
1

Feature-Based Recognition

• Till now we’ve been looking at methods that
require dense correspondences.
– May be assumed, eg., Eigenfaces, LLE…
– May be searched for, eg., Shape Context
– Correspondence comes from smooth

transformation
• Feature-based applied to wider range of

objects
– Correspondences may be sparse
– Objects may not be related by smooth

transformation (eg., bag of words).

Features

• Choice of features
– Distinctive points
– Stability over transformations
– Corners

• Stable over Euclidean transformations

– Scale space

• Descriptors
– Largely based on gradient direction
– Histograms popular

2

Corners

• Intuitively, should be locally unique
• One way to get at that is through

motion.
– A point is different from its neighborhood iff

we can accurately track it with small motion

When motion is small: Optical Flow

• Small motion: (u and v are less than 1 pixel)
– H(x,y) = I(x+u,y+v)

Brightness Change Constraint Equation

• suppose we take the Taylor series expansion of I:

(Seitz)

3

Optical flow equation

• Combining these two equations

• In the limit as u and v go to zero, this
becomes exact

(Seitz)

Optical flow equation

• Q: how many unknowns and equations per
pixel?

• Intuitively, what does this constraint
mean?
– The component of the flow in the gradient

direction is determined
– The component of the flow parallel to an edge

is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

(Seitz)

4

Let’s look at an example of this. Suppose we have an image in which H(x,y) = y.
That is, the image will look like:

11111111111111

22222222222222

33333333333333

And suppose there is optical flow of (1,1). The new image will look like:

-1111111111111

-2222222222222

I(3,3) = 2. H(3,3) = 3. So It(3,3) = -1. GRAD I(3,3) = (0,1). So our constraint
equation will be: 0 = -1 + <(0,1), (u,v)>, which is 1 = v. We recover the v
component of the optical flow, but not the u component. This is the aperture
problem.

First Order Approximation

When we assume:

We assume an image
locally is:

(Seitz)

v
y

I
u

x

I
yxIvyuxI

∂
∂+

∂
∂+≈++),(),(

5

Aperture problem

(Seitz)

Aperture problem

(Seitz)

6

Solving the aperture problem
• How to get more equations for a pixel?

– Basic idea: impose additional constraints
• most common is to assume that the flow field is smooth

locally

• one method: pretend the pixel’s neighbors have the
same (u,v)

– If we use a 5x5 window, that gives us 25 equations per
pixel!

(Seitz)

Lukas-Kanade flow

• We have more equations than unknowns: solve least
squares problem. This is given by:

– Summations over all pixels in the KxK window

(Seitz)

7

Let’s look at an example of this. Suppose we have an image with a corner.

1111111111 -----------------

1222222222 And this translates down and to the right: -1111111111

1233333333 -1222222222

1234444444 -1233333333

Let’s compute It for the whole second image:

---------- Ix = ---------- Iy = -------------

0-1-1-1-1-1 --00000 --------------

-1-1-1-1-1-1 --.50000 -0-.5-1-1-1-1-1-1

-1-1-1-1-1-1- --1.5000 -00-.5-1-1-1-1-1

Then the equations we get have the form:

(.5,-.5)*(u,v) = 1, (1,0)*(u,v) = 1, (0,-1)(u,v) = 1.

Together, these lead to a solution that u = 1, v = -1.

Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue) (Seitz)

8

Formula for Finding Corners

�
�
�

�

�
�
�

�
=

��
��

2

2

yyx

yxx

III

III
C

We look at matrix:

Sum over a small region,
the hypothetical corner

Gradient with respect to x,
times gradient with respect to y

Matrix is symmetric WHY THIS?

�
�

�
�
�

�
=

�
�
�

�

�
�
�

�
=

��
��

2

1
2

2

0

0

λ
λ

yyx

yxx

III

III
C

First, consider case where:

This means all gradients in neighborhood are:

(k,0) or (0, c) or (0, 0) (or off-diagonals cancel).

What is region like if:

1. λ1 = 0?

2. λ2 = 0?

3. λ1 = 0 and λ2 = 0?

4. λ1 > 0 and λ2 > 0?

9

General Case:

From Singular Value Decomposition it follows
that since C is symmetric:

RRC �
�

�
�
�

�
= −

2

11

0

0

λ
λ

where R is a rotation matrix.

So every case is like one on last slide.

So, corners are the things we
can track

• Corners are when λ1, λ2 are big; this is
also when Lucas-Kanade works.

• Corners are regions with two different
directions of gradient (at least).

• Aperture problem disappears at
corners.

• At corners, 1st order approximation fails.

10

Edge

– large gradients, all the same
– large λ1, small λ2

(Seitz)

Low texture region

– gradients have small magnitude
– small λ1, small λ2

(Seitz)

11

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

(Seitz)

Scale-Invariant Features

• Notice that we will detect same corners
even as image translates and rotates.

• Scaling can effect corners
– Region of support is scale dependent.
– Need regions that are scale independent.

12

Scale-Invariant Blobs: Lindeberg

• Gaussian scale space
– Repeated smoothing with Gaussian.
– Linear, shift invariant
– Doesn’t introduce new features (eg.,

extrema).

• Blob defined as scale-normalized
Laplacian of Gaussian (Mexican hat)

• Select local extrema in space and scale

() ()

() () ()

() ()

.,, respect to

 with extrema local a is this wherelocations findThen

LoG) normalized (Scale ,,

Gaussian) of (Laplacian

) scaleat (Image ,,,,,L

) scale with (Gaussian,
2

1
,,

22

2

2
2

222

σ

σσ

σσσ

σ
πσ

σ σ

yx

LLyxL

LLL

yxIyxGyx

eyxG

yyxxnorm

yyxx

yx

+=∇

+=∇

∗=

= +−

13

Maximally Stable Extremal
Regions

• Based on isoluminant contours
– Ie, boundaries of regions that we get by thresholding image with

a fixed threshold.
– These are extremal regions.
– Notice that direction of image gradient is orthogonal to

isoluminant contour.
• So, if direction of image gradient doesn’t change, isoluminant

contours don’t change.
– Topology of contours doesn’t change with any continuous

transformation, so their structure is preserved under projective
transformations.

• Maximally Stable regions are the ones that change least when
the threshold changes

• This is related to corner detection. Good regions have high
gradients in all directions.

Descriptors: Gabor Jets

• 1D Gabor filter is sine/cosine times Gaussian
– Precursor to wavelet; localized in frequency and space.
– Scale can vary with Gaussian, frequency with harmonic.
– Add constant so they integrate to 0.

• 2D Gabors are oriented. 1D harmonic times Gaussian.
• Gabor Jet

– Apply Gabors at different orientations and scales (varying
frequency with scale).

– Normalize the vector that contains all the outputs.
• Invariant to additive and multiplicative intensity changes

– Filters integrate to zero, so invariant to additive changes.
– Normalization removes effects of multiplicative changes.

14

�
	

�
�

 +−+

2

22

2
exp)cos(

σ
yx

ykxk
yx

Gabor Filters

Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric
(or odd) filters, bottom row the
symmetric (or even) filters.

SIFT

• Divide region into windows
• Compute histogram of gradient orientations

within each window.
– Weight by distance to keypoint using Gaussian
– Weight by gradient magnitude

• Many subtle optimizations
– Eg., antialiasing when building histogram
– Parameters carefully optimized

• Insensitive to small image shifts.

15

(from Lowe, IJCV)

HOG (Histograms of Oriented
Gradients)

• Similar in spirit to SIFT
• Histograms computed on a dense,

overlapping grid.
• Contrast normalization is performed

within regions.

