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Feature-Based Recognition

• Till now we’ve been looking at methods that 
require dense correspondences.
– May be assumed, eg., Eigenfaces, LLE…
– May be searched for, eg., Shape Context
– Correspondence comes from smooth 

transformation
• Feature-based applied to wider range of 

objects
– Correspondences may be sparse
– Objects may not be related by smooth 

transformation (eg., bag of words).

Features

• Choice of features
– Distinctive points
– Stability over transformations
– Corners

• Stable over Euclidean transformations

– Scale space

• Descriptors
– Largely based on gradient direction
– Histograms popular
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Corners

• Intuitively, should be locally unique
• One way to get at that is through 

motion.
– A point is different from its neighborhood iff

we can accurately track it with small motion

When motion is small: Optical Flow

• Small motion:  (u and v are less than 1 pixel)
– H(x,y) = I(x+u,y+v)

Brightness Change Constraint Equation

• suppose we take the Taylor series expansion of I:

(Seitz)
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Optical flow equation

• Combining these two equations

• In the limit as u and v go to zero, this 
becomes exact

(Seitz)

Optical flow equation

• Q:  how many unknowns and equations per 
pixel?

• Intuitively, what does this constraint 
mean?
– The component of the flow in the gradient 

direction is determined
– The component of the flow parallel to an edge 

is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

(Seitz)
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Let’s look at an example of this.  Suppose we have an image in which H(x,y) = y.  
That is, the image will look like:

11111111111111

22222222222222

33333333333333

And suppose there is optical flow of (1,1).  The new image will look like:

-----------------------

-1111111111111

-2222222222222

I(3,3) = 2.  H(3,3) = 3.  So It(3,3) = -1.  GRAD I(3,3) = (0,1).  So our constraint 
equation will be: 0 = -1 + <(0,1), (u,v)>, which is 1 = v.  We recover the v 
component of the optical flow, but not the u component.  This is the aperture 
problem.

First Order Approximation

When we assume: 

We assume an image 
locally is:

(Seitz)
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Aperture problem

(Seitz)

Aperture problem

(Seitz)
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Solving the aperture problem
• How to get more equations for a pixel?

– Basic idea:  impose additional constraints
• most common is to assume that the flow field is smooth 

locally

• one method:  pretend the pixel’s neighbors have the 
same (u,v)

– If we use a 5x5 window, that gives us 25 equations per 
pixel!

(Seitz)

Lukas-Kanade flow

• We have more equations than unknowns: solve least 
squares problem.  This is given by:

– Summations over all pixels in the KxK window

(Seitz)
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Let’s look at an example of this.  Suppose we have an image with a corner.

1111111111                                                      -----------------

1222222222    And this translates down and to the right: -1111111111   

1233333333                                                      -1222222222

1234444444                                                      -1233333333

Let’s compute It for the whole second image:  

---------- Ix =  ---------- Iy = -------------

0-1-1-1-1-1            --00000          --------------

-1-1-1-1-1-1           --.50000         -0-.5-1-1-1-1-1-1

-1-1-1-1-1-1- --1.5000         -00-.5-1-1-1-1-1

Then the equations we get have the form:

(.5,-.5)*(u,v) = 1,    (1,0)*(u,v) = 1,   (0,-1)(u,v) = 1.  

Together, these lead to a solution that u = 1, v = -1.

Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue) (Seitz)
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Formula for Finding Corners
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We look at matrix:

Sum over a small region, 
the hypothetical corner

Gradient with respect to x, 
times gradient with respect to y

Matrix is symmetric WHY THIS?
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First, consider case where:

This means all gradients in neighborhood are:

(k,0)   or   (0, c)   or    (0, 0)  (or off-diagonals cancel).

What is region like if:

1. λ1 = 0?

2. λ2 = 0?

3. λ1 = 0   and   λ2 = 0?

4. λ1 > 0   and   λ2 > 0?
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General Case:

From Singular Value Decomposition it follows 
that since C is symmetric:
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where R is a rotation matrix.

So every case is like one on last slide.

So, corners are the things we 
can track

• Corners are when λ1, λ2 are big; this is 
also when Lucas-Kanade works.  

• Corners are regions with two different 
directions of gradient (at least).

• Aperture problem disappears at 
corners.

• At corners, 1st order approximation fails.
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Edge

– large gradients, all the same
– large λ1, small λ2

(Seitz)

Low texture region

– gradients have small magnitude
– small λ1, small λ2

(Seitz)
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High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

(Seitz)

Scale-Invariant Features

• Notice that we will detect same corners 
even as image translates and rotates. 

• Scaling can effect corners
– Region of support is scale dependent.
– Need regions that are scale independent.
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Scale-Invariant Blobs: Lindeberg

• Gaussian scale space
– Repeated smoothing with Gaussian.
– Linear, shift invariant
– Doesn’t introduce new features (eg., 

extrema).

• Blob defined as scale-normalized 
Laplacian of Gaussian (Mexican hat)

• Select local extrema in space and scale
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Maximally Stable Extremal
Regions

• Based on isoluminant contours
– Ie, boundaries of regions that we get by thresholding image with 

a fixed threshold.
– These are extremal regions.
– Notice that direction of image gradient is orthogonal to 

isoluminant contour.
• So, if direction of image gradient doesn’t change, isoluminant

contours don’t change.
– Topology of contours doesn’t change with any continuous 

transformation, so their structure is preserved under projective
transformations.

• Maximally Stable regions are the ones that change least when 
the threshold changes

• This is related to corner detection.  Good regions have high 
gradients in all directions.

Descriptors: Gabor Jets

• 1D Gabor filter is sine/cosine times Gaussian
– Precursor to wavelet; localized in frequency and space.
– Scale can vary with Gaussian, frequency with harmonic.
– Add constant so they integrate to 0.

• 2D Gabors are oriented.  1D harmonic times Gaussian.
• Gabor Jet

– Apply Gabors at different orientations and scales (varying 
frequency with scale).

– Normalize the vector that contains all the outputs.
• Invariant to additive and multiplicative intensity changes

– Filters integrate to zero, so invariant to additive changes.
– Normalization removes effects of multiplicative changes.
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Gabor Filters

Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric 
(or odd) filters, bottom row the
symmetric (or even) filters.

SIFT

• Divide region into windows
• Compute histogram of gradient orientations 

within each window.
– Weight by distance to keypoint using Gaussian
– Weight by gradient magnitude

• Many subtle optimizations
– Eg., antialiasing when building histogram
– Parameters carefully optimized

• Insensitive to small image shifts.
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(from Lowe, IJCV)

HOG (Histograms of Oriented 
Gradients)

• Similar in spirit to SIFT
• Histograms computed on a dense, 

overlapping grid.
• Contrast normalization is performed 

within regions.


