

Bypassing Synthesis : <u>PLS</u> for Face Recognition with <u>Pose</u>, <u>Low-resolution and Sketch</u> Abhishek Sharma and David W. Jacobs

Problem Statement

Comparing apples 🕑 to oranges 🙂 : Given a subject's face image in some modality (pose, sketch, low - resolution) that is different than the gallery image modality, how to find a match?

Earlier Approaches and drawbacks

- Virtual view synthesis Great but its slow.
- Stereo matching Robust and accurate but slow and only for pose.
- CCA and Bilinear Model Fast but suboptimum.

Partial Least Square (PLS) based proposed approach

- Use PLS to learn two projection directions W_x and W_y from a training set {X, Y} (subject's images in two modalities).
- **Projection in intermediate subspace maximizes covariance** between same subject's images in different modality.
- 1-NN matching followed by projection.
- Accurate and very fast **online**.
- Exactly same framework works well for pose, sketch and low-resol.
- State-of-the-art for pose-invariant face recognition on CMU PIE.

PLS based proposed method flow diagram

0.7

0.3

───── 19 by 16 ─── 14 by 12

→ 7 by 6

_____5 by 4

Accuracy curves for PLS

Bilinear performed similar

CCA performance ~ 40 %

Ĩ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PLS Bases Used

Klare

PLS

CCA

Bilinea

Gal. Size	Туре	Accuracy
100	Holistic	81
300	Patch	87.67
300	Pixel	99.47
100	Holistic	93.6
100	Holistic	94.6
100	Holistic	94.2

Theory and Discussion

Partial Least Square (PLS)

 $X = TW_{y}^{T} + E$ $Y = UW_{y}^{T} + F$ s.t. max[$cov(XW_X, YW_Y)$] $\forall i \in \{1, 2, \dots, k(\# bases)\}$

- ✓ **PLS** Maximizes covariance in the intermediate space.
- ✓ **PLS** Optimum balance of discrimination and correlation.
- ✓ **PLS** Performance not sensitive to # bases used.
- ✓ PLS, CCA & BLM Can be kernelized.

*** CCA -** Captures correlation only $(max[corr(XW_x, YW_y)])$. **× BLM** - No *explicit* effort to capture correlation. **× PLS, CCA & BLM** - Discard label information. **× PLS** - Poor performance for more than two modalities. **× PLS** - Greedy, Iterative and computationally intensive offline.

All three were able to find linear mappings from one pose to other which are basically permutations with averaging and supposed to be highly non-linear and difficult to learn. It highlights the promising future aspects of the proposed approach.

SIMPLS for $W_x(W)$ and $W_y(Q)$ **Define**: $A_0 = X'Y$; $M_0 = X'X$; $C_0 = I$; c = #bas**For each** h = 1,...,c **1.** Compute q_h the dominant eigenvector of $A_h'A_h$; **2.** $w_h = A_h q_h$; $c_h = w_h' M_h w_h; w_h = w_h / sqrt(c_h);$ store w_h into W as column **3.** $p_h = M_h w_h$; store p_h into P as a column. **4.** $q_h = A_h' w_h$; store q_h into Q as a column. **5.** $v_h = C_h p_h$; $v_h = v_h / ||v_h||$; **6.** $C_{h+1} = C_h - v_h v_h'$; $M_{h+1} = M_h - p_h p_h'$ **7.** $A_{h+1} = C_h A_h$ End For each

CUR

