11, (1980), 1057-1091.
3. Fitter, M. and Green, T.R.G. When do diagrams make good
computer languages? Int. J. of Man-Machine Studies, 11, (1979), 235-
261
4. Ramsey, H.R., Atwood, M.E., and Van Doren, J.R. A
comparative study of flowcharts and program design languages for
the detailed procedural specification of computer programs. (ARI
Tech. Rept. TR-78-A22) Colorado: Science Applications, Inc., U.S.
Army Research Institute for the Behavioral and Social Sciences,
1978.
5. Shneiderman, B. Software Psychology: Human Factors in
Computer and Information Systems, Winthrop, Cambridge, MA, 1980.
6. Shneiderman, B. and Mayer, R. Syntactic/semantic interactions
in programmer behavior: A model and experimental results. Int. J. of
Computer and Information Sciences, 7, (1979) 2 ! 9-239.
7. Shneiderman, B., Mayer, R., McKay, D., and Heller, P.
Experimental investigations of the utility of detailed flowcharts in
programming. Comm. ACM, 20, (1977) 373-381.
8. Sheppard, S.B. and Kruesi, E. The effects of the symbology and
spatial arrangement of software specifications in a coding task. Proc.
Trends and Applications 1981: Advances in Software Technology. Held
at NBS, Gaithersburg, MD, available from IEEE, (1981) 7-13.
9. Sheppard, S.B., Kruesi, E. and Curtis, B. The effect of symbology
and spatial arrangement on the comprehension of software
specifications. Proc. 5th Int. Conf. on Software Engineering. San
Diego, CA, available from IEEE, 1981, 207-214.

63 Communications January 1982
of Volume 25
the ACM Number 1

