
DATABASE PROGRAM CONVERSION: A FRAMEWORK FOR RESEARCH

ABSTRACT

Database Program Conversion Task Group
of the

Codasyl Systems Committee

Robert W. Taylor, IBM Research, Chairman*
James P. Fry, University of Michigan
Ben Shneiderman, University of Maryland
Diane (2 . P. Smith, University of Utah
Stanley Y. W. Su, University of Florida

As requirements change, database administrators come
under pressure to change the schema which is a de-
scription of the database structure. Although writing
a new schema is a relatively easy job and transforming
the database to match the schema can be accom-
plished with a modest effort, transforming the numer-
ous programs which operate on the database often
requires enormous effort. This interim report de-
scribes previous research, defines the problem and
proposes a framework for research on the automatic
conversion of database programs to match the schema
transformations. The approach is based on a precise
description of the data structures, integrity constraints,
and permissible operations. This work will help de-
signers of manual and computer aided conversion fa-
cilities, database administrators who are considering
conversions and developers of future database man-
agement systems, which will have ease of conversion
as a design goal.

DISCLAIMER

This technical report is authored and presented by the
Database Program Conversion Task Group of the
CODASYL Systems Committee to interested1 members
of the computing community for discussion and com-
ment. This report neither states the opinion of, nor
implies the support of, the sponsoring institutions. It
is the intent of CODASYL that their work be availa-
ble and in the public domain. Anyone reproducing all
or part of this report is requested to include this no-
tice where meaningful.

*Chairman's Address: K52/282, IBM Resea.rch Labo-
ratory, 5600 Cottle Road, San Jose, Ca., 95193.

1 . Introduction

Conversion of computer systems is a problem most
users would rather not think about. Everyone has
heard horror stories about conversion: high costs,
protracted delays, or spectacular failures. A common
attitude in the industry is to put off all conversions
until the last possible moment in the hope that per-
haps the conversion will be unnecessary after all or, at
least, all aspects of the conversion can be handled at
once. However, it is becoming increasingly clear that
this view of conversion is outdated and unrealistic.
Conversion costs can be a major factor in acquiring
new equipment, planning for new technologies, or
redesigning a database and application system. The
U . S. General Accounting Office has estimated that
450 million dollars were spent within the Federal
Government on conversion during fiscal 1977 and that
100 million dollars of this expenditure could have
been saved through proper organization and planning
(1) . In a deeper sense, as Mayford Roark has ob-
served (2) , "change is the essence of our work": it
should not be surprising that conversion is a recurrent
and not a "one-shot" event. And if
change/conversion is the normal state of affairs, then
it makes sense to study it, plan for it, and develop
tools to cope with it.

The conversion of a database application system, in-
cluding both the programs and data, generally begins
with the alteration of the database schema. This is
followed by converting the data to reflect the new
schema and by changing the database application pro-
grams to manipulate the new structures. In recent
years, considerable research has been carried out to
provide high level tools for data conversion (3, 4, 5,
6 , 7) . Experiments with prototype data conversion
systems indicate that substantial productivity gains are
possible by using these new tools. Until recently,
relatively little was known about the program conver-
sion problem, but there has been a growing research
interest (see section 2) . Except for some COBOL-to-
COBOL or assembly language to COBOL packages,
there are few software tools to aid users when they
face the conversion of database application programs.

299 CH 1406-8/79/0000-0299$00.75 0 1979 IEEE

This paper deals with the database program conver-
sion component of the system conversion problem. A
database program is an application program which
runs in a database environment. The purpose of this
paper is to identify the significant research problems
associated with converting database programs and to
present a framework within which these research
problems can be studied. The paper also discusses
existing research in database program conversion and
identifies potentially fruitful areas for further work,
particularly those which can be automated, at least
partially.

1 . 1 Problem Statement

A database program is (1) a program written in a con-
ventional programming language, with embedded data
manipulation statements which interact with a data-
base system, or (2) a statement or series of statements
in a query/update language of a self-contained data-
base system. Thus, a COBOL program containing
embedded CODASYL DBTG DML statements or
embedded calls to a vendor's database management
system is a database program. So, too, are queries
expressed in the query language facility of System
2000, for example. We assume each database pro-
gram takes the database from a consistent state to a
(potentially) different consistent state. No program
leaves the database in an inconsistent state and de-
pends on some other program to restore database
consistency. The Database Program Conversion Task
Group has focussed on the database program conwr-
sion problem, which may be stated as follows:

1. Given a database program and a database
schema with which that program interacts,

2. Given also a new database schema and a
definition of a restructuring to some new
(logical) form,

Then, to what extent is it possible to develop a
computerized methodology which can aid in the
conversion of the database program so that it
''runs equivalently" against the restructured
database?

This is far less ambitious than the "general" program
conversion problem, which may well be undecidable in
the sense that notions of equivalent behavior may be
impossible to prove. Yet the task group feels that a
solution to even this restricted problem would yield
major benefits, especially as the number of database
programs increases. The Task Group has not dealt
with conversion of programs in a non-database setting.
Preliminary investigation indicated the conversion
problem only seemed tractable if the conversion sys-
tem could guarantee preservation of program behavior

under data restructuring. This in turn requires a dec-
laration of the program's assumptions about the data-
base (such as in an external schema). The conversion
system must also be able to discover how the program
is accessing and using the data; much of this informa-
tion is explicitly available if the database is manipulat-
ed by a database data manipulation language. In non-
database programs, assumptions about the data are
defined in the procedural logic of the statements, and
it is common to use programming techniques such as
storage equivalencing and side effects in order to ac-
complish certain data manipulation operations. The
task group felt that this sort of behavior would be
very difficult to deal with in a conversion system, so
consideration of non-database programs was dropped.

The notion of "runs equivalently" plays a key role in
our problem statement; therefore, it is important to
clarify the intent of this phrase. In a conversion, the
functions performed with the database in the original
application program must also be accomplished by the
transformed target program, though not necessarily in
the same way. However, in addition to interacting
with a database, the program may also read and write
non-database files and interact with a person at a ter-
minal. In considering this problem, the task group has
adopted an operational definition of what constitutes
"equivalent behavior" of the program when running
against the restructured database. The rule is that
except with respect to the database, a restructured
program must preserve the input/output behavior of
the original program. In particular, this means that
with the exception of database operations, the
input/output behavior of the restructured program
must be identical to the operation of the original pro-
gram before restructuring of the database. With re-
spect to a person operating the program from a termi-
nal, the program must give the same requests and/or
messages as before conversion. The program must
also present the same series of reads and writes to
non-database files as it did before conversion. Howev-
er, a different combination of interactions is accepta-
ble with respect to the database including auxiliary
database storage such as log files.

This is a very strict definition of a "conversion", and
many practical "conversions" do not fit our definition
because they do not preserve equivalent behavior in
the strict sense. Rather, practical "conversions" often
contain a combination of application redesign together
with conversion as defined above. However, we sepa-
rate conversion from redesign in order to have a pre-
cise measure of when a program has successfully been
converted. Our definition assumes that all the infor-
mation in the source database has been preserved in
the restructured database. If this is not the case, then
it may not be possible to convert all programs. Con-

300

version when not all information is preserved is a dif-
ferent and more difficult conversion problem.

A database application system is converted when each
program actually existing in the source system has
been converted. No attempt is made to clharacterize
all the possible inferences that could have been made
from information in the source database, nor is there
any attempt to show that any possible program which
could have been written for the source database could
also be written for the target database. Flather, the
attempt is to capture and preserve the in,put/output
behavior of those programs which actually existed in
the source application system.

1.2 Potential Benefits of a Database Program Conver-
sion System

While there are numerous research problems to be
solved before a usable database program conversion
system becomes a reality, there are many potential
benefits. They can be broadly classified into (people)
productivity benefits and (machine) Performance ben-
efits. Each benefit stems from the labor-intensive,
costly, and often unreliable process of manually con-
verting the schema, database, and programs.

''Program maintenance" now accounts for a large
part, if not the majority of activity in a prlogramming
shop. Maintenance is much more than correcting
errors. It is keeping up with new releases of software,
taking advantage of new hardware, and responding to
changes in application requirements. Whenever code
is modified as part of the maintenance process, it must
be re-tested in the overall context of the application
system. This takes time--time to understand the pro-
gram, time to change it, time to test and time to verify
and/or debug the maintenance change and time to
update the documentation. A database program con-
version system as discussed in this paper will not
"solve" the complete maintenance problem, but it will
significantly reduce parts of it, by guaranteeing that
certain standard transformations can be made to the
database with all affected programs behaving appro-
priately. This should allow database administrators to
take advantage of new technologies more quickly be-
cause the conversion cost will be less. It should also
allow more rapid response to new application require-
ments.

With respect to performance, there are a number of
advantages that a system like this could provide. For
example, programs written to run in an early release
of a database system could be "converted" to take
advantage of new system features as they become
available. Also, it is generally acknowledged that
significant performance improvements are possible

with a new database design once the performance
flaws in a previous design are understood. At present,
database design research has not reached the point
where all aspects of database performance can be
predicted, nor do systems provide data independence
at a level which allows wide flexibility in performance
tuning. Thus a database program conversion system
could complement a database design system in an
important way by encouraging database redesign to
improve performance.

A further potential benefit of this effort is a better
understanding of what is and is not convertible in the
database environment. Guidelines for program and
database design which take into account anticipated
conversion are also expected. Finally, a potentially
great benefit may be a set of recommendations for the
design of future database management systems to
make conversion easier.

2. Current Approaches to Database Program Conver-
sion

The current approaches to database program conver-
sion fall into two major categories, manual and
computer-aided. Conversion strategies reflecting the
manual approach tend to be "brute force operations",
performed only once, often by inexperienced person-
nel. On the other hand, conversion strategies based
on the computer-aided approach have a defined meth-
odology with experienced personnel using software
tools.

In this section we discuss the main conversion strate-
gies employed by industry and under development in
research laboratories or universities. Although some
of these techniques are commonly used, very little
documentation exists.

By far the majority of conversions are manual endeav-
ors. These are not usually database program conver-
sions but rather assembly language to COBOL and
COBOL to COBOL. Only recently have COBOL to
DBMS and even some DBMS to DBMS conversions
been undertaken. Unfortunately, the manual ap-
proach, which is labor intensive and costly, represents
the state-of-the-art in many installations.

2.1 Computer-aided Approach

Strategies in the computer-aided category can be fur-
ther divided into operational and experimental. The
few operational strategies are employed by industry to
perform actual conversions, whereas the experimental
are prototype strategies being developed by research
laboratories and universities.

2.1.1 Operational Computer-aided Strategies

301

Operational computer-aided conversion strategies in-
clude proprietary vendor products, parameterized
computer aids, and vendor conversion teams. Fixed
price conversion contracts are available from some
vendors for assembly language to COBOL and CO-
BOL to COBOL conversions of non-database pro-
grams. They are computer-aided in that a number of
software tools have been developed: parameterized
file convertors, parameterized file comparators, and
language translators. These strategies are automated
to the extent that they achieve a 65-70 percent suc-
cess rate (sometimes higher) in assembly to COBOL
and COBOL to COBOL program conversions. When
a conversion cannot be done, often the software tool
will mark the portion of the program that failed, and
then the conversion is completed by hand.

Some of the hardware vendors have trained conver-
sion teams which travel from one installation to anoth-
er converting brand-x's data and programs to their
own. Over a period of years, the conversion team out
of necessity develops considerable expertise and builds
a number of conversion aids.

Vendors sometimes provide a compatibilty interface
to, say, a new access method. This i s a type of con-
version aid in that it provides a conversion path for
existing programs until such time as they are rewrit-
ten.

2.1.2 Experimental Strategies

There are a number of experimental conversion tech-
niques, some of these have been implemented while
others just exist on paper. The techniques mentioned
here deal with the database program conversion prob-
lem.

DML Emulation

The DML emulation strategy preserves the behavior
of the application program by intercepting the individ-
ual DML calls a t execution time and invoking equiva-
lent DML calls to the restructured database. The
Honeywell "Task 609" project implemented a soft-
ware package which enabled an application program
to run on a restructured IDS database (8). A map-
ping description was used to provide the transforma-
tion from the original to the restructured database;
this description was used to produce subroutines to
perform the correct access in the restructured data-
base. Some of the limitations of this prototype were:
1) retrieval only--no update allowed, 2) only IDS/I
databases, 3) not all restructuring operations ad-
dressed.

A second experimental strategy is sometimes referred
to as a bridge program method. In this strategy, the
source application program's access requirements are
supported by dynamically reconstructing from the
target database that portion of the source database
needed. Data reconstruction is done by means of the
"bridge programs". In the limiting case of the bridge
program being invoked at the DML call level, this
approach reduces to the previous one. The source
program operates on the reconstructed database to
effect the same results that would occur in the original
database. A reverse mapping is required to reflect
updates and each sirnukited source database segment
that has changed must be retranslated along with any
new database members. Differential file techniques
can be used to ease this process (9). An example of a
dynamic restructuring capability is provided in the
WAND system (1 0).

The DML emulation strategy becomes extremely com-
plicated when dealing with complex data structures.
Such a situation may require the conversion software
to evaluate each DML operation against the source
structure to determine status values (e.g., currency) in
order to perform the equivalent DML operation on the
restructured database. Other situations require the
maintenance of run time descriptions and tables for
both the original and restructured database organiza-
tions, the interception of all original DML calls, and
the utilization of old-new database access path map-
ping descriptions (human input) and rules.

Both these strategies, though straightforward in con-
cept, have drawbacks of degraded efficiency and re-
strictiveness. Efficiency is degraded in the emulation
strategy because each source DML statement must be
mapped into a target emulation program, which uses
the restructured database to achieve the same results.
In the bridge program strategy, a subset of the target
database must be dynamically restructured. The in-
creased overhead in program size and/or access path
length can result in a significant increase in processing
requirements.

The drawback of restrictiveness comes about because
the emulation and bridge program strategies probably
cannot utilize the increased capabilities of the restruc-
tured database. By mimicking the behavior of the
program at a detailed level, it is unlikely that new
access strategies can be used. This approach may also
limit the class of restructurings that can be done.

2.2 Current Research

Current research aims toward developing more gener-
alized tools for computer-aided conversion. The
drawbacks of the existing strategies described above Bridge Program

302

can be avoided by "rewriting" the application pro-
grams (using the conversion system) to take (advantage
of the restructured database.

Research on database application program conversion
is still in its infancy and there are few publlished pa-
pers on this subject. This section summarizes early
work in the area, excepting the work of Task Group
members, which is discussed in section 4.

Mehl and Wang (1 1) presented a method to intercept
and interpret DL/I statements to account for changes
in the hierarchical order of an IMS structurie. Algor-
ithms involving command substitution rules for certain
structural changes were derived to allow for correct
execution of the old application programs. The ap-
proach is similar to the emulation approach discussed
earlier and has the consequent drawbacks, however
the work did have some optimization strategies includ-
ed.

The work by House1 (12) is an extension of the work
on application migration undertaken at the IBM San
Jose Research Laboratory. This work uses a common
language for specifying the abstract representation of
source programs. The language is a subset of CON-
VERT (13) plus some of Codd's relational operators.
The operators of the language are designeid to have
convenient algebraic properties to facilitate program
transformation. They are designed to handle data
manipulation in a general hierarchical structure called
a "form". In this system, program transformation is
dictated by the data mapping operations applied to the
original database. It is assumed in the proposed mod-
el that the inverse of these data mapping operators
exists, i.e., the source database can be rectonstructed
from the target database by applying some inverse
operators. The program conversion is performed by
substituting the inverse operators into the specification
language statements for each reference to the source
database. This process is followed by a simplification
procedure. The author observes that the assumption
of the existence of inverse operators restricts the
scope of the conversion problem that can be handled
in the proposed approach.

3. Difficulties in converting current Database Pro-
grams

As discussed in detail in section 4, the proposed
framework emphasizes the use of program analysis
and high-level data modelling and restructuring opera-
tors to accomplish database program conversion.
These sophisticated tools are necessary in a conversion
system because of the intricacies of current database
systems and their database programs. This section
gives examples of programs that are difficult to con-
vert. The examples help to illustrate the scope of the

problem and show what must be dealt with in a realis-
tic conversion situation. The examples reveal
"features" to be avoided when possible in current
systems in order to facilitate future conversion of pro-
grams. The two major problems in converting data-
base programs are inadequate representation of appli-
cation requirements and dependence on execution time
variability.

3.1 Inadequate representation of application require-
ments

In the current data models -- the relational, owner-
coupled-set and hierarchical -- it is possible to specify
the structure of a database in a relatively representa-
tion free way. The objects and their interrelationships
in the database are made explicit in these specifica-
tions. This representation independence greatly facili-
tates the development of data translation systems and
forms a necessary base for database program conver-
sion systems. However, the specifications do not pro-
vide all that is needed. The single most significant
deficiency in the existing models is their inability to
model integrity constraints to the degree needed. Any
system is governed by many different types of const-
raints (14, 15, 16, 17, 1 8 , 19, 20, 21). We will con-
sider only a few of these and their impact on the data-
base program conversion problem.

One type of constraint governs when an instance of a
relationship can (and should) exist. For example,
consider the relationship "course-offering" that holds
between a "course" and a "semester". This structure
is illustrated in Figures 3.1 a and b. One possible way
of constraining it is to say that a "course-offering"
instance cannot exist unless the "course" and
"semester" instances it references do. In particular,
CNO and S can not have null values.

COURSE-OFFERING(CNO,S,)
COURSE(CNO,CNAME,)

SEMESTER(S,YEAR,)

Figure 3.1 a Relational School Database

Such constraints can be and are maintained by the
programs that access the database. These constraints
must be maintained if the database and its access pro-
grams are converted. A programmer can make use of
knowledge about value distributions to avoid a test
and yet be able to guarantee database correctness.
Simple changes in either the structure or value-set of
the database can invalidate the assumption.

This problem could be reduced significantly if const-
raints could be reduced in program logic and central-
ized, explicitly, as part of the data model. This is

303

I
Semester's-l

offering I
+--------+

I
V

Figure 3.1 b CODASYL School Database

possible only to slight and different degrees in the
different data models--but nowhere sufficiently. The
only constraint maintained explicitly in the relational
model is tuple uniqueness (by means of key declara-
tions). The owner-coupled-set model provides the
AUTOMATIC/MANUAL and
OPTIONAL/MANDATORY mechanisms for captur-
ing some existence constraints. For example, if a
"course" instance and a "semester" instance must
exist in order for a "course offering" to be inserted,
then "course offering" can be made an AUTOMATIC
and MANDATORY member in the "course's offer-
ing" and "semester's offering" sets. This guarantees
that if an attempt is made to insert a "course offer-
ing" for which there is either no corresponding
"course" or "semester", the insertion will fail. Howev-
er, if a "course offering" may or may not have an
instructor when it is inserted, the closest we can come
to having the system enforce membership is to create
a "null" instructor. This may capture the essentials of
a valid insertion but database inconsistency may still
occur due to the operation of the DELETE (ERASE)
command. The DELETE (ERASE) command has an
option which could cause deletion of "course offer-
ings" when instructors are deleted. This violates the
system's integrity constraints. Another constraint not
maintained by any of the models is that of numeric
limits on relationship participation. For example, in
the school database there may be a rule that a course
may not be offered more than twice in a school year.
In all existing models, a constraint like this could only
be maintained by user programs. In general, const-
raints can be arbitrarily complex. It is desirable to
design a conversion system that can deal with embed-
ded integrity constraints; how to do this is an open
problem.

A data model that captures constraints and behavior
as well as structure would provide a basis for building
databases and database programs that are much easier
to convert. Considered as a conversion tool such a
model would provide an intermediate form for con-
verting a source system to some target. This form
would be used as the target for the decompilation
process and the source of a compilation process to
produce the target system.

3 . 2 Execution time variability

Database programs can change their behavior relative
to the database during execution. For example, some
database systems which use a call interface to interact
with the database, pass the request (retrieve, insert,
etc.) as an argument. This argument is usually a pro-
gram variable and thus potentially can change during
execution; what appeared to be a read at compile time
might become an update because the request parame-
ter is changed. Thus any software which attempts to
understand the program's behavior from a source lan-
guage version of the program must (through data flow
analysis techniques) make sure that the commands do
not vary at run time. If there is potential run time
variability, then it may be impossible to proceed fur-
ther. As another example, the program may depend
on records from the database being presented in a
given order (order dependence) or a programmer may
have intended to "process all" dependent records of a
certain type, but may have written a program which
will "process the first" dependent. The behavior is
the same if it is known a priori that there will be only
one dependent, but the application requirements could
be confused. As a third example, it is easy to write
programs which depend on certain status codes being
returned by the database system but certain restructur-
ings the system will cause a different status code to be
returned. The difficulties raised above are not unique
to navigational and/or hierarchical systems. Some
relational systems (22) allow considerable run time
variability in database commands, and status code
dependency is a possibility in all systems.

Examples such as these point out that a completely
general, system independent solution to this problem
may not be possible. A completely automated system
is probably not possible, and an interactive system
makes more sense. It may turn out that pathological
cases such as those discussed above do not occur fre-
quently in practice, or are disappearing as more pro-
grams are written using development techniques which
emphasize clarity, maintainability, convertibility, and
straightforward use of system features.

4. Framework for Database Program Conversion

304

The framework for database program conversion is
shown in figure 4.1; it is adapted from a rnodel devel-
oped by Su (27) and by Su, Lo and Lam (23). The
system is intended to be interactive and clontrolled by
a Conversion Analyst interacting with tlhe Program
Conversion Supervisor. For database program conver-
sion, the database description includes the schema
description of the source and target databases and an
extended description of database operations and integ-
rity constraints as well as a description of any changes
in integrity constraints between the source and target
schemas. These inputs are needed to analyze applica-
tion programs.
The Conversion Analyzer analyzes the source and
target databases in order to classify thLe types of
changes that have been made and to encode the de-
scriptions in suitable internal representations. The
Program Analyzer uses the source database descrip-
tion and matches candidate language templates against
the source application program to produce a repre-
sentation of the database operations and data access
patterns made by the program. The internal repre-
sentation of the program also includes the program
control structure, the relationships amoing program
variables and the sub-program parameter passing
structure. The language templates are data manipula-
tion language and/or host language sequences which
carry out data access and manipulation operations
which are meaningful and consistent with the source
database schema.

The internal representation of how the dafabase sche-
ma has been changed is used by a Prograrn Converter
to select the proper transformation rules for use in
mapping the source program representation to the
target program representation. The selection of trans-
formation rules is also based on the description of the
source and target databases. The transformation rules
map the access patterns and the application program
structure to account for the database changes made.
The target program's representation is further proc-
essed by an optimizer which refines the representa-
tion, improving access paths, algorithms, and data
handling. The optimized target program representa-
tion is used by the Program Generator to produce a
target program.

During the entire program conversion process, a moni-
tor program, the conversion program manager, over-
sees the operation of the other modules. We expect
that an interactive system would be most successful, in
resolving issues of database integrity and application
program requirements that are raised in this paper.
For example, if data referenced by an old program has
been deleted or multiple data paths can be found to
carry out an access then these issues can be resolved
interactively.

Following the general framework described above,
members of the Task Group are in the process of
designing and/or implementing prototype database
program conversion systems. Of course, different
researchers have placed emphasis on different parts of
the problem. The remaining portion of this section
summarizes these research efforts.

4.1 University of Florida

The work at the University of Florida, led by Su, uses
a data model (24) for defining the source and target
databases. The model contains a number of con-
structs whose operational characteristics and integrity
constraints have been explicitly defined. The intent is
to include in the data model a number of constructs
whose properties are generally enforced procedurally
in application programs. Changing from one construct
to another in this model during data base conversion
will mean changes to the associated operations and
integrity rules. Thus, an application program which
operates on the old construct will be modified follow-
ing the operational characteristics and integrity rules
of the new construct. For example, the dependency
property of EMP.DEPENDENT to EMP is explicitly
represented in the model by calling EMP a "defined
entity" and the DEPENDENT a "characterizing enti-
ty". Deletion of an employee implies deletion of de-
pendents. If the schema is changed so that depend-
ents are now defined entities with a non-dependency
relationship, then the system will insert statements to
traverse this relationship and continue to enforce the
dependency relationship that was assumed in the old
program.

The rules for changing the operations as the result of
schema changes are called transformation rules.
These rules can be formulated if the structural proper-
ties, operational characteristics and integrity const-
raints of the data are given explicitly in the data mod-
el. A set of transformation rules has been defined and
verified to account for a number of database schema
changes (23).

To convert an application program, it is necessary to
have a way of modeling and representing the require-
ments of the program. The approach taken by Su's
group is to describe application programs in terms of
sequences of access patterns to be performed on the
network of association types as represented in the high
level data model. Four basic access patterns have
been identified. The pattern Access A via A means
accessing some data fields defining an entity type A
based on some data conditions of the fields defining
A. If two entity types A and B are not related by an
association, the only way of relating the data of these
two entity types would be by taking the mathematical
relation of their comparable data fields; thus, a second

305

.-

APPLICATION

I I

1
I

PROGRAM b - - - - + _--_--- +

I I ANALYZER I
I I I
I
I
I
I
I
I
I
I
I
I
I

ABSTRACT ABSTRACT

f-------+ PROGRAM I- - -
I I CONVERTER I
I
I
I
I
I
I
I
I
I
I
I

- 4:
I I

I +

I
I

I
I
I
1

+-------+ OPTIMIZER C . - - - 0 . 4

PROGRAM I
CONVERSION I
SUPERVISOR I

Figure 4. I Database Program Conversion Framework

access pattern is Access A via B through (Ai, B j)
where Ai and Bj denote the comparable fields. If
entities A and B have an association AB, then data
accesses can be through their association such as Ac-
cess A B via B and Access A via AB meaning some
occurrences of AB are first accessed via the data con-
dition of B and the accessed occurrences are further
used as constraints to access the occurrences of A. A
sequence of these basic access patterns can be used to
describe the traversal of data specified in the applica-
tion program. For example, given the entity types

EMP(E#,ENAME,AGE)
DEPT(D#,DNAME,MGR)

and their association

EMP - DEPT(E#,D#,YEAR-OF-SERVICE),

the data traversal and operation expressed by the
query "Find the names of employees who work for

306

Manager Smith for more than ten years," can be de-
scribed by the following sequence of access patterns:

of DBTG's DML language templates is presented by
Nations and Su (26).

ACCESS DEPT via DEPT
ACCESS EMP-DEPT via DEPT
ACCESS EMP via EMP-DEPT
RETRIEVE

Since the conversion takes place at a level of abstrac-
tion that is removed from an actual DBMS language,
conversion from one DBMS to another to account for
some schema changes is possible.

These access patterns are very general anld are inde-
pendent of how the entity types A and B and their
association AB are represented in the schema of the
DBMS. However, in order to derive this representa-
tion of the data traversal and operation in an applica-
tion program, it IS necessary to have a schema and
data model dependent representation of the traversal.
In Su's work, the data model dependent representa-
tion, called an "access path graph" (2f5, 26), is used
to describe how a data traversal can be interpreted in
the relational, network, or hieiarchical model. For
these schema and data model dependent representa-
tions, a set of language templates are defined. For
example, the access pattern

ACCESS EMP via EMP-DEPT

contained in the query "Get the names of those em-
ployees who have worked for department D12 for three
years" would be expressed in SEQUEL as (A) below
and as (B) below in a CODASYL system.

SELECT ENAME
FROM EMP
WHERE E#IN

SELECT E#
FROM EMP-DEPT
WHERE D# = 'D2'

AND YEAR-OF-SERVICIE = 3

MOVE 'D2' T O D# in DEPT.
FIND ANY DEPT.
IF no such occurrence is found

G O T O NOTFD.
MOVE 3 T O YEAR-OF-SERVICE IN EMP.

NEXT. FIND NEXT EMP WITHIN ED USING
USING YEAR-OF-SER\'lCE.

GO TO FINISH.
IF no other occurrences

GO T O NEXT.

The set of language templates are used by a language
analyzer to match against the application program in

data traversals. They are also used by the language
synthesizer to generate the object program. Analysis

order to identify the access patterns involved in the

A prototype application program conversion system is
under development.

4.2 University of Maryland

At the University of Maryland, the approach has been
to create a new DDL and DML which would be famil-
iar while facilitating conversion (28). In this way, the
difficult problem of analyzing the complex data ma-
nipulation operations that exist in current database
management systems could be avoided.

The DDL permits owner-member-coupled sets with
single owner and member record types. Each set type
description indicates an ordering for the member re-
cord instances. Duplicates are not allowed within a
set occurrence. Figure 4.2 shows a simple schema
diagram which is described by the schema in Figure
4.3.

I
I DIV-EMP

EMP I

1 EMP-NAME I DEPT-NAME I AGE I DIV-NAME!

Figure 4.2 Sample Data Structure Schema

The DML permits retrieval operations which return
collections of records of a single record type, accessi-
ble to the user in the host language program. The
retrieval is specified by a FIND statement which indi-
cates the target record type and a qualified access
path. The access path begins with a SYSTEM owned
set or a collection of previously retrieved target re-
cords. If necessary, the path can be extended by set
name and record name pairs. Record names or collec-

307

SCHEMA NAME IS COMPANY-NAME
RECORD SECTION;

RECORD NAME IS DIV.
FIELDS ARE.

D IV-NAME PIC X(20).
DIV-LOC PIC X (1 0) .

END RECORD.

RECORD NAME IS EMP.
FIELDS ARE.

EMP-NAME PIC X(25).
DEPT-NAME PIC X (5) .
AGE PIC X(2).
D I V-NAME VIRTUAL

VIA DIV-EMP
USING DIV-NAME.

END RECORD.
END RECORD SECTION.
SET SECTION.

SET NAME IS ALL-DIV.
OWNER IS SYSTEM.
MEMBER IS DIV.
SET KEYS ARE (DIV-NAME).

END SET.

SET NAME IS DIV-EMP.
OWNER IS DIV.
MEMBER IS EMP.
SET KEYS ARE (EMP-NAME).

END SET.
END SET SECTION.

END SCHEMA.

Figure 4.3 Schema Declaration for Fig. 4.2.

tions can be qualified by boolean expressions referring
to fields in the record. The output of one retrieval
statement can provide input for another retrieval
statement. The following two examples based on the
schema diagram for Figure 4.2 illustrate the FIND
statement:

1) Find all employee records for employees whose age
is greater than 30.

FIND(EMP: SYSTEM, ALL-DIV, DIV,
DIV-EMP, EMP(AGE > 30)).

2) Find all employee records for employees who work
in the 'SALES' department of the 'MACHINERY'
division.

FIND(EMP: SYSTEM, ALL-DIV,
DIV(D1V-NAME = 'MACHINERY'),

EMP(DEPT-NAME = 'SALES')).
DIV-EMP,

STORE, DELETE, MODIFY and other operations
are provided.

A conversion is considered as a sequence of transfor-
mations applied to the source schema which produces
a target schema. These same transformations are also
used to translate the database and to convert the
DML statements written for the source schema. The
goal is to preserve input/output behavior for the data-
base system user, that is, the old programs running on
the old database should produce identical results to
the converted programs running on the new database.

A small number of simple transformations have been
defined which can preserve input/output equivalence.
It is hoped that more complex transformations can be
built up from these. As more experience is gained,
more powerful transformations will be added, provid-
ed it is possible to prove preservation of input/output
behavior. For example, the transformation of Figure
4.2 to Figure 4.4 is probably possible.

Figure 4.4 Revised Schema of Figure 4.2
The FIND statements shown earlier can be trans-
formed into:

SORT(FIND(EMP: SYSTEM, ALL-DIV, DIV,
DIV-DEPT, DEPT, DEPT-EMP,
EMP(AGE > 30))) ON (EMP-NAME)

FIND(EMP: SYSTEM, ALL-DIV,
DIV(DIV-NAME = 'MACHINERY'),

DEPT(DEPT-NAME = 'SALES'),
DIV-DEPT,

308

DEPT-EMP, EMP).

The DDL and DML syntax have been defined and a
prototype system is being constructed. The goal is to
gain an understanding of which transformatlions can be
realized by a database management systern designed
especially for conversion. This might suggest direc-
tions for future database architectures.

4.3 University of Michigan

Beginning in 1971, the Database Systems Research
Group (DSRG) at the University of Michigan con-
ducted extensive research on database conversion.
The effort produced results in data translation archi-
tecture, stored-data definition languages anct prototype
implementations (4) . DSRG researchers began ex-
ploring the database program conversion problem in
1973. To date, the problem has been approached
from three principal perspectives: DML primitives,
code templates, and high level ’specification languages.

In the initial studies, Delong and Fry (29) and Fry
and Schindler (30) investigated DML primitives as an
approach to database program conversion. This me-
thod contrasts with the general framework of figure
4.1 in that, rather than decompiling a database pro-
gram into a high-level representation, the program
analyzer expresses individual DML statements in terms
of more primative DML functions. The program con-
verter associates source program primitives with primi-
tives applicable to the target DML program.

The DML primitives approach was attractive for con-
verting database programs from one DBlMS to another
since it did not rely on a detailed understanding of the
application program and it’s relationship with the
schema. To test the idea, programs written in three
different DML’s were analyzed and a set of DML
primitives was identified and classified. However, as
work progressed, two serious problems arose with the
DML primitives approach. First, the considerable
diversity discovered in the low-level functions of dif-
ferent DBMS’s began to suggest that it might not be
possible to develop a manageable set of DML primi-
tives comprehensive enough for use in a generalized
database program conversion system. ;Second, DML
primitives did not seem suitable for database program
conversions done in response to changes in the logical
structure of data. Largely for these reasons, DSRG
dropped DML primitives research in favor of code
templates.

The code template approach fits the general database
program conversion framework of figure 4.1. Code
templates are predefined sequemes of host language
DML statements (similar to macros) which implement
a set of high level data manipulation operations. Each

code template corresponds to a operator in the rela-
tional algebra. Application programs are written using
nested code templates. Schindler (3 1) addressed the
problem of developing program conversion techniques
to transform a program which had been written using
code templates into a target database program which
accounts for the effects of a database restructuring.
High-level program conversion is accomplished by
using relational algebra specifications for the data
conversion to transform relational algebra specifica-
tions for the templates. The approach is similar to
that proposed independently by House1 (1 2).

While the code template approach is appealing, there
are a number of challenges to be met. First, the prob-
lem of decompiling an arbitrary host language program
which does not use code templates is a open problem,
as discussed further in section 5.3. A second chal-
lenge is to extend the approach to handle updates as
well as retrievals. Operations in relational algebra are
still dependent on a given view of the set of relations
being processed, and under certain restructurings,
updates may be ambiguous. This is similar to the
well-known view update problem. Also, there are
open questions on how difficult it is to optimize sym-
bolically relational algebra expressions. These chal-
lenges indicate that an approach based strictly on the
relational algebra may not be sufficient.

A key problem to be solved within the framework is
the development of a high level specification language
for database programs. The language could be used
instead of the relational algebra as the intermediate
language in which the abstract source and target pro-
grams of figure 4.1 are expressed. The language
could also be used independent of the conversion con-
text in the specification of new applications. These
new applications would then be less sensitive to data-
base restructurings and would be able to by-pass the
program analysis stage when they are subsequently
converted. Current research includes the search for
an appropriate high level DML/DDL pair and studies
of program generation techniques for mapping high-
level database programs into programs expressed in
existing DMLs, such as CODASYL DBTG or IMS.

5 . Research Problems to be Investigated

The approaches to database program conversion just
described have shown the need for continued research
before practical database program conversion systems
can become a reality. This section discusses some of
the research directions in database program conver-
sion. These research problems overlap with research
issues in data models, data base design, application
program development and software engineering. We
can expect results from these areas to be useful in
database program conversion systems. At the same

309

time, these systems should generate new results as the
diverse parts of the problem -- program analysis, high
level data models, and optimization -- are meshed in a
coherent system. Each of the major research areas
will be discussed.

5.1 Improved Description of the Database and Appii-
cation Programs

Based on the examples of section 3, it is clear that a
database program conversion system needs more ex-
plicit information about the data objects in the source
and target systems and their behavior under allowed
operations. If conversions are to span data models,
then the representation of programs may have to ac-
count for idiosyncrasies of the source system (e.g.
currency behavior) and the representation of this be-
havior in the target system. The representation of the
database structures will have to be at a level which is
high enough to be realized in either data model. It
will be necessary to study classes of meaningful
changes to database schemas, determine their effect
on application programs, and catalog their interpreta-
tions in existing DBMSs.

5.2 Equivalence of Source and Target Programs

One fundamental problem in database program con-
version is to define source and target program
"equivalence". While 1 / 0 equivalence has been em-
phasized in this paper, there are other kinds of equiva-
lence which may be more appropriate in certain situa-
tions. As an example, suppose employees who retired
prior to 1950 are deleted during conversion. The the
converted program which prints all current or prior
employees is not strictly I/O equivalent to the pro-
gram before conversion. Yet we would probably want
a conversion system to convert the "print all employ-
ees" program successfully, though perhaps a warning
should be issued. As another example, suppose a
schema at one point in time allows an employee to
have no associated department, then ttle schema is
changed to require each employee to have a depart-
ment. A program to insert employees may not have
the same behavior as previously (it now succeeds only
if the department is non-null). This is the desired
behavior because the application requirements have
changed, but it is not strictly equivalent.

The point is that there are probably levels of
"successful conversion" and research remains in iden-
tifying what level can be preserved for what kinds of
database restructurings.

5.3 Analysis, Transformation and Synthesis of Pro-
grams

The design and implementation of a usable program
analyzer is a major challenge, but the successful con-
struction of this tool could yield major benefits. As
described earlier, the program analyzer uses language
templates and dataflow analysis techniques to identify
and create from application programs a high level
representation of the program's operation on the data-
base. In order to do this, it will be necessary to pick
an appropriate level of template matching and perhaps
develop a template definition language for experimen-
tation. A significant challenge will be to develop very
high level templates. By doing this, it may be possible
to extract less procedural representations of the
program's interaction with the database and gradually
move away from an access path orientation. Howev-
er, use of the proper template in the proper situation
is a very context dependent decision and may require
sophisticated algorithms in the program analyzer.
Large classes of programs will have to be analyzed to
become convinced that the set of templates is widely
applicable.

Another open problem I S to determine whether the
program analyzer can detect database integrity const-
raints that are enforced procedurally in the program
(or when they are not but should be).

If a program analyzer can be successfully constructed,
it could be used as a programmer's aid during initial
writing of database application programs. Application
programmers may misunderstand or misuse data rela-
tionships, resulting in erroneous or inefficient pro-
grams. For example, a programmer may try to relate
two files through two data items which are not related
in application terms. Or the programmer may not be
aware of all the access paths available for traversing
from one data entity to another. Program
"improvement" of this kind should be a natural bypro-
duct of a good program analyzer.

5.4 Optimization of application program representa-
tions

An optimization needs to be performed on the applica-
tion program representation for the following reasons:
(1) the original source program may not be efficiently
coded or (2) an efficient application program may
become inefficient after both the database and the
program have been converted: the target program
needs to be optimized to take advantage of the new
data relationships in the target database.

If a high enough level of template can be used in the
program analysis phase, then the optimization problem
is closely related to the access path selection problem
in database management systems (32). However, if
the program representation is a t a lower level, then
further work needs to be carried out In this area.

310

6. Conclusion

The Task Group's objective is to investigate the solu-
tions for the database program conversion problem.
We intend to identify what types of program change
can be done automatically or semi-autornatically and
what cannot be handled at all. The effort will con-
tribute not only to helping convert existing application
programs, but also will help to define the irequirements
of future DBMSs and illustrate programming practices
which will yield more convertible database applica-
tions. The work presented here (1) provides a survey
of current approaches and research efforts (2) de-
scribes some of the difficulties in program conversion,
(3) presents a global model of a program conversion
system based on more explicit and higher level data-
base and program desciptions, (4) describes ongoing
research undertaken by some members of this group,
and (5) proposes some problems for future research.
It is the hope of the Task Group that this $work will
provide a general framework on which future research
by this group and other researchers can be conducted.

ACKNOWLEDGMENTS

The research reported herein was supported in part by
the National Science Foundation under grants MCS-
77-22244, MCS-76.10075, MCS-77-22505 and
MCS77-01484. The Task Group would like to ac-
knowledge helpful suggestions and contributions made
by R. Marion, C. Cook, S . B. Yao, S. Navathe, B. C.
Housel and G . Thomas.

EPILOG

The reader may have noticed that the word
"semantic" does not appear in the main body of this
paper. The Task Group found that when this term
was banned from discussion and prose, program con-
version issues could be discussed with much greater
precision.

REFERENCES

1. Office of Management and Budget <and National
Bureau of Standards, "Millions in Savings Possible in
Converting Programs from One Computer)to Anoth-
er," Report to the Congress by the Comptroller Gen-
eral of the United States, FGMSD-77-34, Sept. 15,
1977.

2. Roark, Mayford, "Some Approaches to the Man-
agement of Change," in Information Processing 77,
Proceedings of the 1977 IFIP Congress, North-
Holland, New York, N.Y., 1977, pp. 109-11:2.

311

3. Fry, J. P., et al., "An Assessment of the Technolo-
gy for Data and Program Related Conversion," Pro-
ceedings of the 1978 National Computer Conference,
Vol 47, AFIPS Press, Montvale, N.J., 1978, pp. 887-
907.

4. Swartwout, D. E., Deppe, M. E., and Fry, J. P.,
"Operational Software for Restructuring Network
Data Bases," Proceedings of the I977 National Com-
puter Conference, Vol 46, AFIPS Press, Montvale,
N.J., 1977, pp. 499-508.

5. Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S.
P., and Lum, V. Y., "EXPRESS: A Data Extraction,
Processing, and Restructuring System," A CM Transac-
tions on Database Systems, 2:2 (June 19771, ACM, N.
Y., pp. 134-174.

6. Bakkom, D. E., and Behymer, J. A.,
"Implementation of a Prototype Generalized File
Translator," Proceedings of the 197.5 ACM SIGMOD
International Conference on Management of Data, ed.
W. F. King, ACM, N.Y., 1975, pp. 99-110.

7. Ramirez, J . A., Rin, N . A., and Prywes, N. S.,
"Automatic Generation of Data Conversion Programs
Using a Data Description Language," Proceedings of
the ACM SIGFIDET Workshop on Data Description,
Access, and Control, ACM, N.Y., 1974, pp. 207-225.

8. Honeywell Information Systems, "Functional Speci-
fication Task 609 Database Interface Package," De-
fense Communications Agency, Contract DCA 100-
73-C-0055.

9. Severance, D. G., and Lohman, G. H.,
"Differential Files: Their Application to the Mainte-
nance of Large Databases," ACM Transactions on
Databuse Systems, 1:3 (1976), ACM, N. Y., pp 256-
267.

10. Gerritsen, R. and Morgan, H., "Dynamic Restruc-
turing of Databases with Generation Data Structures,"
Proceedings of the 1976 ACM Annual Conference,
ACM, N.Y., pp. 281-296.

1 2 . Mehl, J.W. and Wang, C.P., "A Study of Order
Transformation of Hierarchical Structures in IMS Data
Bases," Proceedings of the ACM SIGFIDET Work-
shop on Data Description, Access, and Control, ACM,
N.Y., 1975, pp 125-140.

12. Housel, B. C . , "A Unified Approach to Program
and Data Conversion," Proceedings of the Third Inter-
national Conference on Very Large Data Bases, ACM,
N.Y., 1977, pp. 327-335.

13. Shu, N. C., Housel, B. C., and Lum, K. Y.,
"CONVERT: A High-level Translation Definition
Language for Data Conversion," Comm. ACM, 18:lO
(19751, pp. 557-567.

14. Abrial, J . R., "Data Semantics," in Data Base
Management, Klimbie, J.W. and Koffemann, K. L,
eds, North-Holland, Amsterdam, 1974.

15. Fernandez, E. B., and Summers, R. C., "Integrity
Aspects of a Shared Data Base," Proceedings of the
I978 National Computer Conference, Vol 47, AFIPS
Press, Montvale, N.J., 1978, pp. 819-822.

16. Hammer, M, and Mc Leod, D., "The Semantic
Data Model: A Modeling Mechanism for Data Base
Applications," Proceedings of the ACM SIGMOD
International Conference on Management of Data,
ACM, N.Y., 1978, pp 26-36.

17. Lee, R.M., and Gerritsen, R., "Extended Seman-
tics for Generalization Hierarchies," Proceedzngs of
the ACM SIGMOD International Conference on Man-
agement of Data, ACM, N.Y., 1978, pp. 18-25.

18. Smith, J. M., and Smith, D. C. P. "Database Ab-
stractions: Aggregation," Comm ACM, 20:6 (1977),
pp. 405-413.

19. Smith, J . M., and Smith, D. C. P., "Database Ab-
stractions: Aggregation and Generalization," A CM
Transactions on Database Systems, 2:2 (1977), pp.
105-133.

20. Smith, J . M., and Smith, D. C. P., "Integrated
Specifications for Abstract Systems," IEEE Transac-
tions on Software Engineering, in press.

21. Stonebraker, M., "High Level Integrity Assurance
in Relational Data Base Management Systems," Memo
ERL-M473, Electronics Research Lab., University of
California, Berkeley, Cal, 1974.

22. Youssefi, K., et, al., "INGRES Reference Manual
- Version 6.1 , I 1 Electronics Research Laboratory, Col-
lege of Engineering, University of California, Berke-
ley, Memo ERL-M579, Dec., 1977.

23. Su, S.Y.W., Lo, D.H., and Lam, H., "Application
Program Conversion Due to Semantic Changes,"

Technical Report 7879-2, Computer and Information
Science Dept., University of Florida, March, 1978,
submitted for publication.

24. Su, S.Y.W., and Lo, D.H., "A Multi-level Seman-
tic Data Model and its Semantic Integrity Control,"
Technical Report 7778-12, Computer and Infatmation
Science Dept., Universiyt of Florida, July 1978.

25. Su, S.Y.W., and Liu, B.J., "A Methodology of
Application Program Analysis and Conversion Based
on Database Semantics," Proceedings of the Third
International Conference on Very Large Data Bases,
ACM, N.Y., 1977, pp. 327-335.

26. Nations, J . and Su, S.Y.W., "Some DML Instruc-
tion Sequences for Application Program Analysis and
Conversion," Proceedings of the I978 ACM SIGMOD
Internation a1 Conference on Manag em en t of Data,
ACM, N.Y., 1978, pp 120-131.

27. Su, S.Y.W., "Application Program Conversion
Due to Database Changes," Proc. of the Second Inter-
nationat Conference o n Ve/ery Large Databases, Brus-
sels, Belgium, Sept. 1976, pp. 143-158.

28.Shneiderman, B., "A Framework for Automatic
Conversion of Network Database Programs under
Schema Transformations," Thrrd Jerusalem Confer-
ence on Information Technology, J . Moneta, ed.,
North-Holland, Amsterdam, 197 8.

29. Delong, S. and Fry, J. P., "An Approach to the
Migration of DBMS Applications," DSRG Working
Paper 900, University of Michigan, June, 1975.

30. Fry, J. P., and Shindler, S., "Towards the Migra-
tion of Database Applications," DSRG Technical Re-
port 76-ST1, University of Michigan, April, 1976.

31. Shindler, S. "Templates for Structured DML Pro-
grams," Working Paper ST 2.1, Data Translation Pro-
ject, School of Business Administration, University of
Michigan, Ann Arbor, Dec. 1976.

32. Selinger, P.G., "Access Path Selection in a Rela-
tional Data Base Management System," Procadifigs of
the 1979 ACM SIGMOD International Conference on
the Management of Data, ACM, N.Y., 1979.

