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‘Outh'ne @;

n A brief introduction to Hidden Markov Models
n Three applications of HMMs

q Human identification using Gait
¢ Human action recognition from Time Sequential Images

q Facial expression identification from videos

n Discussions & Conclusions
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| Hidden Markov Models (HMMs) - A @
General Overview o

n HMM : A statistical tool used for modeling
generative sequences characterized by a set ot
observable sequences.

n The HMM framework can be used to model
stochastic processes where

a The non-observable state of the system is governed by a
Markov process.

a The observable sequences of system have an underlying
probabilistic dependence.
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‘Hidden Markov Model &

NERST

A= (A, B, ¥ ——— HMMModel Parameters

\

State Transition Matrix
A= {3:';}
a; = Plq;.q1 = Sj’Qt = S5,
1T=<1;7=N.

: Initial state probabilities
'm = Plg, = S)], 1<i< N.

Observation Probability Matrix
B = {b;(k)}

bik) = Plv, at t|g, = S}]
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| Three Basic Problems in HMMs -
n Given a set of observation sequences O = O, O, * - - Oy
and the HMM parameters A\ = (A, B, ) , computing
the probability P(O|N)

n Given a set of observation sequences O = O, Q, - -+ O
and the HMM parameters X\ = (A, B, ) , computing
the optimal state sequences

7

n Given a set of observation sequences O = O, O, * -+ Oy
adjusting the HMM parameters A = (A, B, w) to
maximize the probability P(O|N)
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‘ Things you'll need to be familiar with. ... /g

TRy LN

n Forward Algorithm / Backward Algorithm

n Viterbi Decoding

n Baum Welch Algorithm (Expectation
Maximization)

n K-means clustering

n Vector Quantization etc.
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‘ Human Identification using Gait X},

n USF Gait dataset

q Dataset comprises of 122 individuals
q 12 different Probe sets (different sessions, walking surfaces,
shoe type, w/0 briefcases, camera orientation)

Can we characterize Human gait using Hidden Markov Models ?

CMSC 828] - Spring 2006



‘ Human Identification using Gait -

Elli [Lmj{-ﬁ___——._ —
1585 m
e Ry
The set-up environment

Two views : Camera L & R
Two different surfaces : Grass and Concrete
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‘Motivation @

Gait cycle corresponds to : rest position — right foot
forward — rest position — left foot forward — rest position.

n The two inherent components of human gait :
q Structural component : One’s physical features

g Dynamic component : The body’s motion dynamics (the
coordinated hand and leg movements)

Can the structural and dynamical aspects of Human gait be
captured using a Hidden Markov Model framework ?
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 Motivation (contd) 0%

n From a human gait recognition perspective, what is the
physical significance of the HMM parameters ?

A=(A B © » Initial state probabilities

ransition matrix robability matrix
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‘ Silhouette E xtraction :

n For each frame in the gait

video, a bounding box was
defined manually.

n A background model is built
using statistics of pixels outside
the bounding box

n Having learnt the background
distribution, the pixels within
the bounding box are classified
as foreground or background
pixels.

""""

x
!

A

Silhouette extraction results. The
top row illustrates the bounding
boxes defined over each frame
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‘ HMM : Observation symbols e

n Using Background subtraction, the binarized video sequences are
extracted

JUAAARRILLIY

This corresponds to a one half of a gait cycle :

Rest position — right foot forward — rest position — left foot forward — rest position

The observation symbols for the HMM problem: :
they are functions of such binarized silhouettes :
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‘ HMM : Observation symbols &

TRYLAS
n Kale et al. 2004, define two interpretations to the observation symbols
for the HMM framework :

a In the first case, the entire background subtracted silhouette is taken
as the observation symbol.

g In the second case, the width vector is extracted from each frame.
Frame-to-Exemplar distance (FED) is defined over each frame and
this is taken as the observation symbol.

| ‘ . B = Torso
AAARA A A R . iag— }

Wr Leg region
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'HMM : System State identification @

Z Q
ARYLAS

n System state identification is often seen analogous to the design of
a code book

g Criterion : Minimizing the overall distortion in such a
representation

e; = argmine E (d(x,e)|x € C))

., |
Vornoi cells

exemplar
(system state) ! Model order (no: of exemplars)
Distance measure is selected based on a plot of
the overall distortion

CMSC 828] - Spring 2006



'HMM : System State identification @

%v ~w P¥ Q
ARYLAS

: : : : : : ICI'inaIISi nal I I
R R Pt it A B A TiﬁEﬁﬁ}fﬂ;‘dﬁgﬁgf' ' Aplot of sum of the

s ”“”'Em"‘mag"a' foreground pixels across
wol %t ....] each frame. The boundaries
Dk i ] of gait cycles can be
bl LU L | identified,

Mean subtracted sum of foreground pixels
)

U 7 Kale et al (2004) define 6
o i) states for the gait

L I L i
360 280 400 420 440 460 480 500 520 540
Frame index
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| HMM : System State &

LIHAAIRIL

n The initial exemplars for a walking sequence are computed as
follows :

a The gait cycle boundaries are identified for a walking sequence
a Each gait cycle is partitioned in 6 groups of temporally
adjancent stances.

a The averages of all stances that belong to a particular partition

is computed & hence exemplars (or system states) are
identified.
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A=W 5.z b (x(1)) = P (x(t)]en) = e *LxDe)

”f
i

©) _ 7O
Aj,j = 4;

7,7 mod N

\

A

1/N
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| HMM : Training Phase &

Ky
ARYLAS

n Iterative refining is performed in two stages :

g Using current values of Exemplars (Eo) and Transition Matrix
(Ao) , Viterbi decoding is performed on the input sequence
and the most probable sequence of states is obtained :

— {6, ... a)

q The Correspondmg observation index (set of all time instants

when a particular state was observed) is provided by

Tm —{T Q’f —J}

a Thenew set of exemplars are re-esimated using the above
observation indices Eg'ﬁ'H) = argg min) () D(Y:, E)
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| HMM : Training Phase &

q Using estimated exemplars E (at time t+1) and state
transition matrix A (at time t), we estimate A (at time
t+1) using Baum Welch algorithm.

qa ComputingE (at t+1) => computing B (at t+1)

q Kale et al (2000) re-initialize the initial state probabilities
to 1/N at every time instant.
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| HMM : Testing Phase &

n Given a test sequence, we compute the probability
Pj = log (P(V|A;))

\ HMM parameters corresponding
to the j"th individual in the

gallery

Test sequence

ID = arg, 1ax Pr[Q|X.\,] — MatchID
=1 P
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Curulative Match Soores

Recognition results on USF dataset

Curnulative Match Scores (Training Set is Gallany)
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‘ Recognizing Human Action using /@;

%v <w /T&Q

n Yamato et al (1992) use HMM to classify human actions in time-
sequential images (in our case, sports activities).
a Backhandvolley |  Whatis the intuition behind using
¢ Backhand stroke a HMM framework to perform action

classification ?
¢ Forehand volley

g Forehand stroke > Each of the aforementioned activities
can be characterized by a set of stances

q Smash that are temporally related.

q Service

) Further, each activity can be associated with
a certain number of observable symbols
that are associated with each characteristic stance
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: % Mesh representation

Observable symbols '
fedto HMM for -« Feature Vector sequence
: : Vector quantization
parameter estimation
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| HMM : Recogpition &
For a C class classification problem : Given the HMM parameters
For each of the C classes and the Observation sequence, the class
Is determined as :
¢’ = argmax(Pr(Ai]0)) Evaluating Pr(O|A:)
' (forward algorithm)

Baum — Welsh method to estimate parameters :
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‘ Face Expression Characterization — &
Using HMM framework

P
FACS : Facial Action Coding Systems —
prescribes one of the most
comprehensive means to characterize
Facial Expressions

- Discrete deformations of face regions
are referred to as Action Units (AUs.)

- Divides facial expression into upper
facial and lower facial expressions

- 44 Basic AUs and 14 special AUs
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X, O,

‘ Some illustrations..... @

Al (=l 2%
= Bi [2 &
= =4 [

Upper Facial expressions ~ Lower Facial expressions Eye Movements (special
instances)

How relevant is the HMM framework to characterize facial expressions
in video sequences ?
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‘ Relevance of HMM framework in /@;
characterizing Facial Expressions

n The hidden state of HMMs £ the hidden emotional state of the
individual.

n The observable symbols of HMMs t the feature vectors
extracted from face videos

n The State Transition matrix and Observation probability matrix
of HMMs t Dynamical information extracted from videos
accompanied by observation symbols extracted using VQ.
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‘ Feature selection

n Features selected for expression
characterization could be

a The original intensity image
q Fiducial features from each image (which
could be tracked across frames)

a Dense optical flow of facial features

\\\\\\
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\ xamples of igned for @
Some examples of HMMs designed for @

specific facial expressions :

(4) AU6+12+25

ap a» 33 (AT

- E@f@

{hy(079) + ths(073) +
bi(0~2) bg(GFID)} by(o=3) bylor] l}}
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 Overview & Sample Results

Extraction Syst=m

Feature Point Flow Dense Flow Motion Furrow
Sequenoes S=quences Squerioes

I I
¥ *

Rigid apd Non-rigid Motion S=parftion and Gz ometric Mormualization
! ¥

Principal Componsmi Gradient Distribution
Anahysis

Digplacement Veotar

Mean-Varianos

ALTI+2

Recognition

Fuie

SequEnces SequEnces Vator Saqueross
Eecognitpn Sysiem

e o] e e e e e e e e e e e ] —_— e — 1
I Vertor Quantization Vaector Quaniizmtion Wictar Quanlization | I
I I
I ¥ 4 ¥ |
I Symbal Sequences Samhbol Sequences Symhbol Bequences | |

I
I . . |

3 : {
Hidd=n Markew Hidden Marko Hidden Marlkoy
Model i e | Mo

CMSC 828] - Spring 2006




