
I THE INTERACTION TECHNIQUE NOTEBOOK I

Tree Visualization with Tree-Maps:
2-d Space-Filling Approach

Ben Shneiderman

University of Maryland

Introduction. The traditional approach to representing tree structures is as
a rooted, directed graph with the root node at the top of the page and children
nodes below the parent node with lines connecting them (Figure 1). Knuth [21
has a long discussion about this standard representation, especially why the
root is at the top, and he offers several alternatives including brief mention of
a space-filling approach. However, the remainder of his presentation and
most other discussions of trees focus on various node and edge representa-

tions. By contrast, this paper deals with a two-dimensional (2-d) space-filling
approach in which each node is a rectangle whose area is proportional to
some attribute such as node size.

Research on relationships between 2-d images and their representation in
tree structures has focussed on node and link representations of 2-d images.
This work includes quad-trees [51 and their variants which are important in
image processing. The goal of quad trees is to provide a tree representation
for storage compression and efilcient operations on bit-mapped images. XY-
trees [41 are a traditional tree representation of two-dimensional layouts
found in newspaper, magazine, or book pages. Related concepts include k-d
trees [11, which are often explained with the help of a 2-d rectangular
drawing, and hB-trees [31 which are a more advanced multiattribute indexing
method that has a useful 2-d representation. None of these projects sought to
provide human visualization aids for viewing large tree structures.

Tree-maps are a representation designed for human visualization of com-
plex traditional tree structures: arbitrary trees are shown with a 2-d space-
filling representation. The original motivation for this work was to gain a
better representation of the utilization of storage space on a hard disk as

Author’s address: Department of Computer %ience, Human-Computer Interaction Laboratory,
University of Maryland, College Park, MD 20742.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publl%ation and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwiee, or to republish, requires a fee and/or
specific permission.
@ 1992 ACM 0730-0301/92/0100-0092 $01.50

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992, Pages 92-99.

Tree Visualization with Tree-Maps: A 2-D Space-Filling Approach . 93

Fig. 1. Typical 3-level tree structure with numbers indicating size of each leaf node

viewed from the perspective of a multiple level directory of subdirectories and
files, as in Unix, Macintosh Finder, or MS-DOS. In this application the files
are leaf nodes and the subdirectories are interior nodes, Most operating

systems display the contents of one node at a time with names of the files and

subdirectories or icons to represent them. The user can traverse the tree with

a mouse click on a directory folder icon or by issuing a command (e. g., CD for
change directory). A few systems attempt to show more than one node at a
time, but very quickly the limited screen space is exceeded. Even clever
attempts to show the full tree structure and allow rapid page turning soon
exceed practical limits. For example, Norton Utilities from Symantec and
Windows 3.0 from Microsoft show trees on their side with the root at the left
of the display and indentation plus some lines to show the tree structure. In
summary, even elegant tree-like layouts of the hierarchical structures, such
as in Sun Microsystems Open Look, soon overwhelm the available display
space and users cannot grasp the entire picture.

This is an old problem. Even designers of family trees, animal species
trees, or organization charts found that a large wall was necessary to give the
whole picture. But even then, only the structural relationship is shown;
additional information, such as the size or importance of each node, was
ignored or written in text form.

In the computer directory representation application, the goal was to show

the entire set of files in a space-filling visualization that would allow users to
recognize rapidly the larger files and consider them as candidates for deletion
when the hard disk was filled. These large files might be at any level of the
tree structure and the range in file sizes might be five of six orders of
magnitude (from a few bytes to a few million bytes). There might be two to
eight levels with many thousands of files.

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992

94

PI

. B. Shneiderman

~l,yl) P2(x3,Y1)

. ., , ,.,.,:,~. }“’’”1,, ///..... ,. ~.:. :.:, :,:O:O:O:.:.: 1

.

.

.

.

f
Q2/xl,y2) Ql(x2,y2)

One
length

Fig.2. Tree-map of Figurel.

approach to this problem is to choose a l-d representation with the
of each file coded as the length of a portion of a multicolored line [2].

This is impractical because the line ‘would be too long to view. A 3-d or higher
dimensional approach might be hard to draw and view. A 2-d space-filling
approach has the potential to be drawable and comprehensible. If each file
were represented as a small rectangle, the method would work, but it would

be necessary to avoid a computationally intensive bin-packing algorithm.
The following tree visualization approach, called tree-maps (Figures 1 and 2),
appears to solve the practical problem and provide interesting opportunities
for other applications.

Tree-Map Algorithm. The algorithm takes a tree root (Figure 1) and a
rectangular area defined by the upper left and lower right coordinates Pl(xl,
yl), Q1(x2, y2). The number of outgoing edges from the root node determines
the number of partitions of the region [xl, x2]. Since the leftmost subtree
contains a fraction (Size(child[l]) /Size(root)) of the total number of bytes in
the root, then the first vertical partitioning line is drawn at

x3 = xl + (Size (child [l]) /Size (root)) *(x2 – xl).

The algorithm then recurs down the left tree using the 90-degree rotated
rectangle P2(x3, yl), Q2(x1, y2) and splits on the y-axis direction, while the
loop continues along the remaining subtrees making partitions on the re-
maining rectangle P2(x3, yl), Q1(x2, y2). Therefore nodes are partitioned
vertically at even levels and horizontally at odd levels (Figure 2).

ACMTransactions on Graphics, Vol. 11, No, 1, January 1992.

Tree Visualization with Tree-Maps: A 2-D Space-Filling Approach . 95

For visual clarity, different colors (or gray shading) must be used within
each region. The effect of seeing thousands of small rectangles is like a
checkerboard with varying sized spots. Color coding could represent different
types of files (e.g., text, programs, binary, graphics, spreadsheets), owners of
programs (each owner has a different color), frequency of use (brighter colors
for more frequent use), or the age of a file (older files might be more yellow or
grayer). If adjacent areas have the same color, then a boundary line will be
necessary. Since users’ needs will vary extensively, no specific solution can
satisfy all situations, and the users should have a control panel for several
parameters and also to indicate which colors are assigned to attribute values.

Since the files that take storage space on the hard disk are all leaf nodes
(we ignore, for the moment, the usually modest storage overhead consumed
by a directory), each interior node must have the total size of its subtree (if
necessary, then propagate the sums of storage consumed for each file and
subdirectory up through the levels of the tree to the root). If this data is not
maintained by the system, then there must be a preliminary pass through
the tree to collect this data and place it at each interior node. If the user
desires to see the display as a percentage of total disk space utilization, then
the root node must have one additional child which is a dummy record whose
size is the entire unused portion of the disk.

The tree-map algorithm assumes a tree structure in which each node
contains a record with its directory or file name (name), the number of
children (num. children), and an array of pointers to the next level
(child[l . num.childrenl). The arguments to the tree-map algorithm are:

root: a pointer to the root of the tree or subtree

P, Q: arrays of length 2 with (x, y) coordinate pairs of opposite corners of
the current rectangle (assume that Q contains the higher coordi-
nates and P the lower coordinates, but this does not affect the
correctness of the algorithm, only the order in which rectangles are
drawn)

axis: varies between O and 1 to indicate cuts to be made vertically and
horizontally

color: indicates the color to be used for the current rectangle.

In addition we need the following:

Paint_ rectangle: A procedure that paints within the rectangle using a given
color, and resets the color variable.

Size: a function that returns the number of bytes in the node pointed to by
the argument. Alternatively, the size could be pre-computed and stored in
each node.

The initial call is

Treemap(root, P, Q, O, color)

where P and Q are the upper right and lower left corners of the display. By
setting the axis argument to zero the initial partitions are made vertically. It

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992

96 . B. Shneiderman

is assumed that arguments P and Q are passed by value (since, P, Q are
modified within):

Treemap(root, PIO II , QIO. . 1] , axis, color)
Paint_ rectangle (P, Q, color) —paint full area
width := Q[axisl -p[axis] —compute location of next slice
for i := to num_children do

Q[axis] := P[axis]+(Size(child[i])/Size(root))*width
Treemap(child [i], recur on each slice,

p, Q, l-axis, color) flipping axes
P [axis] := Q[axis]

end for

Execution speed andpattern. This algorithm runs linearly with the num-
berofnodes inthe tree structure. This version will paint the rectangles from
left to right and top to bottom, with deeper levels covering colored sections as
previously drawn during the depth first traversal. Breadth first traversals
are also possible ,as are algorithms that do not cover already colored sections.
We have also tried sequencing leaf nodes before subtrees with orderingby
date or size (ascending or descending each have their advantages).

Obtaining filenames. When used for directory displaying, the users need
to examine the filename, extension, date, etc. This can be accomplishedin
many ways. For example, the users could move a cursor onto a candidate
region, and then click to obtain the relevant information at the bottom line of
the screen or just above the cursor itself. Allowing other operations (deletion,
copying, marking) by way of pop-up menus is a natural next step. If directory
names are desired then nested rectangles that show a containing frame could
be used, although this would reduce the effective display space.

Display resolution. On a standard VGA display the resolution is 640 x 480
pixels giving 307,200 total pixels, which is quite adequate for displaying one
to two thousand files (each file gets an average of 200 pixels). Of course,
small files or zero byte files become too small to represent and are currently
eliminated. With larger displays, still larger trees could be displayed. With
smaller displays or larger trees, it might be necessary to select among the
subdirectories to get adequate detail or to add zooming to reveal small files.

Applications. The applications seem quite broad, but here are a few. In an
organization chart, the number of employees or budget in each division or
department might be represented to gain an idea of the relative size of each
and color might indicate closeness to planned levels. For a library that uses
the Dewey decimal system, the number of books within each topic could be
represented to see the relative strengths of the library’s holdings. In a stock
portfolio, the dollar values of each purchase might be represented by the size
and the profit /loss might be color coded. In a traditional tree structured data
structure, the probability or cost of access might be coded as the size to help
find poorly balanced structures. If the tree structure represents a computer
program, then the size could represent that amount of time spent in that
segment of code, thus guiding an attempt to optimize performance.

ACM Transactions on Graphics, Vol. 11, No, 1, January 1992.

Tree Visualization with Tree-Maps: A 2-D Space-Filling Approach . 97

ACM Transactions on Graphics, Vol. 11, No. 1, January 1 9 9 2

98 - 6. Shneiderman

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

Tree Visualization with Tree-Maps: A 2-D Space-Filling Approach . 99

Summary. This paper presents a novel approach to representing trees that
have weights or sizes on the leaf nodes. The 2-d visualization is space filling
and the recursive algorithm for generation runs rapidly. It depends on color
coding (or shading) of regions and easily provides users with a quick overview
that clearly indicates relative sizes of the leaf nodes. Figures 3 and 4 show
examples of tree-maps with size coding, as implemented by Brian Johnson on
an Apple Macintosh II computer with a high resolution color display. Figure
3 shows fifteen files in four directories at three levels, with nested boxes to
show the levels. Figure 4 represents actual disk directories encompassing 850
files at four levels with color coding by file type (text, graphics, applications,
etc.). We continue to explore refinements of tree-maps such as alternate
layouts, better methods for coping with large ranges of file size, color coding
schemes and operations applied to files.

ACKNOWLEDGMENTS

I gratefully acknowledge the thoughtful comments of the reviewers, editor
Dan Olsen’s constructive suggestions, and David Mount’s help in revising the
tree-map algorithm. We appreciate the continuing financial support for the
Human-Computer Interaction Laboratory’s research from Apple, NCR Corpo-
ration, and Sun Microsystems.

REFERENCES

1. B~NTt.~Y, J. L., AND FRIEDMAN, J. H. Data structures for range searching. ACM Comput.
Suru. 11, 4 (Dec. 1979), 397-409.

2. KNUTH, D. l%. The Art of Computer Programming: Volume 1 ~Fundamental Algorithms.
Addision-Wesley Publishing Co,, Reading, MA, 1968.

3. LOMET,D. B., AND SALZBERG,B. The hB-tree: A multiattribute indexing method with good
guaranteed performance. ACM Trans. Database Syst. 15, 4 (Dec. 1990), 625-658.

4, NAGY, G., AND SETH, S. Hierarchical representation of optically scanned documents. In
Proceedings of the IEEE 7th [nternatwnal C’onference on Pattern Recognition (Montreal,
Canada, 19S4), pp. 347-349.

5. SAMRT, H. Design and Analysis of Spatial Data Structures. Addison-Wesley Publishing Co.,
Reading, MA, 1989.

Received October 1990; revised March and July 1991; accepted July 1991

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992

