Abhishek Sharma and David W. Jacobs

Problem Statement

Comparing apples to oranges : Given a subject's face image in some modality (pose, sketch, low - resolution) that is different than the gallery image modality, how to find a match?

Earlier Approaches and drawbacks

- Virtual view synthesis - Great but its slow.
- Stereo matching - Robust and accurate but slow and only for pose. - CCA and Bilinear Model - Fast but suboptimum.

Partial Least Square (PLS) based proposed approach

- Use PLS to learn two projection directions W_{X} and W_{Y} from a training set $\{\mathrm{X}, \mathrm{Y}\}$ (subject's images in two modalities).
- Projection in intermediate subspace maximizes covariance between same subject's images in different modality.
1-NN matching followed by projection.
- Accurate and very fast online.
- Exactly same framework works well for pose, sketch and low-resol. - State-of-the-art for pose-invariant face recognition on CMU PIE.

> PLS based proposed method flow diagram

Experiments

All the modalities tested using one simple generic algorithm

Pose Invariant Face Recognition
CMU PIE face date set for experiments
34 training and 34 testing, intensity features Partial Comparison - Selected Pose pairs

0.85

Low-Resolution (toy experiment) -- Low - res images synthesized from FERET -- High - Res images of size 76 by 66	Sketch - Face recognition -- CUHK Face-Sketch dataset. -- 88 training, 100 testing, intensity.			
	Method	Gal. Size	Type	Accuracy
	Wang	100	Holistic	81
	Liu	300	Patch	87.67
${ }^{\text {chey }}$	Klare	300	Pixel	99.47
Accuracy curves for PLS	PLS	100	Holistic	93.6
CCA performance ~ 40%	CCA	100	Holistic	94.6
	Bilinear	100	Holistic	94.2

Theory and Discussion

X and Y are two view of same info, W_{X} and W_{Y} two projection directions Partial Least Square (PLS)

$$
U=T D+G
$$

$$
\text { s.t. } \max \left[\operatorname{cov}\left(\mathrm{XW}_{\mathrm{X}_{1}}, \mathrm{YW}_{\mathrm{Y}_{\mathrm{i}}}\right)\right] \quad \forall i \in\{1,2, \ldots k(\# \text { bases })\}
$$

\checkmark PLS - Maximizes covariance in the intermediate space.
\checkmark PLS - Optimum balance of discrimination and correlation.
\checkmark PLS - Performance not sensitive to \# bases used.
\checkmark PLS, CCA \& BLM - Can be kernelized.
\times CCA - Captures correlation only ($\left.\max \left[\operatorname{corr}\left(\mathrm{XW}_{\mathrm{X}}, \mathrm{YW}_{\mathrm{Y}_{\mathrm{I}}}\right)\right]\right)$. \times BLM - No explicit effort to capture correlation. $\left.\left.\xrightarrow{\mathrm{X}_{\mathrm{i}}}, \mathrm{YW}_{\mathrm{Y}_{\mathrm{i}}}\right]\right)$. \times PLS CCA \& BLM - Discard label information

Fig 2 PLS vs. Bilinear Model (BL),
horizontal coordinates of
aat horizontal coordinates of X and
are same and vertical coordinates are same and vertical coordinates
are uncorrelated
\times PLS - Poor performance for more than two modalities.
\times PLS - Greedy, Iterative and computationally intensive offline.
All three were able to find linear mappings from one pose to other which are basically permutations with averaging and supposed to be highly non-linear and difficult to learn. It highlights the promising future aspects of the proposed approach. SIMPLS for $W_{X}(W)$ and $W_{Y}(Q)$ Define: $A_{0}=X^{\prime} Y ; M_{0}=X^{\prime} X ; C_{0}=1 ; c=\#$ bas For each $h=1, \ldots, c$

Do

1. Comp
2. $w_{h}=A_{h} q_{h} ; c_{h}=w_{h}^{\prime} M_{h} w_{h} ; w_{h}=w_{h} /$ sort $\left(c_{h}\right) ;$ store w_{n} into W as column
3. $p_{n}=M_{h} w_{n}$; store p_{n} into P as a column. 4. $q_{n}=A_{n}{ }^{\prime} w_{n}$; store q_{n} into Q as a column. 5. $v_{h}=C_{h} p_{n} ; v_{h}=v_{h}\left\|v_{n}\right\|$,
4. $C_{h+1}=C_{h}-v_{h} v_{h}^{\prime} ; M_{h+1}=M_{h}-p_{h} p_{h}{ }^{\prime}$
5. $A_{h+1}=C_{h} A_{h}$

