
Page 1

A Graphical Filter/Flow Representation of Boolean
Queries: A Prototype Implementation and Evaluation

Degi Young
Ben Shneiderman  *

Human-Computer Interaction Laboratory &
Department of Computer Science

University of Maryland
College Park, MD 20742

February 1993

Abstract:

One of the powerful applications of Boolean expression is to allow users to extract relevant
information from a database.  Unfortunately, previous research has shown that users have
difficulty specifying Boolean queries.  In an attempt to overcome this limitation, a graphical
Filter/Flow representation of Boolean queries was designed to provide users with an interface that
visually conveys the meaning of the Boolean operators (AND, OR and NOT).  This was
accomplished by implementing a graphical interface prototype that uses the metaphor of water
flowing through filters.  Twenty subjects with no experience with Boolean logic participated in an
experiment comparing the Boolean operations represented in the Filter/Flow interface with a text-
only SQL interface.  The subjects independently performed five comprehension tasks and five
composition tasks in each of the interfaces.  A significant difference (p < 0.05) in the total number
of correct queries in each of the comprehension and composition tasks was found favoring
Filter/Flow.

* address correspondence to Ben Shneiderman.
    Ben Shneiderman is also a member of the Systems Research Center.



Page 2

1 Introduction

“Much research and experience with Boolean retrieval systems indicates clearly and repeatedly that
Boolean search formulation syntax and retrieval techniques are not very effective in search
performance and not very usable or efficient search methods for end users” [Hildreth, 1988].

Many attempts have been made to overcome the “Boolean bottleneck” in the use of Fourth

Generation Languages.  These attempts include a linear text such as that used in Structured Query

Language (SQL), tabular structures such as those used in Query By Example (QBE) and various

other graphical representations [Reisner, 1988; Jarke and Vassiliou, 1986].  However, despite

these attempts, extracting information using a Boolean query is often too abstract for novice users

and problematic for many experienced users.

1.1 Literature Review

In order for users to form queries using the linear text approach, they must be familiar with

Boolean logic; (i.e., the logical operator AND which is the intersection of two conditions, the

logical operator OR which is the union of two conditions and the logical operator NOT which is

the negation of a condition).  Equipped with this knowledge users can extract information simply

by typing the query.  Indeed, in an experiment using both secretaries and college business

administration students, the subjects preferred SQL to QBE, because of its structural approach and

because fewer steps have to be made when forming a query on the computer [Boyle, Bury and

Evey, 1983].

The difficulty of using the linear text approach lies in attaining the knowledge to form the

query.  One of the reasons for this difficulty is that novice users use terms that they are familiar

with (indeed the terms and and or are used often in natural language); but these terms take on

different meanings when used to form a query.  Thus, when constructing queries in SQL, users

tend to make errors because they resort to their knowledge of English.  This result was noted in

experiments conducted by Greene, Devlin, Cannata and Gomez [1989], Michard [1982], and

Boyle et al. [1983].  One of the common mistakes users made was to substitute the AND logical

operator for the OR logical operator when translating an English sentence to a linear text query.



Page 3

Reisner, Boyce and Chamberlin [1975] further noted that the subjects would insert words from the

English sentence into the SEQUEL or SQUARE query in place of the correct table name, column

name, or data value.

Another requirement of SQL further complicates the formation of queries.  In order for

users to form complex queries, they must be familiar with the rules of precedence and the use of

parentheses.  Michard, Greene et al., Boyle et al., and others have indicated that novice users have

difficulty using parentheses, in particular nested parentheses.  Greene et al. went further to note that

an increase in the complexity of a query should not mean an increase in the difficulty of the

method of specification.

The tabular representations of Boolean queries make some attempts at either reducing the

use of Boolean logic (QBE) or eliminating the use of Boolean logic (Truth-table Exemplar-Based

Interface (TEBI)).  Users can form simple queries in QBE by placing either variables or constants

on various sections of the table.  Initial studies conducted by Thomas and Gould showed that

subjects made accurate decisions about  simple “AND/OR” constructions and seldom used the

wrong values when they translated English sentences to form queries in QBE.  Follow-up studies

conducted by Greenblatt and Waxman [1978] not only reaffirm these findings but go a step further

to indicate that QBE is a superior language to either SQL or the algebraic language that they used,

in terms of learnability and application ease.  Unfortunately, when forming complex queries in

QBE, users must invoke a condition box and express the complex query as a Boolean expression.

The disadvantage of using Boolean expressions, in particular parentheses, that existed in the linear

text still exists in QBE.  Furthermore, as indicated by an experiment conducted by Boyle et al.

[1983], subjects have difficulty knowing how and when to use the condition box.

TEBI was designed and developed by Greene and others.  It is a tabular representation of a

query language that is void of the logical operators, parentheses or fixed syntax.  In order to form a

query in TEBI, users must be able to recognize, rather than generate, the form of the query that

they are interested in.  This method serves users who are unsure of the query that they want to

form and have the time to establish an interactive form of communication with the computer.



Page 4

However, if users know what query they want to form and their difficulty lies only in expressing

the query then this form of representation may not be desirable.

The advantages of using a graphical interface are numerous.  For example, users tend to

complete their tasks quickly and accurately, feel less frustrated and show fewer signs of fatigue.

Unfortunately, as mentioned by Lundh and Rosengren [1990], there exists some difficulty in

expressing Boolean expressions graphically.

An attempt was made by Michard [1982], who used Venn diagrams to show the

operations on sets.  In this interface, each chosen attribute is represented by a circle and users form

queries by pointing at the desired portion of the intersecting circles.  A human factors comparison

was done between a linear text language called “TEST” and his Graphical Query Language.  He

used twelve college students who had experience with basic Boolean algebra and the use of Venn

diagrams.  In his study he found that subjects performed better when they used the Graphical

Query Language interface.

A graphical Boolean interface based on the relative positions of tiles within a block

structure was developed by Anick, Brennan, Flynn, Hanssen, Alvey and Robbins [1990].  Their

interface deals only with intersection and union operations -- negation and clustering are not

addressed.  Furthermore, the implied semantics of horizontal and vertical relationships between the

tiles is sometimes confusing and ambiguous, making it difficult to form certain queries.

2 The Filter/Flow Interface

Filter/Flow was designed to present the Boolean operators using a metaphor that

graphically conveys the meaning of the operators.  This concept originated from Shneiderman

[1991].  Similar to TEBI, this interface is void of the logical operators, parentheses or any form of

fixed syntax.  However, unlike TEBI, this interface can be used to generate queries and is

graphical.  In order to use Michard’s Graphical Query Language, users must be familiar with

Venn Diagrams and the operations that they represent.  Filter/Flow provides a novel conceptual

model of queries and was designed to help users formulate and express queries.



Page 5

2.1 Description Of Filter/Flow

Initially, the screen contains two scrolling lists.  The database list is placed on the extreme

left hand side of the screen and the result list is on the extreme right hand side.  The database list

consists of the tuples of the initial database, while the result list consists of the tuples that satisfy

the query formed.

At the top of the screen, arranged horizontally, are buttons that are used to represent the

attribute names.  In this interface, they are LOCATION, MANAGER, SALARY, TITLE and

MORE.  The MORE button is used to indicate that additional attribute names may exist.

At the bottom of the screen are the action buttons of the Filter/Flow interface; they are

labeled as NEW QUERY, CLEAR FLOW, FLOW and QUIT (Figure 1).

Users form queries by clicking on the attribute name buttons.  This causes the attribute

menus to be displayed on the screen.  The attribute menus may be dragged and placed at various

positions on the screen.  Users click on the attribute value to select the appropriate values.  By

selecting the FLOW action button, users may view the logical representation of the query that they

formed in the form of water (displayed in blue) flowing through filters.  The NEW QUERY

button clears all the attribute menus and the flow that are displayed on the screen.  The CLEAR

FLOW button clears only the flow displayed on the screen and leaves the attribute menus intact.

The QUIT button enables users to exit Filter/Flow.

2.2 The Filter/Flow Operators

INTERSECTION OPERATOR (AND):

In order to specify an intersection two or more conditions are needed.  A condition is

indicated by selecting an attribute menu and selecting an attribute value within that menu.  These

attribute menus must be in different columns and there must be a flow that passes through both of

the menus.



Page 6

Figure 1: Intersection Operator

Find the employees who are located in California  that  earn  exactly fifty thousand.

For example, in Figure 1, both of the attribute menus are on the same row but in different

columns.  Graphically, the attribute menus are filters that restrict the flow of water.  As the stream

of water passes through the first attribute it loses its volume; the width of the water flowing out of

the filter is less than the width of the water flowing into the filter.  This representation indicates that

only the tuples that satisfy the specified condition were allowed to pass through.  The tuples that

result in the first condition are applied as input to the second condition.  From those tuples, only

the tuples that satisfy the second condition are of interest.  The result consists of the tuples that

have satisfied both the first condition and the second condition.  This process can be extended to

multiple conditions.



Page 7

UNION OPERATOR (OR):

There are two ways of specifying a union operation.  The first method is across attribute

menus and can be used in all union specifications.  The second method is within attribute menus

and can only be used for two or more attribute values within the same attribute menu.

1) Across Attribute Menus

A union operation between attribute menus can be specified by placing the attribute menus

on different rows and ensuring that there is a parallel flow to both conditions (Figure 2).

Figure 2: Across Attribute Menus - Union Operator

Find the employees who are either managed by Degi or are Drivers.

The flow from the initial database enters each attribute menu with the same width.  This indicates



Page 8

that the same number of tuples enter the attributes.  As the water flows out of each of the attribute

menus, the volume of the water has decreased.  Similar to the intersection operator, this process is

used to indicate the relative number of tuples that have satisfied the condition.  In this case there is

a direct flow to the result list.  Thus, each condition has been satisfied independently.

2) Within An Attribute Menu

A union can also be specified by two or more attribute values within the same attribute

menu (Figure 3).  This indicates that the filter allows two or more specifications to be satisfied,

each independent of the other.  A tuple can, therefore, satisfy any of the specified alternatives in the

attribute menu.

Figure 3: Within an Attribute Menu - Union Operator



Page 9

Find the employees who are located in either the Bahamas or Georgia
NEGATION OPERATOR (NOT):

Users can specify negation by selecting an attribute menu and initially choosing the

attribute value that they do not want to satisfy.  The “X” located on the upper right hand side of the

attribute menu deselects the selected attribute values and selects all values that were not selected;

tuples that did not satisfy the original query will satisfy the negation query and vice versa (Figure

4).

Figure 4: Negation Operator

Find the employees who are not located in Hawaii



Page 10

COMBINATIONS:

A combination of the above operators may be used to form a complex query (Figure 5).

Figure 5: Example of a Complex Query

Find the accountants or engineers from Georgia who are managed by Elizabeth, or the clerks
from Georgia who make more than thirty thousand.



Page 11

CLUSTERS:

Users may form more complex queries by clustering attributes on a menu  This results in

an attribute menu that graphically displays a reduced view of the section that was selected.  In so

doing the relative position of each of the attribute menus in the cluster are maintained.

Furthermore, attribute menus within the cluster that are negated are displayed in black.  Users may

create labels for the attribute menu representing the cluster and use it in the same manner as any

other attribute menu.  It is possible, for example, to negate the clustered attribute menu.  The query

represented in Figure 6 is a cluster representation of the query in Figure 5.  The icons within the

attribute menu represent the union between the accountants or engineers managed by Elizabeth and

the clerks who earn more than 30,000.

Figure 6: Clustered Attribute Menu



Page 12

Find the accountants or engineers  from Georgia who are managed by Elizabeth, or the clerks
from Georgia who make more than thirty thousand.

2.3 Conventions of the Interface

This interface is a prototype; it is not based on a functioning relational database.  However,

we believe that an interface based on the Filter/Flow model that supports all the features of a

relational database model can be implemented.  In the design of the Filter/Flow prototype some

restrictions were made on the database schema as well as on the visual representation.  In a

commercial implementation:

1) the Filter/Flow model would have to accommodate joins between multiple relations.

Our mockup is based on a one relation database.  Several approaches have been demonstrated to

work effectively [IBM’s DIS, 1990; Clark and Wu, 1992].

2) extended filters could apply graphical techniques to specification of attribute values (see

Section 5.1.2 for suggestions).  In our mockup, the retrieval of tuples are based on selections from

scrolling menus.

3) operations such as transitive closures and aggregate functions should be addressed

[Clark and Wu, 1992].

4) computation of values within an attribute menu or equality across menus should be

addressed.

5) The representation of the width of water flowing through the filters should be dependent

on the values from the actual database.  In our mockup, we used a heuristic to determine the width.

Clearly, these features would lead to a more complete representation of database queries.

We believe that these limitations did not interfere with our objectives which were to explore an

alternative method of forming Boolean queries.



Page 13

3 Experimental Evaluation

Previous researchers emphasized the goal of discovering what features facilitate the

understanding of Boolean queries.  This orientation leads to a focus on the type of errors made and

their cause.  In order to collect this evidence, an experiment was run to compare the Boolean

operators used in SQL with the implemented version of Filter/Flow.

3.1 Hypothesis

The analogy present in the Filter/Flow interface is expected to enable users to predict the

outcome of a query.  This is due to the fact that they can relate their prior knowledge of the domain

(water flowing through the filter(s)) to that of the target (operation of Boolean queries).  It is

conjectured that using a Filter/Flow interface would enable users to interpret a query correctly with

higher frequency than they would if they were to read the same query in SQL.

SQL is a language equipped with definite syntax rules, such as in-order application of

“AND” and “OR” and prefix order application of “NOT”.  It also requires parentheses to specify

the order of operation.  In addition there is often an inconsistency in the use of the natural language

“and” and “or” and the logical AND and OR as discussed in the literature review.  Filter/Flow is a

language that replaces a linear structure with a two-dimensional visual image.  There is no referral

to natural language words and users do not use parentheses.  Furthermore, the visual feedback

should facilitate an accurate formation of the query.  It is conjectured that users should be able to

form more accurate queries using a Filter/Flow interface.

3.2 Subjects

Twenty subjects (ten male and ten female) responded to advertisements posted at the

University of Maryland College Park campus.  The requirements for the subjects were that they

had some experience using a mouse and very little or no programming language experience.  In

addition to this, subjects who had used Boolean logic in any of their course work were excluded.

The ages of the subjects ranged from eighteen to forty, the majority of the subjects being early



Page 14

twenties.

3.3  Method

The subjects used an AT&T computer with a 80386 processor running at 25 Megahertz

with a 17 inch VGA monitor.  Both the SQL and Filter/Flow interfaces were created using

ToolBook on the same computer, thus ensuring the same rate of response.

The independent variable in this experiment is the type of interface (Filter/Flow or SQL).

Subjects performed two types of tasks (comprehension and composition).  The dependent

variables are the number of correct queries and the number of errors made in each task.  Subjects

were given two similar query sets for each interface.  The order in which the subjects viewed the

two query sets varied.  The order in which the subjects viewed the two interfaces was also

alternated.

3.4 Training

A fifteen to twenty minute training period was given for each interface. In the first five

minutes the subjects were given specific tasks to perform on the computer, thus enabling the

subjects to become familiar with the medium that they were about to use.  For example, in SQL

subjects were asked to type in statements, and in Filter/Flow, subjects were asked to use the mouse

to select and drag boxes on the screen.  The remaining ten to fifteen minutes of the training period

were spent going over the operations of Boolean logic.  The subjects were given two sheets of

paper: a question sheet consisting of five queries and an employee data sheet.  The first query

consisted of a simple extraction, the second query introduced the concept of the intersection

operator, the third query introduced the union operator, the fourth query introduced the negation

operator coupled with the intersection operator (in the case of SQL, parentheses were introduced in

this question) and finally the fifth query consisted of all the above operators.

The experimenter formed and interactively interpreted the first four questions and asked the

subjects to form and interpret the final question.  Since the final question contained all the Boolean



Page 15

operators, it served as an indication as to whether or not the subjects had a basic understanding of

the material presented. Subjects were free to ask any questions throughout the training period.

3.5 Tasks

The first task was Query Comprehension.  In this task subjects were given an employee

database.  The employee database indicates the location, salary, title and manager of thirty

employees.  The experimenter either typed in or constructed a query (depending on the interface

used) and the subjects were required to indicate on a sheet of paper the results of the query.  In

order to do this task, subjects must be familiar with the connotation of the operators used in the

query.

The second task was Query Composition.  In this task, the subjects were given an English

sentence and they had to form a query using either the SQL or Filter/Flow interface.  The query

was written on a piece of paper allowing the subjects to refer to the query at any time.  When using

SQL, subjects were provided with the stem of the query and were asked to type in the “WHERE”

condition.  This task is usually difficult, because it entails creating an expression that represents the

query.  Two examples of the composition queries that were asked are given below:

1)  I’d like to find the employees who are managed by Nancy. Please ensure that
these employees don’t earn exactly 50,000 but they are lawyers.

2)  Nancy, with Degi’s help, wrote a paper about Alabama women in history.  Degi
talks to all her employees about this paper.  Nancy gave a seminar about this paper
to her employees who are from Alabama.  Nancy felt that this paper would be of
interest to the historians she employs so she told them, too.  Could you list all the
people who have heard about this paper.?

The subjects always performed the comprehension task (consisting of five queries)

followed by the composition task (consisting of five queries) using one of the designated interfaces

and one of the designated query sets.  After completion of the last composition query, subjects

were asked whether they wanted a break or not. If so, a five minute break was taken.  After that the

subjects repeated the two tasks using the alternate interface and the alternate query set.

After completion of all the tasks, subjects were asked for their opinion of the two interfaces



Page 16

and the reasons for their preferences.

3.6 Experimental Results

3.6.1 Scoring

The total number of correct queries made by each subject was collected and errors were

noted.  A 2x2 ANOVA was done to compare the scores obtained in the Filter/Flow with that

obtained in SQL and study the order effect.  The null hypothesis was that there is no difference

between the two interfaces.

Comprehension task:

If the subject did not write down the correct list of tuples then the answer was considered to

be wrong.  The number of correct answers for each query with each interface was noted (Table 2).

The types of errors made were of interest; thus the incorrect result lists were examined.  A break

down of the types of errors was noted for each question (Table 4).

The Boolean errors were of special interest, so the number of Boolean errors was noted

(Table 3).  The Boolean errors included:

1) Interpreting the logical operators incorrectly:  For example, interpreting the union for an

intersection or the intersection for the union operation

2) Ignoring the order of precedence.



Page 17

Composition task:

In general syntactical errors were not counted as wrong answers.  For example, a missing

quote or a misspelled attribute name or value were considered accepted when the subject used

SQL.  There was an error check procedure in Filter/Flow that would indicate that the flow was

incorrectly specified, so the subjects had a chance to change this when they were forming their

query.  Since this was not the case in SQL, subjects were not penalized for those types of errors.  It

is, of course, conceivable that a program could be implemented to correct syntactical errors in SQL

[Welty, 1985].

Every error made was counted.  Thus, if a subject repeated a mistake, that error was

counted the number of times it was repeated.  For example in SQL, if the query called for an “A

OR B OR C” structure and the subject wrote “A AND B AND C”, then two errors were made

and the error type was AND instead of OR (Table 5).

In noting the Boolean errors (Table 7), the definition of the Boolean errors had to be

redefined.  In this case the Boolean errors consisted of:

1) Typing “AND” instead of “OR” or typing “OR” instead of “AND” in SQL.  Placing

the attribute menus on the same row instead of different rows or placing the attribute menus on

different rows instead of the same row in Filter/Flow.

2) Placing the parentheses in the wrong place or omitting the parentheses in SQL. Placing

an attribute menu in the same column instead of the preceding column in Filter/Flow.

3) Forgetting to apply the negation as a pre-order specification in SQL, or forgetting to

specify the negation filter.



Page 18

3.7.2 Statistical Results

Comprehension task:

There was a significant difference in the number of correct answers for this task favoring

Filter/Flow( F(1,18) = 12.9, p < 0.05) (Table 1).

Filter/Flow SQL F P

4.3
(0.87)

3.5
(0.95)

12.9 0.02

Table 1: Means and Standard Deviations of Number of Correct Queries for
Comprehension Task

Fewer Boolean errors were made in Filter/Flow than were made in SQL.  The total number

of errors made in Filter/Flow was 12, of which 9 were Boolean errors.  In SQL, 28 errors were

made, of which 25 were Boolean errors (Table 2 and Table 3).



Page 19

Number of
Correct Queries

0

2
4
6
8

10
12
14
16

18
20

Query 1 Query 2 Query 3 Query 4 Query 5

Filter/Flow SQL

Query Correct Queries Query Expression

Filter/Flow SQL

1 20 20 A ∩ B ∩ C

2 19 16 (A ∪ B) ∩ C

3 17 3 A ∪ B ∩ C

4 19 19 A ∪ ¬(B ∪ C)

5 13 14 ((A ∩ B ∩ ¬(C ∪ D)) ∪ (E ∩ ¬F)) ∩ G

Table 2:  Number of Correct Queries in Comprehension Tasks



Page 20

Number of
Boolean Errors

in Queries

0

2

4

6

8

10

12

14

16

18

Query 1 Query 2 Query 3 Query 4 Query 5

Filter/Flow SQL

Query Number of Boolean

Errors

Query Expression

Filter/Flow SQL

1 0 0 A ∩ B ∩ C

2 0 2 (A ∪ B) ∩ C

3 5 17 A ∪ B ∩ C

4 0 1 A ∪ ¬(B ∪ C)

5 4 5 ((A ∩ B ∩ ¬(C ∪ D)) ∪ (E ∩ ¬F)) ∩ G
Table 3: Boolean Errors in Comprehension Task

The most common error occurred in the third question, where five subjects wrote the

wrong answer in Filter/Flow and seventeen subjects wrote the wrong answer in SQL (Table 3).

The main type of error for this question was that subjects did not use the rules of precedence to

evaluate the results.  Seventeen subjects did not use the rules of precedence in SQL while only four

subjects did not use the rules of precedence in Filter/Flow (Table 4).



Page 21

Type of Error Interface Query
1

Query
2

Query 3 Query
4

Query
5

Total

Did not use rules of
precedence

Filter/Flow 0 0 4 0 0 4

Did not use rules of
precedence

SQL 0 0 17 0 0 17

Attribute menu on
same row instead of on
a different row

Filter/Flow 0 0 1 0 0 1

Used logical "AND"
instead of logical "OR"

SQL 0 2 0 0 0 2

* Not applicable Filter/Flow 0 0 0 0 0 0
Order of parenthesis SQL 0 0 0 0 4 4

Inverted meaning of
Negation operation

Filter/Flow 0 0 0 1 3 4

Applied Negation to
one Condition instead
of Two Conditions

SQL 0 0 0 1 1 2

Misread Sheet Filter/Flow 0 1 0 1 1 3
Misread Sheet SQL 0 0 0 0 3 3

Other errors Filter/Flow 0 0 0 0 3 3
Other errors SQL 0 0 0 1 1 2

Table 4: Comprehension Error Types

The most incorrect answers per query in Filter/Flow were in the fifth query (7 incorrect

answers), where three subjects inverted the negation operation (i.e. allowing tuples to go through

rather than restricting them) (Table 2 and Table 4).  Six incorrect answers were found in the fifth

query in SQL.  Nine errors were made in the fifth query in SQL and four of those nine errors were

made when subjects misinterpreted the order of the parentheses (Table 2 and Table 4).  Four

Boolean errors were found in the fifth query in Filter/Flow and five Boolean errors were found in

the fifth query in SQL (Table 3).

Composition task:

There was a significant difference between the number of correct queries in SQL and

Filter/Flow, favoring Filter/Flow (F(1,18) = 65.8, p < 0.05) (Table 5).

Filter/Flow SQL F P

4.2
(0.98)

1.9
(1.37)

65.8 0.00



Page 22

Table 5: Means and Standard Deviations of Number of Correct Queries in Composition
Task

The number of correct queries was greater for every query in Filter/Flow than it was in

SQL (Table 6).

Number of
Correct Queries

0

2
4
6
8

10
12
14
16

18
20

Query 1 Query 2 Query 3 Query 4 Query 5

Filter/Flow SQL

Query Correct Queries Query Expression

Filter/Flow SQL

1 20 7 A ∩ (B1 ∪ B2 ∪ B3 ∪ B4)

2 19 16 A ∩B ∩ ¬C

3 15 4 (A ∪ B) ∩ ¬C

4 15 8 (A ∩ (B ∪ C)) ∪ D

5 14 4 A ∩ (B ∩ (C ∪ D) ∪ (E ∩ F))

Table 6: Correct Queries in Composition Task

Subjects made the most Boolean errors in the fifth query.  Thirty-five errors were made in

SQL and only seven errors were made in Filter/Flow.  Subjects made the least number of Boolean

errors in the first query in Filter/Flow and the least number of Boolean errors in the second query

in SQL (Table 7).



Page 23

Number of
Boolean Errors

in Queries

0

5

10

15

20

25

30

35

Query 1 Query 2 Query 3 Query 4 Query 5

Filter/Flow SQL

Query Number of Boolean

Errors

Query Expression

Filter/Flow SQL

1 0 10 A ∩ (B1 ∪ B2 ∪ B3 ∪ B4)

2 1 4 A ∩B ∩ ¬C

3 5 23 (A ∪ B) ∩ ¬C

4 4 14 (A ∩ (B ∪ C)) ∪ D

5 7 35 A ∩ (B ∩ (C ∪ D) ∪ (E ∩ F))

Table 7: Boolean Errors In Composition Queries

The most frequent error type was the use of parentheses.  A total of fifty parentheses errors

were made in SQL, while only two errors were made in specifying the order of the attribute menus

in Filter/Flow (Table 8).  The most frequent error made in Filter/Flow was the placement of

attributes on the same row as opposed to different rows; this error was made nine times.

However, this was less than the number of times the comparable error was made in SQL.  In this

case, the AND Boolean operator was used instead of the OR operator; this error occurred twenty-

two times (Table 8).  Another rather frequent error type that occurred in SQL was that subjects did

not specify the attribute name.  This occurred twenty-four times.  One subject did not negate an

attribute menu in Filter/Flow, while four subjects used the negation as a binary operator (applying

to two operands) rather than a unary operator (applying to one operand) in SQL.  There were nine



Page 24

unidentified errors in SQL, these errors were unique to the individual subject.  For example, some

subjects introduced terms that are not used in the SQL.  One subject tried to use the within attribute

menu specification incorrectly when specifying a union (Table 8).

Type of Error Interface Query
1

Query
2

Query 3 Query
4

Query
5

Total

Precedence of
Filter/Flow

Filter/Flow 0 0 2 0 0 2

Missing parentheses or
parentheses in the
wrong place

SQL 6 3 12 7 22 50

Attribute menu on
same row instead of on
a different row

Filter/Flow 0 0 2 2 5 9

Used logical "AND"
instead of logical "OR"

SQL 3 0 7 7 9 26

Attribute menu on
different rows instead
of the same row

Filter/Flow 0 1 1 1 1 4

Used logical "OR"
instead of logical
"AND"

SQL 1 0 2 1 1 5

Did not negate
attribute menus

Filter/Flow 0 0 1 0 0 1

Did not use negation
as a unary operator

SQL 0 1 0 0 3 4

Missing attribute menu Filter/Flow 0 0 1 1 2 4
Didn't specify attribute
label

SQL 9 0 2 4 9 24

Used Within
specification of the
union operator instead
of between

Filter/Flow 0 0 0 0 1 1

Other errors SQL 1 2 3 1 2 9

Table 8: Composition Error Types

Subjective Satisfaction

At the end of the experiment, one subject told his friend:  “It’s fun man, go for it.”  That,

coupled with the fact that only two subjects wanted to take a break after the first interface, showed

some indication that the subjects enjoyed the experiment in general.  When asked to compare the

two interfaces, all twenty subjects claimed that Filter/Flow was easier to use than SQL.  Indeed,

when subjects attempted the training task in Filter/Flow, comments included “this is fun” and



Page 25

“this is groovy”.  In SQL, when some of the subjects were told that they would have to type, they

made apologetic claims about not being great typists.

When asked which interface they preferred, a few of the subjects looked as if this was a

rather stupid question and stated that it was Filter/Flow, of course.  In fact some subjects did not

need any prompting.  After completing the Filter/Flow interface and in the middle of the SQL task,

one subject stated that she could see why SQL was left until the end, it was much harder.  Another

subject said that using SQL reminded him of using the IBM where everything has to be typed in

but when he used Filter/Flow, it was like using the Mac where you can use the mouse to get a

result.  When forming a complex query in SQL, one of the pilot subjects stated: “Gosh, I’m lost in

bracket city.”  Overall this subject felt more confident when she used Filter/Flow because she had

visual feedback when she used SQL she was not sure that what she had done was correct.

A few subjects felt that SQL challenged them and was therefore fun to use.  In comparison

to SQL they expressed the opinion that Filter/Flow was definitely easier to use and recommended

it as a training tool.  One subject stated that he preferred the visual feedback and it was “neat” to

watch the water flow.  In one extreme case, a subject started with Filter/Flow and as he was doing

the tasks, he seemed very enthusiastic about the tasks, with an occasional smile as soon as he

completed a query.  He then switched to SQL and half way through the task, he asked what the

operation of the “OR” was.  He was then told that no further explanations could be given because

he had finished the trial task and had started the experimental task.  As he continued the tasks he

began to show his displeasure by swearing.  Gone was the occasional smile and in its place was an

occasional shrug of acceptance.  It was almost as if he was saying, “I don’t know if this is correct

or not but this task has to be performed so I’m just going to do it”.  As he was reaching the end of

the SQL task, it dawned on him that if he used the concept of Filter/Flow, he might be able to form

better queries.  So he started drawing the structural flow on a piece of paper and turned around and

said “I’m using the Flow thing to figure this thing out.”  He decided to use the knowledge he had

attained from Filter/Flow to structure his answers in SQL.



Page 26

4  Discussion of the Results

4.1  Comprehension Results

There were more correct answers in the comprehension task (160 out of 200) compared

with the composition task (122 out of 200).  When comprehending relatively simple queries such

as the first query, which consisted of three conjunctions, subjects had little difficulty in either of the

two interfaces.  Furthermore, subjects were able to solve queries whose structure was similar to

queries that they were shown in the training session.  However, when subjects were given a unique

query (i.e., a query whose form they had not seen before) they were able to solve the query more

accurately in Filter/Flow than in SQL.  When using SQL, subjects often failed to apply the rules of

precedence; they would evaluate the queries on a left to right basis.  Filter/Flow encourages this

process; the flow is from left to right and the subjects evaluate the information from left to right

and this representation results in the correct answer.

When interpreting complex queries, the major error made by SQL users was the incorrect

interpretation of the order of parentheses.  Some subjects did not know which of the parenthesized

expressions to solve first, especially when the parentheses were nested.

4.2  Composition Results

Our findings suggest that one of the simpler structures to form in both interfaces was the

combination of three intersection operators and a negation of one of the terms.  This coincides with

Michard's finding that the AND operator is the easiest operator to use [Michard, 1982]. In some

cases when using SQL, subjects would place the two conditions next to each other, assuming that

if they were together it meant that these conditions were automatically intersected.

Subjects had little difficulty using the "within an" attribute representation of the union

operator in Filter/Flow.  However, they did have difficulty in forming a union between several

attribute values within an attribute in SQL.  They made several attempts to shorten the specification

of the query, including: not specifying the attribute names (or in one case, using a different attribute

name); not using the OR operator between the values and using commas to list all the values.



Page 27

The correct use of parentheses is essential if users want to change the rules of precedence

that apply to the Boolean operators.  Users must be able to use parentheses effectively if they want

to express complex queries.  The major error made with the SQL interface was the improper use

of parentheses.  In some cases subjects would not use parentheses; logical operators with a higher

order precedence were thus bound together when the subjects expected the logical operators of

lower order precedence to be bound together.  In the Filter/Flow experiment, subjects were able to

form complex queries easily by placing attribute menus in the preceding column and indicating the

flow appropriately.  Using Filter/Flow, the majority of the subjects were able to form queries that

were two parentheses levels deep but were unable to do so in SQL.

Errors made in SQL seem to indicate that if the subjects are not sure how to express

themselves, they will try to relate SQL to an English construct.  This was evident by the Boolean

operators and by the syntax that they used.  For example, in the first composition query the

subjects used a comma to indicate that they wanted to take the union of the attribute values.

Another common error was the use of “AND” instead of “OR” which coincides with previous

studies [Boyle et al., 1983; Reisner, 1988].

4.3  Subjective Satisfaction

There is good evidence that the subjects preferred using Filter/Flow to SQL.  They may

have felt more confident with their answers, because they had a more effective visual feedback to

indicate when they were on the right track.  The Filter/Flow representation appears to have helped

these novices by providing a means to explore.

4.4  Experimental Limitations

The Filter/Flow interface is an implemented prototype that was used to explore some of the

issues that affect the representation of Boolean queries.  Thus, in the evaluation of the Filter/Flow

model some limitations and conventions were made.  For example, the experiment conducted was

based on the comparison of specific Boolean queries in the Filter/Flow model with the SQL



Page 28

model.  This experiment concentrated on novice users performing two specific task types

(comprehension and composition) on a particular single relation database (i.e., the employee

database based on the attributes: title, manager, salary and location).  Further studies are warranted

with alternative tasks, more experienced users, and different databases.

5  Future Research Directions

5.1  Interface Implementation

Our prototype for a Filter/Flow interface was static, that is, the width of the flow was

reduced by a fixed amount at each attribute menu.  In other words, to indicate intersection the

width was reduced a certain amount while to indicate a convergence between two resulting

operations, the width of the largest operation was used as the resulting width.  A design that is

consistent with the data evaluated would vary the width of the flow dependent on the number of

tuples that satisfy the query.

The graphical representation of the union between attribute menus was an inverted “L”

structure.  A better representation would have been a diagonal block or rounded corners going

from the initial attribute menu to the resulting attribute menus.

We conjecture that if the inversion of the values selected within the attribute menu were

blue (the same color as the water flow) instead of black, fewer subjects would have been confused

about whether or not tuples were allowed to pass through.  Furthermore, in this prototype the

resulting list of tuples is not shown.

5.1.2 Graphical Filters to Extend Attribute Menus

The representation of the attribute menus in this interface was based on a scrolling list of

menu items.  More effective forms of representation for different values exist [Weiland and

Shneiderman, 1991].

Specification of numerical values  When specifying numerical values, users may want to specify a



Page 29

range of values rather than an exact value; using sliders as a representation of a filter may be more

suitable than a scrolling list.  Users may specify a lower bound by placing the right arrow marker

on the designated value.  Similarly, a left arrow marker may be used to specify a higher bound

(Figure 7).  Alternatively, users may want to specify computations of values within an filter.

Specification of non-numeric values  Check boxes or radio buttons may be used to specify a

limited amount of fixed values.  For example, there are only a limited number of options in the

Scholarship attribute (Figure 7), and these are easily displayed as radio buttons.  An alternative

method of specification may allow users to type in the appropriate value after receiving a prompt.

For example, in the Interests menus, users can type in their interests (Figure 7).

Specification of values within a geographical region  Users may select a specific map region with a

mouse or touch screen.  Alternatively, multiple regions may be chosen by specifying the

appropriate areas.

Display of results on a geographic region  Figure 7 shows how it might be applied to help students

choosing colleges.  Users can select from the set of attributes and get an appropriate filter widget

(type-in for interest areas, sliders for cost, and buttons for scholarships) which is placed on the

screen with flow lines showing ANDs (sequential flow) and ORs (parallel flows).  The X in each

filter widget could be selected to negate the filter values.



Page 30

Figure 7: Mockup of a Filter/Flow Boolean Query

Find ( (Interests = English or Literature or Journalism) AND ((Tuition greater than or equal to $2200 or
less than or equal to $4500) OR ((Tuition greater than or equal to $5100) AND (Scholarships are

available by Works-Study or Assistantship))) )
combined with map output to show the result (Dartmouth, Grinnell, and the Univ. of Maryland).

5.2  Experimental Design

It would have been interesting to spend additional time on the more complex queries.

Unfortunately, in order to get the subjects to the level in which they could form complex queries,

they had to be guided through the simpler queries first.  A more thorough study of more complex

queries may result in showing just how much the subjects understood the Filter/Flow interface.

The complexity of queries did not reach a level where subjects were forced to use the



Page 31

implemented clustering.  It might be interesting to see whether the use of clustering leads to better

organization in the formation of queries with more experienced users.

Acknowledgments: We appreciate the financial support of General Electric Information Services
and express our thanks to our proof readers: Dave Turo, Catherine Plaisant, Andy Sears, Dave
Carr, Scott Gilkeson, Richard Chimera, Richard Potter, Jerry Floyd and Kurt Nemes.

REFERENCES

Anick, P. G., Brennan, J. D., Flynn, R. A., Hanssen, D. R., Alvey, B., Robbins, J. (1990).  A
direct manipulation interface for Boolean information retrieval via natural language query.
Proceedings of the ACM SIGIR Conference 1990, 135-150.

Boyle, J., Bury, K. and Evey, R. (1983).  Two studies evaluating learning and use of QBE and
SQL.  Proceedings of the Human Factors Society 27th Annual Meeting, 663-667.  Santa Monica,
CA: Human Factors Society.

Bury, K., and Boyle, J. (1982).  An on-line experimental comparison of two simulated record
selection languages.  Proceedings of the Human Factors Society 26th Annual Meeting, 74-78.
Santa Monica CA: Human Factors Society.

Clark, G. J., and Wu, C. T., (1992).  DFQL: Dataflow Query Language for Relational Databases,
Naval Postgraduate School, Department of Computer Science, Monterey, CA.

Greene, S., Devlin, S., Cannata, P. and Gomez L. (1990).  No IFs, ANDs, or ORs: A study of
database querying.  International Journal Man-Machine Studies, 32 , 303 - 326.

Greenblatt, D., and Waxman, J. (1978).  A study of three database query languages.  In B.
Shneiderman, (Ed.) Databases: Improving Usability and Responsiveness, New York: Academic
Press.

Hildreth, C. (1988).  Intelligent Interfaces and Retrieval Methods For Subject Search in
Bibliographic Retrieval systems. Research, Education, Analysis & Design, Springfield, IL, 48.

IBM Data Interpretation System (DIS) User’s Guide, IBM White Plains, NY, 1990.

Jarke, M., and Vassiliou, Y. (1986).  A framework for choosing a database query language.
Computing Surveys, 17, 313-340.

Lundh, J. and Rosengren, P. (1990).  Hybris - An ER-based graphical query tool with an
integrated data dictionary.  SISU, Swedish Institute for Systems Development, Kista, Sweden.

Michard, A. (1982).  A new database query language for non-professional users: Design
principles and ergonomic evaluation.  Behavioral and Information Technology, 13, 279-288.

Reisner, P., Boyce, R. and Chamberlin, D. (1975). Human factors evaluation of two database



Page 32

query languages - Square and Sequel. National Computer Conference, Anaheim, CA.  AFIPS,
447-452.

Reisner, P. (1988).  Query Languages.  In Helander, M., (Ed.) Handbook of Human-Computer
Interaction. Elsevier Science Publishers B.V. (North - Holland).

Shneiderman, B. (1991).  Visual user interfaces for information exploration, Proceedings of the
54th Annual Meeting of the American Society for Information Science, 28, 379-384.  Learned
Information Inc., Medford, NJ.

Thomas J. and Gould J. (1975).  A psychological study of query by example. National Computer
Conference, Anaheim, CA.  AFIPS,44, 439-445.

Weiland, W. and Shneiderman, B. (1991).  A Graphical Query Interface Based on
Aggregation/Generalization Hierarchies, Department of Computer Science Technical Report CS-
TR-2702, University of Maryland, College Park, MD.


