Correlation and Convolution
Class Notes for CMSC 426, Fall 2005
David Jacobs

I ntroduction

Correlation and Convolution are basic operations that we will perform to extract
information from images. They are in some sense the simplest operations taat we
perform on an image, but they are extremely useful. Moreover, becausectisayle,

they can be analyzed and understood very well, and they are also easy to mhpleme

can be computed very efficiently. Our main goal is to understand exactly what
correlation and convolution do, and why they are useful. We will also touch on some of
their interesting theoretical properties; though developing a full undensgaoicthem

would take more time than we have.

These operations have two key features: theglafeinvariant and they arénear.
Shift-invariant means that we perform the same operation at every point inage. i
Linear means that this operation is linear, that is, we replace every [gixel linear
combination of its neighbors. These two properties make these operations yeey sim
it's simpler if we do the same thing everywhere, and linear operationsnagsahe
simplest ones.

We will first consider the easiest versions of these operations, and thenigenafz’ll

make things easier in a couple of ways. First, convolution and correlation ast alm
identical operations, but students seem to find convolution more confusing. So we will
begin by only speaking of correlation, and then later describe convolution. Second, we
will start out by discussing 1D images. We can think of a 1D image as just arsingle

of pixels. Sometimes things become much more complicated in 2D than 1D, but luckily,
correlation and convolution do not change much with the dimension of the image, so
understanding things in 1D will help a lot. Also, later we will find that in somesdass
enlightening to think of an image as a continuous function, but we will begin by
considering an image asscrete meaning as composed of a collection of pixels.

Notation

We will use uppercase letters sucH asdJ to denote an image. An image may be

either 2D (as itis in real life) or 1D. We will use lowercase lettersj kelj to denote
indices, or positions, in the image. When we index into an image, we will use the same
conventions as Matlab. First, that means that the first element of an imadieased by

1 (not 0, as in Java, say). Sd i§ a 1D imagel(1) is its first element. Second, for 2D
images we give first the row, then the column.I@¢®) is the pixel in the third row of

the image, and the sixth column.

An Example

One of the simplest operations that we can perform with correlation is locagange
As we will see, this is also an extremely useful operation. Let’'s corsglerple
averaging operation, in which we replace every pixel in a 1D image by tregawar
that pixel and its two neighbors. Suppose we have an ivegel to:

(5]4]2[3][7] 4] 6] 5 3 §

Averaging is an operation that takes an image as input, and produces a neasmage
output. When we average the fourth pixel, for example, we replace the value 3 with the
average of 2, 3, and 7. That is, if we call the new image that we prodiecean write:

J(4) = (1(3)+1(4)+I(5))/3 = (2+3+7)/3 = 4. Or, for example, we also gek(3) =
(1(2)+1(3)+1(4))/3 = (4+2+3)/3 = 3. Notice that every pixel in the new image depends
on the pixels in the old image. A possible error is toJ8ewhen calculatingl(4).

Don’t do this;J(4) should only depend di§3), 1(4) andl(5). Averaging like this is shift-
invariant, because we perform the same operation at every pixel. Every news tieel i
average of itself and its two neighbors. Averaging is linear becauserexenyixel is a
linear combination of the old pixels. This means that we scale the old pixels (in this
case, we multiply all the neighboring pixels by 1/3) and add them up. This example
illustrates another property of all correlation and convolution that we will consider
output image at a pixel is based on only a small neighborhood of pixels around it in the
input image. In this case the neighborhood contains only three pixels. Sometimes we
will use slightly larger neighborhoods, but generally they will not be too big.

Boundaries: We still haven't fully described correlation, because we haven’t said what
to do at the boundaries of the image. Whd(13? There is no pixel on its left to include
in the average, iel(0) is not defined. There are four common ways of dealing with this
issue.

. [. [.Jofo|5]4]2[3] 7] 4] 6] 5 3 60[0]. [.[.]
In thefirst method of handling boundaries, the original imageis padded with zeros
(inred italics).

The first way is to imagine thais part of an infinitely long image which is zero
everywhere except where we have specified. In that case, wi®aved, and we can
say:J(1) = (1(0) + 1(2) + 1(2))/3 = (0 + 5 + 4)/3 = 3. Similarly, we haveJ(10) =
(1(9)+1(20)+1(11))/3=(3+ 6 + 0)/3 = 3.

. |. [.|5[5]5]4]2[3]7] 4] 6] 5 3 66/[6]. [.[.]
In the second method of handling boundaries, the original imageis padded with the
first and last values (in red italics).

The second way is to also imagine that part of an infinite image, but to extend it using
the first and last pixels in the image. In our example, any pixel to the lég &ifst pixel

in I would have the value 5, and any pixel to the right of the last pixel would have the
value 6. So we would say(1) = (I(0) + I(1) + 1(2))/3=(5+5+4)/3=4 2/3,and

J(10) = (1(9)+I1(10)+1(12))/3 = (3 + 6 + 6)/3 = 5.

. [. [.[3[6]5[4]2[3]7[4] 6] 5 3 65[4]. [. . |
In the third method of handling boundaries, the original imageisrepeated cyclically
(inred italics).

Third, we can imagine the image as being like a circle, so that the pixel vefheed

over and over again. The pixel to the left of the first pixel, then, would be the last pixel
in the image. That is, in our example, we would deiff@e to bel(10). Then we would
haveJ(1) = (1(0) + I(1) + 1(2))/3= (1(10) + I(1) + 1(2))/3 = (6 + 5 + 4)/3 = 5,andJ(10)

= (1(9)+1(20)+1(11))/3 = (1(9)+1(20)+1(1))/3 = (3 + 6 + 5)/3 = 4 2/3.

Finally, we can simply say that the image is undefined beyond the values thateve hav
been given. In that case, we cannot compute any average that uses thesedundefi
values, sd(1) andJ(10)will be undefined, and will be smaller than.

These four methods have different advantages and disadvantages. If we imagiree tha
image we are using is just a small window on the world, and we want to use values
outside the boundary that are most similar to the values that we would have obtained if
we’'d taken a bigger picture, than the second approach probably makes the most sense.
That is, if we had to guess at the valu&(0§, even though we can't see it, the value we
can see i(1) is probably a pretty good gues this class, unless we explicitly state
otherwise, you should use the second method for handling boundaries.

Correlation asa Siding, Windowed Operation

We’re now going to look at the same averaging operation in a slightly ditffenssy

which is more graphical, and perhaps more intuitive to generalize. In agriagia

specific pixel we multiply it and its neighbors by 1/3 each, and then add up the three
resulting numbers. The numbers we multiply, (1/3, 1/3, 1/3) fdliitea This particular

filter is called aoxfilter. We can think of it as a 1x3 structure that we slide along the
image. At each position, we multiply each number of the filter by the image number tha
lies underneath it, and add these all up. The result is a new number corresponding to the
pixel that is underneath the center of the filter. The figure below shows us pgd{igin

in this way.

I |. |. |s5[5]4a]2]3|7] 4| 6] 5 3 66|6[..].]

* *
13 [1/3 1/3\
|
5/3 [5/3 4/3\
2
' EE I

To produce the next number in the filtered image, we slide the filter over a midel, a
perform the same operation.

1. . [s[s[4]2]3[7[4] e[5 3 g6]6]. [.]. |
*

* *
13 [113 1/3|
|
513 [4/3 2/3|
2
el [[[[[[[]

We continue doing this until we have produced every pix&l With this view of

correlation, we can define a new averaging procedure by just defining ateewRbr
example, suppose instead of averaging a pixel with its immediate neighborsnite wa
average each pixel with immediate neighbors and their immediate neighborsn We ca
define a filter as (1/5, 1/5, 1/5, 1/5, 1/5). Then we perform the same operation as above,
but using a filter that is five pixels wide. The first pixel in the resultinggamaill then

be:J(1) = (I(-1)/5 + 1(0)/5 + 1(1)/5 + 1(2)/5 + 1(3)/5) = 1+1+1+4/5 + 25 = 4 1/5.

A Mathematical Definition for Correlation

It's helpful to write this all down more formally. Suppdseés a correlation filter. It will
be convenient notationally to suppose thdias an odd number of elements, so we can
suppose that as it shifts, its center is right on top of an elemenSofwe say thdt has
2N+1 elements, and that these are indexed fidrto{N, so that the center elementFrois
F(0). Then we can write:

Fol(x):ZN:F(i)I(x+i)

where the circle denotes correlation. With this notation, we can define & sioxpfilter

as:
F(i):% for _i:—lO,l
0 for i#-101

Constructing an Filter from a Continuous Function

It is pretty intuitive what a reasonable averaging filter should look likew iNe want to

start to consider more general strategies for constructing filtecemitnonly occurs that

we have in mind a continuous function that would make a good filter, and we want to
come up with a discrete filter that approximates this continuous function. Some reasons
for thinking of filters first as continuous functions will be given when we talk about the

Fourier transform. But in the mean time we’ll give an example of an important
continuous function used for image smoothing, the Gaussian.

A one-dimensional Gaussian is:

G(x) = g\/lﬂ exp(_ (x= 'U)Zazj

This is also known as a Normal distribution. Hpgilie the mean value, arais the
variance. Here’s a plot of a Gaussian:

The meany, gives the location of the peak of the function. The paramoetentrols
how wide the peak is. As gets smaller the peak becomes narrower.

The Gaussian has a lot of very useful properties, some of which we’ll mention later
When we use it as a filter, we can think of it as a nice way to average. Thgirayera

filter that we introduced above replaces each pixel with the average of itbowsig This
means that nearby pixels all play an equal role in the average, and morepilkstignt

play no role. Itis more appealing to use the Gaussian to replace each pixel with a
weighted average of its neighbors. In this way, the nearest pixels inflirenaegrage

more, and more distant pixels play a smaller and smaller role. This is mgmatele
because we have a smooth and continuous drop-off in the influence of pixels on the
result, instead of a sudden, discontinuous change. We will show this more rigorously
when we discuss the Fourier transform. When we use a Gaussian for smoothirif, we w
setu =0, because we want each pixel to be the one that has the biggest effect on its new,
smoothed value. So our Gaussian has the form:

G,(x) = a—\/lETeX[{‘ X%JZ)

o will serve as a parameter that allows us to control how much we smooth the image
(that is, how big a neighborhood we use for averaging). The bigggrthe more we
smooth the image.

We now want to build a discrete filter that looks like a Gaussian. We can do this by just
evaluating the Gaussian at discrete locations. That is, alti@iggtiefined for any
continuous value of, we will just use its values at discrete locations (... -3, -2, -1, 0, 1,

2, 3...). One way to think about this is that we are approximating our original,

continuous function with a piecewise constant function, where the pieces are each one
pixel wide.

However, we cannot evaluaBeat every integer location, because this would give us a
filter that is infinitely long, which is impractical. Fortunatelyxagets away from 0, the
value of G(x) will approach 0 pretty quickly, so it will be safe to ignore valueswith a

high absolute value. There is no hard and fast rule about when it is safe to ignore some
values ofG(x), but a reasonable rule of thumb is to make sure we capture 99% of the
function. What we mean by this is that the sum of values in our filter will contaast |
99% of what we would get in an infinitely long filter, that is, we chddse that:

N

G(x)

> 99

00

There is one final point. An averaging filter should have all its elements add up to 1.

This is what averaging means; if the filter elements don’'t add up to one, then we are not
only smoothing the image, we are making it dimmer or brighter. The continuous
Gaussian integrates to one (after all, it's a probability density functidnp@babilities

must add up to one), but when we sample it and truncate it, there is no guarantee that the
values we get will still add up to one. So we must normalize our filter, meaning the
elements of our filter will be calculated as:

F(i) = NG(') fori =—-N..N

>6(9

Taking Derivativeswith Correlation

Averaging, or smoothing, is one of the most important things we can do with a filter.
However, another very useful thing is taking a derivative. This allows us to radesur
quickly an image is changing. Taking derivatives is something we usually thinkngf doi
with a continuous function. Technically, derivatives aren’t even defined on a discrete
image, because a derivative measures how quickly the image is changing over a
interval, in the limit, as the interval becomes infinitesimally small. H@mngust as we
were able to produce a discrete filter that was an approximation to a continumssaBa
we can discretely approximate a continuous derivative operator.

Intuitively, a derivative is found by taking the difference as we go from one part of
function to another. That is, it's the changeg idivided by the change ik So it's

natural that a derivative filter will look something like: (-1/2 0 1/2). When we ap@y thi
filter, we getd(i) = (I(i+1)-1(i-1))/2. This is taking the change inthat is, the image
intensity, and dividing it by the changexnthe image position.

Let's consider an example. Suppose image intensity grows quadraticallyosition,
so thatl(x) = x°. Then if we look at the intensities at positions 1, 2, 3, ... they will look
like:

|1]4]9]16]25[36]. |. [.]

If we filter this with a filter of the form (-1/2 0 1/2) we will get:

112 4]6 |8 |10[12]. |. [. |

We know that the derivative &fx), di/dx = 2x. And sure enough, we have, for example,
thatJ(2) = 4, J(3) = 6, . Notice that](1) is not equal t@ because of the way we handle
the boundary, by settinf0) = 1 instead ofl(0) = 0. So at the boundary, our image
doesn't really reflec(x) = x°.

We could just as easily have used a filter like (0 -1 1), whichpotes the expression:
J() = (I(+21)-1(i))/1, or afilter (-1 1 0), which computdgi) = (I(i) — 1(i-1))/1. These are

all reasonable approximations to a derivative. One advantage of the filter (-1/2 0 1/2)
is that it treats the neighbors of a pixel symmetrically.

Matching with Correlation

Part of the power of correlation is that we can use it, and related methods, to find
locations in an image that are similar to a template. To do this, think of the fiéter as
template; we are sliding it around the image looking for a location where theatempl
overlaps the image so that values in the template are aligned with similas velhe
image.

First, we need to decide how to measure the similarity between the tepdbthe
region of the image with which it is aligned. A simple and natural way to do this is to
measure the sum of the square of the differences between values in thestanglat

the image. This increases as the difference between the two increases. diftarédnee
between the filter and the portion of the image centergohag can write this as:

S FO =100y =5 (F7 ()17 (cwi)-2F O)
= (R0 35076cr)-23 (FO) (x1)

i=—N i=—N

As shown, we can break the Euclidean distance into three parts. The first part depends
only on the filter. This will be the same for every pixel in the image. The secdrid par
the sum of squares of pixel values that overlap the filter. And the third part isheice t
negative value of the correlation betwdeandl. We can see that, all things being

equal, as the correlation between the filter and the image increasesclidedtu

distance between them decreases. This provides an intuition for using correlation t

match a template with an image. Places where the correlation betweean thdigh
tend to be locations where the filter and image match well.

This also shows one of the weaknesses of using correlation to compare a temaplate a
image. Correlation can also be high in locations where the image intensitl,is\eg
if it doesn’t match the template well. Here’s an example. Suppose we etheldilter

[3] 7] 5]

with the image:

3 [2 |4 |1 [3[8[4a]of3]8f]of 7] 7] 7] 1] 2

We get the following result:

|40 [43 | 39| 34| 64| 85 52| 27 61 65 59 84 10% |38 | 27 |

Notice that we get a high result (85) when we center the filter on the sixthh@rause
(3,7,5) matches very well with (3,8,4). But, the highest correlation occurs at'the 13
pixel, where the filter is matched to (7,7,7). Even though this is not as similar to,(3,7,5)
its magnitude is greater.

One way to overcome this is by just using the sum of square differences between the
signals, as given above. This produces the result:

|25 [26 | 26| 41| 29| 2 | 59| 54 34 26 78 13 20 32 pB1 |38

We can see that using Euclidean distance, (3,7,5) best matches the part oféheitima
pixel values (3,8,4). The next best match has values (0,7,7), but this is significantly
worse.

Another option is to performormalized correlatiorby computing::

3 (F ()1 (x+)

i=—N

S0 S e0r

i=—N i=—N

This measure of similarity is similar to correlation, but it is invariargdaling the

template or a corresponding region in the image. If we $gal)...1(x+N), by a single,
constant factor, this will scale the numerator and denominator by the same.amount
Consequently, for example, (3,7,5) will have the same normalized correlation with (7,7,7)
that it would have with (1,1,1). When we perform normalized correlation between (3,7,5)
and the above image we get:

| .946| .877|.934| .73 | .81| .989 .64 | 59| .78| .835.61| .931| .95 | .83| .57| .988

Now, the region of the image that best matches the filter is (3,8,4). Howevesongetl

a very good match between (3,7,5) and the end of the image, which, when we replicate
the last pixel at the boundary, is (1,2,2). These are actually quite similar, ugate a s
factor. Keep in mind that normalized correlation would say that (3,6,6) and (1,2,2) match
perfectly. Normalized correlation is particularly useful when sorfeeefsuch as

changes in lighting or the camera response, might scale the intemsitiesrage by an
unknown factor.

Correlation asan inner product

One way to get a better intuition for correlation and normalized correlationdtwhing

is to consider these comparisons as based on an inner product. To do this, we can
consider our filter as a vectdt,= (F(-N), F(-N+1)...F(N)). We are comparing this to a
portion of an image, which we can also think of as a velgte(i(x-N), I(x-N+1),
...I(x+N)). Then, when we compute the correlation betweamd| at the positiorx, we
are computingsF, Ix>. F andly are vectors in a (2N+1)-dimensional space, but still,
everything we’ve learned about inner products applies. In particular,

(Ful) =[F{ltJcose

wheref is the angle betwednandlx. This means that the correlation between the two
depends on the magnitude of each vector, and oartijle between them. FbBrandl of
fixed magnitudes, the correlation between themagimized when the angle between
them is zero, which occurs wheérandl, are scaled versions of each other. The
correlation decreases as the angle between thegases. Normalized correlation is
correlation divided byH||and [Ix||, so it just computes c8s So normalized correlation
only computes the angle betwederandl,. This serves as a good measure of their
similarity if we are not interested in whether th@iagnitudes are similar.

2D Correation

Images are 2D, so we really want to perform coti@ian 2D. The basic idea is the
same, except that the image and filter are now 2. can suppose that our filter is
square and has an odd number of elements, seprissented by a (2N+1)x(2N+1)
matrix. We don’t lose anything with these assuongj because we can take any filter
and pad it with zeros to make it square with anwatth. Padding a filter with zeros
does not change its behavior.

Given a square filter, we can compute the restilt®oelation by aligning the center of
the filter with a pixel. Then we multiply all ouapping values together, and add up the
result. We can write this as:

Fol(x,y)= ZN: iF(i,j)|(X+i,y+)]

j=-Ni=-N

Example: We can perform averaging of a 2D image using a @ofitter, which, for a
3x3 filter, will look like:

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
F

Below we show an imagé,and the result of applying the box filter above to produce
the resulting imagel.

8/3]4]5 8]18]3]4] 5] 5 6.44 | 5.22| 4.33] 4.67
706[4]|5 8/8|3|4|5]|5 5.78 | 5.33 5.22| 5.67
415|718 7|7]6]4]5]|5 556 | 5.44/567|6
6(5[5]6 41457 8|8
= Te Tc1s6le 5.22 | 5.33 5.78] 6.33
l 6|/6|5|5] 6] 6
| with padded boundaries J=Fol

Separablefilters. Generally, 2D correlation is more expensive tharchBelation
because the sizes of the filters we use are larfgar.example, if our filter is

(N+1)x(N+1) in size, and our image contains MxMeis then the total number of
multiplications we must perform is (N¥M?% However, with an important class of
filters, we can save on this computation. Thesesaparable filters, which can be written
as a combination of two smaller filters. For exéanm the case of the box filter, we
have:

111] gL
9 9 9 3 0O 0O
111 g1)11l
9 9 9 3 3 3 3
111 o1 1000
19 9 9] | 3 |

That is, the box filter is equal to the correlat@rtwo filters that have a row and a
column of equal values, and all other values etpuaéro (here we are handling
boundaries by using 0 values outside the bounda#hen this is the case, correlating an
image with the box filter produces the same reasiltorrelating it separately with the
two filters on the right side of the equals sidntuitively, this makes sense. Correlating
with the rightmost filter averages each pixel withneighbors on the same row. The
second correlation then averages these resultiayspvith those neighbors in the same

column, which are already averages of neighborthersame row. This produces an
average of all neighboring pixels.

The advantage of separating a filter in this wath& when we perform correlation with
the matrices on the right, we don’'t need to acyyadirform any multiplications where
there are zeros. In fact, it is more conveniersingply write these filters as 3x1 and 1x3,
ignoring the zeros. This means that for each pixéie image, we only need to perform
6 multiplications instead of 9. In general, if wen separate a (N+1)x(N+1) filter into
two filters that are (N+1)x1 and 1x(N+1), the totark we must do in correlation is
reduced from (N+EM? to 2(N+1)M.

Gaussian filtering has the same separability. 872D Gaussian, we use a function that is
rotationally symmetric, where the height of théefilfalls off as a Gaussian function of
the distance from the center. This has the form:

Gx)= ex;{‘ b+ y%az}

This can be separated because it can be expressed a

Gy (x.y) = U\;LE exr(_ (x2 + y%azj - 127T eXp(— X%JZ)GXF(_ YZO_ZJ

It is the product of two components, one of whidhyalepends or, while the other only
depends ol. The first component can be expressed with erfitiat has a single row,
and the second can be expressed with a filtehiega single column.

Convolution

Convolution is just like correlation, except that Wip over the filter before correlating.
For example, convolution of a 1D image with theefil(3,7,5) is exactly the same as
correlation with the filter (5,7,3). We can writee formula for this as:

F Ol (x):ZN:F(i)I(x—i)

In the case of 2D convolution we flip the filterthdorizontally and vertically. This can
be written as:

N N

FOXY)= > D F@DIx=i,y=])

j==Ni=—

Notice that correlation and convolution are idegltiwhen the filter is symmetric.

The key difference between the two is that convoifuis associative. That is,iFandG
are filters, ther*(G*l) = (F*G)*I. If you don’t believe this, try a simple exampleings
F=G=(-1 0 1), for example. It is very convenient to have contiolube associative.
Suppose, for example, we want to smooth an imadehean take its derivative. We
could do this by convolving the image with a Gaasdilter, and then convolving it with
a derivative filter. But we could alternativelyramlve the derivative filter with the
Gaussian to produce a filter calle@#ference of Gaussian (DOGand then convolve
this with our image. The nice thing about thithigt the DOG filter can be precomputed,
and we only have to convolve one filter with oulame.

In general, people use convolution for image prsiogsoperations such as smoothing,
and they use correlation to match a template tonage. Then, we don’t mind that
correlation isn’t associative, because it doesatly make sense to combine two
templates into one with correlation, whereas wehinggten want to combine two filter
together for convolution. When discussing the kseries as a way of understanding
filtering, we will use convolution, so that we caroduce the famousonvolution
theorem.

The Fourier Series (thissection isa bit more advanced)

The Fourier Series gives us a very important aefulisvay of representing an image.
While it is a very powerful representation for maegsons, we will mainly introduce it
as a way of understanding the effect of convolutibirst, we will consider what
properties a good image representation should Inal@oking at familiar
representations. Then we will describe the Fo8&tes, which has these properties.
Finally, we will describe the convolution theoremwhich helps us better understand the
effect of convolution with different filters.

Orthonormal Basisfor Vectors

How do we represent points in 2D? Using tixaandy coordinates. What this really
means is that we write any point as a linear coatimn of two vectors (1,0) and (0,1).

(x,y) = x(1,0) + y(0,1).

These vectors form asrthonormal basidor the plane. That means they are orthogonal
(ie, perpendicular), <(1,0), (0,1)> = 0, and oftunagnitude. Why is an orthonormal
basis a good representation? There are many i€dsartwo are:

1) Projection. To find the coordinate, we take <(x,y), (1,0)>. In generdigw we
have an orthonormal basis for a space, we canidesamy point with
coordinates, and find each coordinate of a poirteking an inner product with
the basis vector for this coordinate.

2) Pythagorean theorem. ||(x33¢ + y°. When we have an orthonormal basis,
the squared length of a vector is the sum of tlhkusgof its coordinates in that
basis.

As an example of a less attractive basis, suppasa@presented points using the two
basis vectors (1,0) and (1,1). These are not gathal, because <(1,0),(1,1)> = 1. Still,
given any point, (X,y), we could always represéeasi

(x,y) = u(1,0) + v(1,1)

for some choice of u and v. We can compute u apgltakingv =y, u=x—-y. For
example, we would represent the point (7,3) a03@. 3(1,1). So rather than represent
the point with the Euclidean coordinates (7,3),0&e represent this same point in this
new basis with the coordinates (4,3). But note titnia Pythogorean theorem wouldn’t
hold. And, if | give you two basis vectors thag¢ &ot orthonormal, it is not so easy to
come up with a formula for determining the coortisaof a point using these basis
vectors (especially as we look at higher dimengions

TheFourier Series

The Fourier series is a good representation besapszvides an orthonormal basis for
images. We want to explore it in the simplest mssetting, to get the key intuitions.
This is one case in which it is easier to get teaiby working with continuous functions,
rather than discrete ones. So, instead of thin&fragy image as a list of pixels, we’ll
think of it as a continuous functiol{x). To simplify, we’ll also only do things in 1D,

but all this extends to 2D images. We will alsagider only periodic functions that go
from O to 21, and then repeat over and over again. This is/algnt to the third way that
we describe above for handling pixels outside eftitbundary of images. The main thing
I'll do to make things easier, though, is to beywsloppy mathematically, skipping
precise conditions and giving intuitions insteadomplete proofs.

The following functions provide an orthonormal lsafgir functions:

1 coskx) sin(kx)

Ve Nm o \m

These functions form tHeourier Series.The first one is a constant function, and the
others are just sines and cosines of increasiogiérmecy.

fork=123,...

To define things like whether a set of functions arthonormal, we need to define an
inner product between two functions. We do thithwi continuous version of the inner
product. With discrete vectors, to compute theirproduct we multiply together the
values of matching coordinates, and then add upethdts. We do the same thing with
continuous functions; we multiply them togetherl amegrate (add) the result. So the
inner product between two functions, f(x) and g@efined in the domain from O tat2
is:

=jf(x)g(x)dx

When we say that a function, f, has unit magnitwekemean that <f,f> = 1. When we

say that two functions are orthogonal, we mean<hgt- = 0. One reason that these are
sensible definitions is that if we approximate adiion by sampling its values, and
building them into a vector, then the definitionghe continuous case give us the same
result as the limit of what we get in the discredse, as we sample the function more and
more densely.

We can use this definition to show that the funetion the Fourier Series have unit
magnitude, by taking the inner product of each fimmcwith itself, and showing that this
is equal to 1. We can show they are orthogonahuwmyving that their inner products with
each other are zero. Doing this requires solvorgesintegrals of trigonometric
functions.

To show that the Fourier Series forms a good coatdisystem for all functions we must
also show that we can express any function asaricombination of the elements of the
Fourier Series. That is, we must show that forfangtion,f, we can write:

() = ao\/— i(cosQ<x)+ siil/%x)J

Then the values §ab,, &, b, &, ...) are the coordinates of the function in thisine
coordinate system provided by the Fourier Seridss is a very important fact, but we
will skip the proof here. Keep in mind that I'malMng out some necessary conditions,
such as that this only works wheis a continuous function.

This result means that any function can be brokewndnto the sum of sine waves of
different amplitudes and phases. We say thataiiegb the function that is due to longer
frequency sine waves is the low frequency parhefftinction. The part that is due to
high frequency sine waves is the high frequencypmmmnt of the function. If a function
is very bumpy, with small rapid changes in its eglinese rapid changes will be due to
the high frequency component of the function. & @an eliminate these high-frequency
components, we can make the function smoother.

Implications of the orthonor mality of the Fourier Series.

As with an orthonormal basis for vectors, the onttronality of the Fourier Series means
that we can use projection and (a generalizatipthef Pythagorean theorem.

We can solve the for the valuesg, (a, a, b, &, ...) just by taking inner products. So:

_ 1\ _FfX _ /¢ costd\ _°f f(X)cosky)
<fm> [b <f' ﬁr> = m *
_[s sin(kx)>:2”f(x)sin(kx)
a, < —\/I_T J;—\/z_r dx

The analog to the Pythagorean theorem is calleseRaal’'s theorem. This is:

Tt20odx=az +3 (a2 +17)
0 1

Convolution Theorem

Now we get to the reason why the Fourier Serigmportant in understanding
convolution. This is because of the convolutiogottem. Let F, G, H be the fourier
series that represents the functions f, g, an@itat is, F,G, and H are infinite vectors.
The convolution theorem states that convolutiothenspatial domain is equivalent to
component-wise multiplication in the transform doamae, f*g =h FG = H. Here,
by FG, we mean that we multiply each element oy Ehle corresponding element of G
and use this as an element of H.

This is a remarkable theorem. As an example digsificance, suppose we convolve a
filter, F, with an imagd, and thaf- just consists of a single sine wa¥esin(x). Then
the Fourier Series representatioras:

a = \/F all othercomponents 0.

This means that no matter whats, if we defineJ=F*I, then the components of the
Fourier series of will all be zero except for,abecause all other componentd=oére 0,
and when we multiply these by the corresponding pmments ofl we always get 0.
More generally, this means that convolution withlt@r attenuates every frequency by
different amounts, and we can understand the sffettconvolution by finding the
Fourier Series of the convolution kernel.

As another important example, we point out thatRberier series representation of a
Gaussian is also a Gaussian. If g(t) is a Gaussiarbroader g is the narrower G is (and
vice versa). This means that smoothing with a Gaungeduces high frequency
components of a signal. The more we smooth, thre mve reduce the high frequency
components. In fact, attenuating high frequeneymanents of a signal can be taken to
be the definition of smoothing. To some exteng thwhy we learned the Fourier series.
It allows us to understand what smoothing reallgsdo

We can also see why simple averaging isn’t as goady of smoothing. Let f(x) be an
averaging filter, which is constant in the rangete . Then, we can compute its Fourier
Series as:

a :]’ ! dx = 2
° Iom Vo
Fsinkx) . 2coskT)
= dx =
L v 77

coskx) - 2sin(kT)
bk__jT i

This is called the sinc function. If we graphwe see that it looks like:

081 B

04} 4

0.2 B

02} 4

-0.4
0

This does not decay as fast as a Gaussian. Afssibscillations that produce odd
effects. As a result of these oscillations, sogé frequency components of an image
will be wiped out by averaging, while some simitégh frequency components remain.

Aliasing and the Sampling Theorem
Sampling means that we know the value of a funcficat discrete interval$(n77T) for

n=0, +-1, +-T. Thatis, we have 2T + 1 uniform sample$(®f, assumind is a
periodic function. Suppose now ttias band-limitedto T. That means,

coskx) sin(kx)
0 e

We know the value dix) at 2T + 1 positions. If we plug these values it above
equation, we get 2T + 1 equations. Tharal b give us 2T + 1 unknowns. These are
linear equations. So we get a unique solutionis eans that we can reconstriifrtom
its samples. However, if we have fewer samplegnstruction is not possible. If there
is a higher frequency component, then this can péagpc with our reconstruction of all
low frequency components, and be interpreted adawddrequency components.

This means that if we want to sample a signalptst thing we can do is to low-pass
filter it and then sample it. Then, we get a sighat matches our original signal
perfectly in the low-frequency components, and ihthe best we can do. To shrink
images, in fact, we low-pass filter them and themgle them.

