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Abstract—Software configurability has many benefits, but it
also makes programs much harder to test, as in the worst case
the program must be tested under every possible configuration.
One potential remedy to this problem is combinatorial inter-
action testing (CIT), in which typically the developer selects a
strength t and then computes a covering array containing all
t-way configuration option combinations. However, in a prior
study we showed that several programs have important high-
strength interactions (combinations of a subset of configuration
options) that CIT is highly unlikely to generate in practice. In
this paper, we propose a new algorithm called interaction tree
discovery (iTree) that aims to identify sets of configurations
to test that are smaller than those generated by CIT, while
also including important high-strength interactions missed by
practical applications of CIT. On each iteration of iTree, we
first use low-strength CIT to test the program under a set of
configurations, and then apply machine learning techniques to
discover new interactions that are potentially responsible for
any new coverage seen. By repeating this process, iTree builds
up a set of configurations likely to contain key high-strength
interactions. We evaluated iTree by comparing the coverage
it achieves versus covering arrays and randomly generated
configuration sets. Our results strongly suggest that iTree can
identify high-coverage sets of configurations more effectively
than traditional CIT or random sampling.

Keywords-Empirical Software Engineering, Software Config-
urations, Software Testing and Analysis

I. INTRODUCTION

Many modern software systems are highly configurable.

While this increases extensibility, reusability, and portability,

it also greatly complicates many software engineering tasks,

such as software testing. This is because the number of

possible configurations grows exponentially in the number

of configuration options, and in the worst case, each con-

figuration may require separate treatment. Specifically, since

any configuration might harbor a distinct error, each config-

uration should, in theory, be tested separately—something

that is impossible in practice.

To alleviate this problem, researchers have proposed com-

binatorial interaction testing (CIT) [7], [2], [23], which

identifies a small but systematic set of configurations under

which to test. For example, with one CIT approach, develop-

ers choose an interaction strength t and compute a covering

array, which is a set of configurations such that all possible

t-way combinations of option settings appear at least once.

The assumption underlying CIT is that configuration sets

constructed in this way are small in size while providing

good coverage of the program’s behavior. Thus the approach

cost-effectively increases the likelihood of finding faults.

However, our prior work [29] challenges this assump-

tion in several ways. Specifically, we hypothesized that,

in practice, a system’s effective configuration space—the

minimal set of configurations needed to achieve a specific

goal—typically comprises only a tiny subset of the full

configuration space, and that subset of configurations is not

well approximated by t-way covering arrays. To test this

hypothesis, we used symbolic execution [18], [15], [6] to

discover a subject program’s interactions, which are con-

junctions of option settings needed to achieve specific testing

goals, given a particular test suite. In our case, the testing

goal was particular forms of coverage (line, block, edge, and

condition). To illustrate the concept, consider a hypothetical

program with four binary-valued configuration options: a, b,

c, and d. Let’s assume that when the goal is line coverage,

this program has exactly three interactions: a∧b∧¬c, a∧b,

and a ∧ d. Each interaction is associated with line coverage

that is guaranteed to occur in any configuration that contains

the interaction. For example, suppose a∧ b∧¬c guarantees

coverage of lines 5–10. In that case the configuration (a

setting of all options) a∧b∧¬c∧d is guaranteed to cover at

least those same lines. Additionally, the union of the lines

covered by all three interactions is the maximal coverage

achievable across all possible configurations. See our prior

publication for more details [29].

Among other things, our prior work found that for our

subject programs and test suites, (a) most of the interactions

needed to achieve maximum coverage were strength 3

(involved 3 option settings) or greater, and (b) the largest

interactions needed to achieve maximum coverage were

strength 7. These findings suggest CIT approaches, which

are typically applied at t = 2 or t = 3 [9], are likely

missing key high-strength interactions. Put another way,

while CIT at low strength can yield significant coverage, it is

very unlikely to achieve the maximum possible coverage—

and achieving such coverage with CIT would require pro-

hibitively large covering arrays (e.g., strength 7).

Another finding from our prior work was that interactions

were quite rare. Only a handful of specific options setting

combinations had to be exercised to maximize coverage,

even under a comprehensive criteria, such as path coverage.

This suggests CIT’s insistence on testing every t-way com-

bination of option settings may be unnecessarily expensive.



To improve the current situation, in this paper we pro-

pose a new algorithm that addresses the shortcomings of

traditional CIT. Our algorithm aims to discover sets of

configurations to test that are smaller than those chosen

by CIT, while also having higher coverage. To achieve this

aim, we developed iTree, an interaction tree discovery al-

gorithm that combines low-strength covering arrays, runtime

instrumentation, and machine learning (ML) techniques to

construct an interaction tree for the subject program. An

interaction tree is a hierarchical representation of what we

call proto-interactions, which are potential interactions or

subsets of potential interactions. In an interaction tree, each

node is labeled with one or more option settings, and a node

represents the proto-interaction given by the conjunction of

all labels on the path from the root to the node.

iTree constructs an interaction tree as follows. Initially, the

tree consists of one root node containing the empty interac-

tion true. At each step, we pick a leaf node; use CIT at low

strength to generate a systematic sample of configurations

consistent with the proto-interaction for that node; run the

system’s test suite under each of those configurations; and

identify any newly covered program entities. If there are any,

we use ML to heuristically identify new proto-interactions

that are likely responsible for that new coverage, which we

then add to the interaction tree. The process continues until

one of several stopping criteria is met. (See Section III.)

The key intuition behind iTree stems from a third finding

from our prior work. There we observed that higher strength

interactions were usually just lower strength interactions

with one or more additional constraints. iTree exploits this

observation by performing an iterative, search-based process

in which the current iteration’s sample configurations are

based on the last iteration’s proto-interactions. In this way,

the set of configurations constructed as iTree executes have

the potential to provide higher coverage than correspond-

ingly sized configuration sets produced from traditional CIT.

We evaluated iTree in several ways. First, we compared

iTree’s performance under various combinations of ML algo-

rithms and CIT sampling criteria. In each case, we computed

how quickly iTree reached maximum possible coverage on

two subject programs, vsftpd and ngIRCd, studied in our

prior work [29]; by using symbolic execution and significant

computing power, the prior work was able to determine

all possible program executions achievable for vsftpd and

ngIRCd while varying up to 30 configuration options under

a fixed test suite. We found that the best choice for iTree is

to use a voting protocol to combine multiple ML classifiers,

and an adaptive sampling approach that uses higher-strength

covering arrays initially, and lower-strength covering arrays

below the top level of the interaction tree. (See Section IV.)

Second, we compared iTree against traditional CIT and

against similarly sized sets of randomly selected config-

urations. Again, we used vsftpd and ngIRCd as subject

programs. Our results show that iTree is more likely to find

high-coverage configuration sets, and it does so more rapidly

than the other approaches. (See Section V.)

Note that while symbolic execution gave us a powerful

and precise baseline for the first two experiments, that

technology is not scalable to large systems. For example, for

the 10K-LOC systems we studied, complete analysis used

40 computers working round the clock for several days.

In a final experiment, we evaluated the scalability of

iTree to a large-scale system for which symbolic evaluation

is infeasible, specifically the ∼1M-LOC MySQL database

system. We found that iTree easily scaled up to MySQL

and was again more efficient and effective than either CIT

or random sampling (See Section VI).

These results suggest iTree is an important advance in the

testing of highly configurable systems. Our approach will

enable developers to test their systems to higher levels of

coverage at less cost than currently possible with traditional

CIT. We also believe the iTree process can be adapted to

document a system’s configuration-related structure to better

support a range of software engineering tasks, such as impact

analysis, reverse engineering, bug isolation, and more.

II. EFFECTIVE CONFIGURATION SPACES

Our previous work [29] empirically studied how and why

the execution behavior of two configurable systems, vsftpd

and ngIRCd, changes in relation to how those systems are

configured. As discussed earlier, the results of our previous

study strongly suggest that, for a given test suite, maximal

levels of coverage can be achieved with a very small number

of carefully chosen configurations, i.e., systems’ effective

configuration spaces with respect to maximal coverage are

indeed small. For developers to exploit this insight, however,

they need cost-effective and time-sensitive techniques for

choosing the specific configurations to test. Unfortunately,

we currently know of no such techniques; the approaches

we used in our previous work are computationally very ex-

pensive, and symbolic execution cannot be run to exhaustion

on large, practical systems.

Key Observations: Thus, the goal of the current work is

to begin creating a practical method to identify or approxi-

mate a system’s effective configuration space. Our particular

focus is on finding small sets of configurations for testing

that yield a high degree of coverage, but we believe our

approach generalizes to other software engineering tasks.

Toward this aim, we reexamined the specific interactions

we found in our initial study, and made a number of

observations that suggest the design of such a method.

We illustrate our observations using the code in Figure 1,

which contains a highly simplified snippet of vsftpd’s source

code. The code includes two traditional program variables,

dsa cert file and one process mode, which are initialized

on lines 1 and 2. In practice, dsa cert file is a program

input whose value would come from a test case, but we have

hard-coded it here for simplicity. The program also contains



1 int∗ dsa cert file=NULL; /∗ test input ∗/

2 int one process mode=1;

3 if (listen} {
4 if (accept timeout) {
5 /∗ R1: listen ∧ accept timeout ∗/

6 } else {
7 /∗ R2: listen ∧ ¬accept timeout ∗/

8 }
9 } else {

10 /∗ R3: ¬listen ∗/

11 }
12 if (ssl enable) {
13 if (!dsa cert file)

14 die();

15 }
16 /∗ R4: ¬ssl enable ∗/

17 if (one process mode) {
18 if (local enable || ssl enable)

19 die();

20 }
21 /∗ R5: ¬ssl enable ∧ ¬local enable ∗/

22 if (!local enable && !anonymous enable)

23 die();

24 /∗ R6 (lots of code) : ¬ssl enable∧
25 ¬local enable ∧ anonymous enable ∗/

26 if (dual log enable) {
27 /∗ R7: ¬ssl enable ∧ ¬local enable∧
28 anonymous enable ∧ dual log enable ∗/

29 } else {
30 /∗ R8: ¬ssl enable ∧ ¬local enable∧
31 anonymous enable ∧ ¬dual log enable ∗/

32 }

Figure 1. An example program and its interactions.

six binary configuration options, highlighted in bold, whose

values depend on the system’s runtime configuration. In

the actual source code, each option’s name is prefixed with

tunable , but we have omitted the prefixes to save space.

Figure 1 includes eight regions of code, marked /* R1–8 */ ,

whose coverage we are interested in. The coverage of these

regions, of course, depends on the values of the configuration

options and program variables. For each region, we list the

interaction that controls coverage of that region for this

particular test case. For example, at the beginning of the

program, the coverage of R1–R3 depends on configuration

variables listen and accept timeout.

More interestingly, for execution to reach the large amount

of code in R6, several options must be set in specific ways.

First, to reach R4 and any code thereafter, ssl enable must be

set to 0, because this test case sets dsa cert file to be NULL.

Next, consider reaching R5. Since one process mode is

set to 1, to reach R5 the condition on line 18 must be

false; and since as just discussed ssl enable is 0 if we

reach this line, local enable must also be 0. Finally, to

continue on to reach R6, we need the condition on line 22

to be false, and since local enable = 0 if we reach that

line, we must have anonymous enable = 1. Putting this

together, any configuration that reaches R6 for this test

case needs at least ssl enable = 0, local enable = 0, and

anonymous enable = 1. Finally, the coverage of R7 and R8

also depends on the value of dual log enable.

Note that although in this example we were able to reach

all code regions, and coverage of each was guaranteed by a

distinct interaction, in practice this is not usually the case. In

actual systems some regions are unreachable with the given

test suite, and some regions have more than one interaction

that guarantees their coverage.

We found that the configuration option patterns just

described are common in vsftpd and ngIRCd. From these

patterns, we make three observations:

Observation 1: Interactions are relatively rare. The code

shown in Figure 1 includes six binary options, so in the

worst case there could be 639 different interactions1. In the

example code, however, there are only eight interactions.

Since some of these interactions can be simultaneously

satisfied in a single configuration, only three configurations

are needed to cover all eight regions. For vsftpd and ngIRCd

respectively, there were only 43 and 435 interactions.

Observation 2: Most coverage is explained by low-strength

interactions. In the example, five of the eight interactions

involve only one or two option settings, one interaction

involves three settings, and the remaining two involve four

settings each. While the example is highly simplified, we

found the same trend in the actual systems. For the systems

and test suites we examined, over 94% of the achievable

coverage could be achieved with lower-strength (size four or

less) interactions. Full coverage, however, required a handful

of higher-strength interactions (up to strength seven).

Observation 3: Higher-strength interactions tend to be built

on lower-strength ones. As shown in the example, the higher

strength interactions guaranteeing coverage of R7 and R8

are refinements of the interaction at R6, which is itself

a refinement of R5. In implementation terms, interactions

tend to arise because control-flow guards effectively stack up

on each other, not because complex guards appear directly

in the code. That is, higher-strength interactions often add

additional constraints to existing lower-strength interactions.

III. INTERACTION TREE DISCOVERY

Based on the insights discussed in Section II, we devel-

oped the interaction tree discovery algorithm (iTree). iTree’s

goal is to automatically discover and test a small set of

high-coverage configurations. iTree works as follows. First,

it instruments the system under test to measure some desired

type of coverage. This paper focuses on line coverage,

but the algorithm should apply to any type of coverage.

Next, iTree repeats the following steps until particular stop-

ping criteria are met. First, it computes a small sample

of configurations under which to test the system. As we

1Computed as 1+
∑

6

i=1
C(6, i)·2i, i.e., the sum of all ways of picking

option subsets times the number of settings, plus the interaction true.



true 

¬local_enable ^ 

¬ssl_enable 

¬local_enable ^ 

ssl_enable 
local_enable 

¬dual_log_enable dual_log_enable 

Figure 2. The interaction tree for the example program.

shall see later, the sample is chosen to select configurations

that are likely to exercise previously uncovered entities.

Next, iTree runs the system’s test suite on each of the

sampled configurations and records coverage information.

Using this coverage data, iTree then attempts to learn proto-

interactions—conjunctions of option settings—that cause

the new coverage and that may warrant further exploration

in the next iteration of iTree.

We represent iTree’s behavior as an interaction tree,

which is a hierarchical representation of proto-interactions.

The nodes of the tree represent proto-interactions rather than

interactions because they may not, in fact, be full-fledged

interactions; because iTree is heuristic in nature, some nodes

may represent only portions of interactions, or may represent

full interactions with additional constraints.

Figure 2 shows the interaction tree for Figure 1. Each node

is labeled with a set of option settings, with true at the root

node (corresponding to the empty setting). A node represents

the proto-interaction that is the conjunction of settings along

the path from the root to the node. For example, the

interaction ¬local enable ∧ ¬ssl enable ∧ dual log enable

is represented by the left node on the lowest level of the

tree. We also see that ¬local enable ∧ ssl enable is in the

interaction tree, but does not correspond to an actual inter-

action that guarantees coverage of particular code regions.

Thus, in this case, iTree has created a proto-interaction that

will not lead to useful higher-strength interactions.

Algorithm: Figure 3 gives the pseudocode for the iTree

algorithm. iTree runs in a loop, iterating until developer-

supplied stopping criteria are met (e.g., no more coverage is

achieved or a time limit has expired). The iTree algorithm

begins with an interaction tree iTree containing just one

node, true. As the iTree progresses, it also records in

runs the set of all configurations executed so far and their

corresponding coverage information. At the beginning of

each iteration, findBestLeafNode uses various heuristics to

pick a leaf node to explore next. (This heuristic is important

because we do not expect to fully explore the interaction

tree, as that would be too expensive.)

Next, the proto-interaction represented by the path to the

selected node is passed to generateConfigSet. This method

1 iTree = /∗ tree containing root ’true’ ∗/

2 runs = ∅ /∗ (config × coverage) set ∗/

3 do {
4 node = findBestLeafNode(iTree, runs);

5 configSet = generateConfigSet(node.proto interaction);

6 newruns = executeConfigSet(configSet);

7 if cov(newruns) ⊆ cov(runs)

8 continue;

9 runs = runs ∪ newruns

10 interactions = discoverProtoInters(node.proto interaction, runs);

11 if !(interactions.empty())

12 /∗ add newly discovered interactions to tree ∗/

13 updateTree(iTree, node, interactions);

14 } while (!stoppingCriteriaMet());

Figure 3. Pseudocode for the interaction tree discovery.

creates a sample set of configurations that are consistent

with the proto-interaction represented by the selected node,

while the set of configurations broadly samples all options

not participating in the proto-interaction. Currently, iTree

leverages CIT for this step, but other sampling techniques

could be substituted.

Next, executeConfigSet compiles, instruments, and ex-

ecutes the system’s test suite under each configuration

in the sample. The data from the resulting executions is

then added to runs. Then runs and node.proto interaction,

the proto-interaction represented by node, are passed to

discoverProtoInters, which uses machine learning to dis-

cover additional proto-interactions that account for any

newly covered entities. Note that, by design, any proto-

interactions discovered at this step must include the settings

in node.proto interaction. Finally, updateTree adds the

newly discovered proto-interactions to the interaction tree

as children of the current node.

We now discuss each step of the algorithm in more detail.

findBestLeafNode: Since iTree aims to find high-

coverage configurations, findBestLeafNode prioritizes nodes

by the amount of coverage achieved by configurations con-

taining the node’s proto-interaction. The assumption is that

proto-interactions corresponding to high-coverage configura-

tions are more likely to lead to uncovered code with further

exploration. iTree computes a node’s priority as follows.

First, let Conf(runs, node) be the subset of runs whose

configurations are consistent with node’s proto-interaction.

For a run r ∈ Conf(runs, node), define cov(r) as the number

of entities covered by r. Then node’s priority is given by

priority(node) =

∑
r∈Conf(runs,node) cov(r)

|Conf(runs, node)|+ 1

and the highest-priority node is chosen. The formula simply

computes a slightly biased average coverage for all configu-

rations that are consistent with the node’s proto-interaction.

The bias of one added in the denominator means that nodes

corresponding to few runs will have lower priority than

their average, but has little effect on nodes corresponding



ssl loc lis acc anon dual

C1 1 1 0 1 0 1
C2 1 0 1 1 1 1
C3 0 0 0 1 0 0
C4 0 1 1 0 0 0
C5 0 0 0 0 1 1
C6 1 1 1 0 1 0

(a) Initial covering array

ssl loc lis acc anon dual

C7 0 0 1 1 0 0
C8 0 0 0 0 0 1
C9 0 0 1 0 1 1
C10 0 0 0 0 1 0
C11 0 0 0 1 1 1

(b) Covering array with ssl = loc = 0

ssl=ssl enable loc=local enable lis=listen

acc=accept timeout anon=anonymous enable dual=dual log enable

Figure 4. Example 2-way covering arrays.

to many runs (since then |Conf(runs, node)| is high). We

found this adjustment useful in that it leads to a slight, but

beneficial, preference for nodes that correspond to multiple,

high-coverage configurations, over nodes that correspond to

fewer, high-coverage configurations.

generateConfigSet: This function generates a sample

set of configurations, each of which is consistent with

its parameter node.proto interaction. To do this we use

a CIT tool called CASA [8] to generate a low-strength

covering array over only the remaining options. We then

combine those partial configurations with the settings from

node.proto interaction. In our experiments, we used both

2- and 3-way covering arrays in this step, and found the

performance was not sensitive to this choice.

Figure 4 shows two covering arrays created by

generateConfigSet as iTree discovered the interaction tree in

Figure 2. In this case we chose to generate 2-way covering

arrays. Figure 4(a) gives the covering array picked in the

first iteration of iTree. Interestingly, our 2-way covering

array happened to include both the 3-way interaction (see

Figure 1) ¬ssl enable∧¬local enable∧ anonymous enable

(in C5) needed to reach R6 and beyond, and the 4-way inter-

action ¬ssl enable ∧ ¬local enable ∧ anonymous enable ∧
dual log enable (also in C5) needed to reach R7 . After the

data from these configurations was analyzed, iTree added

the three children of true shown in Figure 2.

The next iteration of iTree expanded the middle of the

three nodes (since this node covered R6, which contains

many lines), and generateConfigSet created the covering

array shown in Figure 4(b). Note that in this covering array,

ssl enable and local enable are fixed. As a result, the 2-way

covering array of the remaining options is very effective, and

includes both 4-way interactions (the one mentioned, plus

the one needed to reach R8, in C7 and C10). At this point,

iTree has covered all the marked regions of the program.

executeConfigSet: In this step we instrument the system

under test and execute its test suite on each configuration in

the sample. We compute line coverage with gcov. We ran the

instrumented programs on Skoll, a distributed, continuous

quality assurance system running on a grid comprising 120

CPUs [25]. As we will see in Section VI, Skoll allowed us

to scale up iTree, running and analyzing many jobs at once.

discoverProtoInters: Finally, we use a two step process

to discover proto-interactions to add to the interaction tree:

First, we statistically cluster configurations according to their

coverage data, and second, we try to find proto-interactions

responsible for differences in execution.

In the first step, we find all runs involving configurations

consistent with the proto-interaction we are exploring. Note

that we extract this subset from all of runs, not just those

newly explored in the current iteration—this way we get

better information as iTree progresses. We then cluster these

runs using Weka’s [16] implementation of CLOPE [34], a

clustering algorithm that groups together similar transac-

tional data records with high dimensionality. As input to

CLOPE, we represent each line as a boolean attribute set to

true if covered in a run and false otherwise. Then we use

CLOPE to cluster together configurations that execute many

of the same lines.

In the second step, we use decision trees [28] to dis-

cover commonalities among configurations in each of the

clusters. In our implementation, each configuration option

is an attribute, and the cluster that a configuration belongs

to is the class. The decision tree algorithm then builds a

model for classifying the cluster to which a configuration

belongs based on the configuration’s option settings. If

the resulting model identifies specific option settings that

predict cluster membership, then we treat them as new

proto-interactions and append them to the interaction tree to

form higher-strength proto-interactions. Otherwise no new

proto-interactions are added, and exploration of this path

stops. In our experiments we evaluated several decision tree

algorithms and found each to be adequate for this task.

We should mention that CLOPE requires a special pa-

rameter called repulsion, which ranges from 0.5 to 4.0,

and which controls the ease with which clusters form. To

make iTree completely automated, we implemented a voting

system to adaptively select an appropriate repulsion value.

Each time discoverProtoInters is called, CLOPE is run

multiple times with repulsion values ranging from 0.5 to 4.0

in increments of 0.5. We perform the second step of the inter-

action discovery process using the clusters generated under

each repulsion value. At the end of discoverProtoInters, we

keep the most frequently occurring unique proto-interactions

generated under the range of repulsion values.

stoppingCriteriaMet: iTree allows its users to plug in

their own criteria for determining when to halt execution.

Our default is to halt execution when the interaction tree



vsftpd ngIRCd

Version 2.0.7 0.12.0
# Lines (sloccount) 10,482 13,601

# Run-time opts. 30 13
Boolean/Enum 20/10 5/8

Full config space 2.1× 10
9

2.9× 10
5

# Test cases 64 141
# Max coverage 2,549 3,193

Figure 5. Program statistics for vsftpd and ngIRCd. Note that we removed
some unreachable code before measuring lines of code.

has no more unexplored proto-interactions. The experiments

in the following sections include other criteria as well, e.g.,

in some experiments, we stop execution when a maximum

number of configurations have already been tested. Another

possibility is to use wall clock time as a stopping criteria,

e.g., when doing nightly testing.

IV. EVALUATING ITREE PARAMETERS

We explored iTree’s cost-effectiveness in a series of

experiments, described in this and the next two sections. Our

first experiment, presented next, aims to determine two key

algorithmic parameters: the covering array strength to use in

generateConfigSet, and the decision tree implementation to

use in discoverProtoInters. Our second experiment explores

modifying iTree to adaptively select covering array strength

and use multiple decision tree approaches simultaneously.

Our remaining experiments compare the coverage achieved

by iTree, random sampling, and a single, high-stength cov-

ering array (Sections V and VI).

A. Experimental Setup

Subject Programs: For our first experiment, we used

vsftpd, a widely used secure FTP daemon, and ngIRCd, the

“next generation IRC daemon.” We studied these systems

extensively in prior work [29]. From our prior work, we have

test suites for these programs and detailed information about

the programs’ configuration spaces with respect to those test

suites. Figure 5 gives descriptive statistics for each system.

They have roughly 10–13KLOC, and are written in C. The

figure details the total number of configuration options we

analyzed, broken down by type (boolean or integer). This

is the same set of options and settings we used in our

prior work. The values we used for the integer options also

came from our previous work, and were chosen to maximize

path coverage for these subject programs and test cases.

Finally, the last rows list the size of the full configuration

space for the options (the total number of different possible

configurations); the number of test cases in our test suite;

and the maximum possible number of lines covered if we

execute every test case under every possible configuration.

Covering Array Strengths: Each iTree iteration begins

by creating a sample of configurations, derived from a t-way

covering array. The value of t determines the size of each

sample, and may also influence the speed with which iTree

terminates. In this study, we use either t = 2 or t = 3.

vsftpd
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Figure 6. Interaction tree effort for different iTree parameters.

Decision Tree Algorithms: Many different decision

tree classifiers have been proposed in the machine learning

literature. We used three algorithms in our experiment: J48,

CART, and Best-First, all as implemented in Weka [16]. We

picked J48 and CART because they are the most popular

decision tree implementations. We chose Best-First because

it is designed to produce compact classifications, which may

be well-suited to iTree’s incremental search approach.

Experimental Design: We ran iTree 30 times on both

subject programs under each possible combination of de-

cision tree and covering array strength. For each run, we

continued execution until we reached the maximum possible

coverage (as determined from our prior work [29]). The

number of configurations executed is our metric for finding

the best parameter settings—the lower the number, the faster

the algorithm achieves full coverage. Note that in these

experiments, rather than actually run the executeConfigSet

step we instead used the code coverage data we had already

computed in our prior work (which gave us a mapping from

configurations to their coverage).

B. Data And Analysis

Figure 6 shows boxplots of our experimental results for

vsftpd and ngIRCd. The left half of each chart shows the

results of the decision trees for t = 2, and the right half

shows the results for t = 3. The y-axis reports the number of

configurations required to achieve full coverage. The number

in parentheses under each box indicates the number of runs,

out of 30, in which full coverage was achieved. We defer

discussion of vote and vote a to Section IV-B3.

1) Covering Array Strengths: Figure 6 shows that in-

creasing the t strength of the covering arrays did not greatly



change the cost of running iTree for vsftpd. It did have some

effect for ngIRCd, where the average size of the config-

uration sets increased across all decision tree algorithms.

However, we also see that the number of runs in which

iTree reached maximal coverage is substantially higher when

t = 3 than when t = 2. We looked in more detail at the

individual runs and observed that, at each iteration, both the

likelihood of discovering proto-interactions and the accuracy

of the discovered proto-interactions dramatically improved

as t increased. However, there was a trade off: while

increased sample size meant more cost at each iteration,

it also resulted in fewer overall iterations for our subject

systems. In the end, the total cost did increase for ngIRCd.

We note that variance in the number of configurations

tested appears unrelated to covering array strength. Instead,

it seems more tied to the system tested. In particular, for

vsftpd, the range of the number of configurations tested is

fairly stable, while for ngIRCd it fluctuates considerably.

Based on further analysis, we believe this occurs because the

configuration space model for ngIRCd, taken from our pre-

vious work, contained many redundant option settings from

the perspective of line coverage, i.e., a given line of code

could be hit in many different configurations. Therefore, in

a sense ngIRCd’s 2-way covering arrays already enjoyed the

benefits of larger configuration samples.

2) Decision Trees: In Figure 6, the first three columns for

each t-value show the effect of the Best-First, CART, and

J48 decision trees on iTree. The data shows no systematic

performance differences across the algorithms. Looking at

the individual iterations of iTree, however, we did find

some differences: Best-First and CART fail to discover any

proto-interactions in the configuration sample more often

than J48 does, but J48 tends to produce less accurate

classifications—it more often includes option settings that

are not part of the actual interactions. Both situations can

have negative consequences. For instance, failing to discover

a real interaction will cause iTree to improperly abandon

the currently selected node and continue with a lower-

priority proto-interaction. This can delay or even prevent

coverage of some necessary higher strength interactions.

Discovering inaccurate proto-interactions, on the other hand,

can be worse. Because iTree builds higher-strength proto-

interactions on top of lower-strength ones, inaccurate option

settings can propagate through an iTree path, and ultimately

could prevent iTree from achieving complete coverage.

3) Hybrid Approaches: When we examined the worst-

performing runs from the previous experiments, we found

they suffered from inaccurate early classification that rippled

through subsequent iterations of iTree. To avoid this prob-

lem, we took two steps. First, we developed a voting system,

similar to bagging [1], that creates an ensemble classifier

out of several simple classifiers. The voting algorithm filters

out option setting combinations unless at least 2 out of 3

decision trees produce them as classifiers. The results using

the voting system are shown in the vote column.

Second, we developed an adaptive sampling approach,

in which we create three, 2-way covering arrays in the

first iteration, and then one, 2-way covering array in each

remaining iteration. Also, if an interaction tree path is about

to terminate because no new proto-interactions have been

found, we generate and test one new covering array before

abandoning that path. The results using both voting and

adaptive sampling are shown in the vote a column.

We can see from the figure that vote a is an attractive

choice overall—its average cost is lower or only slightly

worse than the best of the other algorithms, and it yields

full coverage on every or almost every run.

V. COMPARING ITREE TO OTHER APPROACHES

As mentioned earlier, both CIT and random sampling are

popular approaches for generating configuration samples and

produce relatively good results in practice. To better under-

stand how iTree compares with these existing approaches,

we conducted a series of experiments.

Experimental Design: For these experiments, we again

used vsftpd and ngIRCd and ran each technique 30 times.

One problem with CIT and random sampling is that develop-

ers cannot know a priori how large a sample is necessary.

For CIT, developers must pick a t value, and for random

sampling developers must guess a sample size. In this exper-

iment, we created covering arrays using a range of different

t strengths. For each strength, testing ran until either the

maximum possible coverage was achieved or until no more

configurations remained. Using 5- and 4-way covering arrays

for vsftpd and ngIRCd, respectively, often produced maximal

coverage, so we used those as our largest sample sizes. We

next tested the systems with random samples sized equal to

the average size of these largest covering arrays.

We also tested the systems using iTree. For this ex-

periment, we used vote a as described in the previous

section, and set iTree to stop when either no new coverage

is achieved on any path or the number of configurations

tested exceeds the size of the random configuration samples.

We measure performance using two criteria: (1) whether

complete coverage was reached and (2) if so, the number

of configurations needed to reach the complete coverage.

We ignore the time needed to generate the configurations

because in our experiments this time is dramatically smaller

than the time required to run the test cases.

Data and Analysis: Figure 7 shows the results of these

experiments. The x-axis is the number of configurations

tested so far in each run, and the y-axis is the median

number of lines covered at that point across all runs. Here

we are assuming that configurations are tested in the order

they are generated, although in actuality the work can be

done in parallel across multiple CPUs. The 10 data points

plotted in each figure divide the time line into equal epochs,

corresponding to 36 or 53 configurations tested for vsftpd
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Figure 7. Comparing iTree against covering arrays and random sampling.

and ngIRCd, respectively. Note that iTree runs can terminate

before executing the number of configurations of the other

methods. In that case, we simply treat subsequent time points

as unchanged from the previous time point. The figures also

include a vertical line indicating the epoch in which 90%

of the runs achieved maximal coverage. The numbers in

parentheses in the legend indicate the total number of runs,

out of 30 each, that reached full coverage for each approach.

In the top portion of Figure 7 showing the vsftpd results,

we see that iTree, 5-way covering arrays, and random

sampling eventually reached full coverage in almost all runs

(29, 28, and 29, respectively), but 4-way only reached full

coverage in a third of the runs, and 3-way never reached

full coverage. Moreover, looking at the vertical lines, we

see that 90% of the iTree runs reached full coverage with

just over half the number of configurations, on average, of 5-

way covering arrays, which themselves did noticeably better

than random sampling. We see a similar trend for ngIRCd in

the bottom figure, for which iTree, 4-way covering arrays,

and random sampling achieved full coverage in all or almost

all runs (29, 30, and 30, respectively), but 3-way covering

MySQL

Version 5.1
# Lines (sloccount) 939,842

# Compile-time opts. 8
Boolean/Enum 8/0

# Run-time opts. 8
Boolean/Enum 4/4

Full config space 5.9× 10
5

# Test cases 1244

Figure 8. MySQL program statistics.

arrays only reached full coverage in just over half the runs

(16). Again, 90% of the iTree runs reached full coverage

faster than 4-way covering arrays, 90% of which reached

full coverage faster than random sampling. While iTree’s

benefit for ngIRCd is not quite as stark as for vsftpd, it still

provides noticeable improvement over the other approaches.

4) Discussion: Overall, these results showed iTree per-

forming better than t-way covering arrays and random sam-

pling, at substantially less cost. This conclusion, of course,

depends on how those approaches are actually used. For

example, if developers used high strength covering arrays

or large random samples, they would be likely to get most

of the available coverage, but would do so at large cost.

As we know from our previous research, this is not a very

efficient approach, because few of those configurations are

really necessary to achieve specific types of coverage, such

as line coverage. For instance, it would require a 7-way

covering array with thousands of configurations to guarantee

complete line coverage for vsftpd and ngIRCd. If developers

instead used a low-strength, 2-way covering array, the cost

would be much lower, but so would the coverage.

VI. EVALUATING SCALABILITY

Using iTree, we were able to achieve maximal coverage

while executing on average about 100 configurations for

both vsftpd and ngIRCd. This is encouraging, but after

all, we had already solved this problem using symbolic

execution, albeit at a far higher cost. However, ultimately

our goal is to handle much larger systems, written in a

variety of languages, with compile-time as well as run-time

configuration options. None of these issues can currently

be addressed using symbolic execution, but we believe that

iTree may be the right tool for this problem.

To better understand this issue, we evaluated the scala-

bility of iTree by running it on MySQL, a popular open

source database. We are not aware of any current symbolic

execution system that can fully handle this system. MySQL

has more than 900K lines of code. It is written in a

combination of C and C++, and its configuration space

includes a large number of run-time as well as compile-

time configuration options. As in our previous experiments

in Section V, our evaluation compared iTree against covering

arrays and randomly sampled configurations.



Subject Program: Figure 8 gives descriptive statistics

for MySQL. The top two rows list the version we used and

the lines of code it contains as computed by sloccount [33].

Next, the figure lists the number and types of configura-

tion options we selected for our experiment. We give the

numbers of compile-time and run-time configuration options

separately, and each number is also broken down by type

(boolean or enumeration). All told, we are focusing on 16

configuration options. We selected configuration options and

settings that enabled the test suite to exercise the major

configurable features of MySQL, such as default storage

engines, SQL modes, and transaction isolation modes. All

other MySQL options were left with their default values.

The next row in Figure 8 lists the number of unique

configurations that can be generated given the number of

distinct settings of configuration option. All told, the full

configuration space given the subset of MySQL options

we are considering includes roughly 600K configurations.

Finally, the last row in the figure lists the number of test

cases (1244) comprising the regression test suite that comes

with MySQL, which we used for our experiment and focused

on improving its line coverage. We should note that this is

not a comprehensive high-coverage test suite, the default

configuration achieves ∼90K LOC. We also note that not

every test case runs in every configuration.

Experimental Design: Our experimental design is sim-

ilar to that of Section V. Specifically, we compare 3-way

covering arrays, 4-way covering arrays, random sampling,

and iTree. On average, 3-way coverings contained 58 con-

figurations, 4-way covering arrays contained 190 configura-

tions, and random sampling also selected 190 configurations.

We executed each approach 30 times and computed how

much line coverage was achieved under each. For iTree we

used the vote approach. One key difference between this

experiment and the last is that we cannot know the maximal

possible coverage achievable by the test suite, and so we

only discuss observed line coverage.

We executed the experiment on the Skoll cluster using up

to 90 CPUs at a time. Executing the MySQL test suite takes

approximately 1.5 hours. The process involves download-

ing the MySQL source tree from source code repository;

compiling an instance according to the compile-time option

settings for the configuration to be tested; instrumenting the

instances with gcov; starting the instance with the run-time

option settings dictated by the configuration to be tested;

running the test suite; and collecting the execution data.

Data and Analysis: Figure 9 summarizes the exper-

imental results. The figure shows the growth in median

coverage over time under each of the four approaches used,

measured at 10 equally spaced intervals. The y-axis is the

number of covered lines, and the x-axis indicates the number

of configurations tested. We can see from these results that

iTree covered more lines of code on average than the other

methods after running the same number of configurations.
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Figure 9. Comparing the number of configurations and coverage achieved
using different testing approaches.

Interestingly, the traditional methods have very similar per-

formance profiles. Thus, with respect to this data, it appears

that at every level of effort, iTree-selected samples included

configurations with unique coverage patterns that were not

found by more traditional approaches.

The absolute difference in line coverage ranges from a

high of around 0.7% (∼ 700 LOC) early on down to about

0.1% (∼ 115 LOC) near the end of the experiment. To

better understand why these lines were found by iTree, but

not by the other methods, we manually inspected MySQL’s

source code. We observed that the extra lines covered with

iTree involved many small pockets of code scattered across

numerous files, methods, and blocks and are apparently

only executed in very specific circumstances. We further

attempted to determine what interactions control the lines

that are covered by iTree and not the other approaches,

but were unable to decide this because of MySQL’s size

and complexity. However, we generated a 5-way covering

array, executed its configurations, and found that none of

these configurations covered those lines, either. This implies

that the interactions controlling the lines in question are of

strength 6 or higher.

VII. THREATS TO VALIDITY

Like any empirical study, our observations and conclu-

sions are limited by potential threats to validity. For example,

in this work we used 3 widely used subject programs. Two

are medium-sized; one is quite large. To balance greater ex-

ternal validity against higher costs and lessened experimental

control, we focused on subsets of configuration options that

we determined to be important. The size of these sets was

substantial, but did not include every possible configuration

option to keep our analyses tractable. The structural coverage

criteria was line coverage. Other program behaviors such

as data flows or fault detection might lead to different

performance trade-offs. Our test suites taken together have

reasonable, but not complete, coverage. Individually, the test



cases tend to focus on specific functionality, rather than

combining multiple activities in a single test case. In that

sense they are more like a typical regression suite than a

customer acceptance suite. We intend to address each of

these issues in future work.

VIII. RELATED WORK

Combinatorial Interaction Testing. Covering array-based

sampling for software testing is a specification-based tech-

nique that was originally proposed as a way to ensure even

coverage of combinations of input parameters to programs

[7], [2], [10], [5]. In more recent work, covering arrays have

been used to model configurations that should be selected

for testing [13], [27], [35], where the covering array defines

a test schedule and each configuration is tested with an

entire test suite. Covering arrays have also been used to test

graphical user interfaces [37] and in model based testing [4].

Empirical research suggests testing with covering arrays

with t < 6 can potentially find a large proportion of inter-

action faults [20]. Further studies suggest covering arrays

can be effective in practice and can yield good structural

coverage during testing [13], [26], [27], [35], [7], [12], [19].

Machine Learning in Software Engineering. Many re-

searchers have proposed using dynamic analysis with ma-

chine learning techniques to analyze program executions.

Haran et al. [17] developed three techniques—association

trees, random forests, and adaptive sampling association

trees—to automatically classify fielded software system exe-

cutions. Podgurski and colleagues [11], [24], [14] used tree-

based strategies and random sampling to classify program

faults in order to prioritize software failure reports. Brun and

Ernst [3] use machine learning to classify program invariants

that manifest themselves in failing program runs. We are not

aware of any other work that applies machine learning to

testing software configurations.

Test Case Prioritization. The iTree approach is similar to

some test prioritization techniques which try to find effective

orderings of test cases that reveal faults earlier in the

testing process. Many such techniques also utilize structural

coverage as the surrogate criteria for prioritization [31], [32],

[30]. Leon et al. [21] evaluated distribution-based cluster

filtering on the execution profiles as prioritization scheme

and found that it detects different faults than coverage-based

prioritization. Yoo et al. [36] also applied clustering of test

case dynamic runtime behavior to aid test prioritization. Li

et al. [22] evaluated greedy, metaheuristic and evolutionary

search algorithms for prioritization.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a new and scalable technique called

iTree to support the testing of highly configurable systems.

iTree’s goal is to select a small set of configurations in

which the execution of the system’s test suite will achieve

high coverage. This technique is based upon insights gained

from our previous empirical studies in which we precisely

quantified the relationships between software configuration

and program execution behaviors. These insights led us

to create a heuristic process that effectively searches out

configurations in which high coverage is likely.

To evaluate iTree, we conducted several sets of experi-

ments. Keeping existing threats to validity in mind, we ten-

tatively drew several conclusions. All of these conclusions

are specific to our programs, test suites, and configuration

spaces; further work is needed to establish more general

trends. The first set of studies evaluated the basic iTree

approach and its parameters. Based on these efforts we

developed several optimizations, such as adaptive voting,

that improve robustness while also removing many issues

that must be handled manually with current techniques. The

second set of studies compared iTree with t-way covering

arrays and random sampling, both existing techniques. The

studies suggested that iTree produced higher coverage then

the other techniques while testing fewer configurations. The

third set of studies focused on scalability. This study applied

iTree to MySQL, a large and popular database system.

The results strongly suggested that iTree achieved higher

coverage at lower cost than existing techniques. Taken to-

gether, our results strongly suggest that iTree is a promising

technique that can scale to practical industrial systems.

Based on this initial work, we plan to pursue several re-

search directions. First, we will extend our studies to include

more systems with larger and more complex configuration

spaces. Second, we plan to enhance iTree to incorporate new

kinds of coverage. We will also examine how information

gained as iTree operates might be incorporated into iTree’s

heuristics. Finally, we will explore post-processing the in-

formation and artifacts that iTree creates to support other

software engineering tasks such as impact analysis, reverse

engineering, and automatic architecture documentation.
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