Feature-Based Recognition

 Till now we’'ve been looking at methods that
require dense correspondences.
— May be assumed, eg., Eigenfaces, LLE...
— May be searched for, eg., Shape Context
— Correspondence comes from smooth

transformation

» Feature-based applied to wider range of
objects
— Correspondences may be sparse

— Objects may not be related by smooth
transformation (eg., bag of words).

Features

» Choice of features
— Distinctive points
— Stability over transformations

— Corners
« Stable over Euclidean transformations

— Scale space

» Descriptors
— Largely based on gradient direction
— Histograms popular




Corners

* Intuitively, should be locally unique
* One way to get at that is through
motion.

— A point is different from its neighborhood iff
we can accurately track it with small motion

When motion is small: Optical Flow

displacement = (u,v)

H(z,y) I(z,y)
» Small motion: (u and v are less than 1 pixel)
— HXxy) = 1(x+tu,y+v)
Brightness Change Constraint Equation

» suppose we take the Taylor series expansion of I:

I(z+u,y+v) = I(x, y)—l—%u—l—g—év—l—higher order terms

~ I(2,y) + JEu+ G (Seitz)




Optical flow equation

» Combining these two equations
0=1I(z+uy+v)— H(zy)

~ I(z,y) + Iyu+ Iyv — H(z,y)
~ (I(z,y) — H(z,y)) + Leu + Iyv
~ It + Lyu + Ty
~ I+ VI-[u v]
 In the limit as u and v go to zero, this

becomes exact
0=1+VI-[% %

shorthand: I, = 92

(Seitz)

Optical flow equation

O=1L+ VI [u ]
* Q: how many unknowns and equations per
pixel?
* Intuitively, what does this constraint
mean?

— The component of the flow in the gradient
direction is determined

— The component of the flow parallel to an edge
IS unknown

This explains the Barber Pole illusion (Seitz)
http://www.sandlotscience.com/Ambiguous/barberpole.htm




Let’s look at an example of this. Suppose we have an image in which H(x,y) = y.
That is, the image will look like:

111121111111111
22222222222222
33333333333333
And suppose there is optical flow of (1,1). The new image will look like:
-1111111111111
-2222222222222

1(3,3) =2. H(3,3)=3. Sol(3,3) =-1. GRAD I(3,3) = (0,1). So our constraint
equation will be: 0 = -1 + <(0,1), (u,v)>, which is 1 =v. We recover the v
component of the optical flow, but not the u component. This is the aperture
problem.

First Order Approximation

al ol
When we assume: | (X+U,y+V)=1(X,y)+—u+_—V
ox 0

We assume an image
locally is:

(Seitz)




Aperture problem

(Seitz)

Aper oblem

(Seitz)




Solving the aperture problem

* How to get more equations for a pixel?

— Basic idea: impose additional constraints
* most common is to assume that the flow field is smooth
locally
< one method: pretend the pixel's neighbors have the
same (u,v)
— If we use a 5x5 window, that gives us 25 equations per

Pixell 0 = 1,(py) + VI(py) - [u 0]

I:(p1) Iy(p1) I(p1)
I:(p2) Iy(p2) | |uw | _ _| It(p2)
: : v :
I:(p25) Iy(p2s) It(p2s5)
A d b (Seitz)

Lukas-Kanade flow
4= —— minimize ||Ad - b||?

* We have more equations than unknowns: solve least

squares problem. This is given by:
2X2 2x1 2x1

(AT A) d = ATh

Yo Iply Y Izl w| _ | Xzl
Yo Iply D Iyly v | > Iyl

AT A ATy
— Summations over all pixels in the KxK window
(Seitz)




Let’s look at an example of this. Suppose we have an image with a corner.
1111111112 e
1222222222 And this translates down and to the right: -1111111111
1233333333 -1222222222
1234444444 -1233333333

Let's compute I, for the whole second image:

—————————— Ix = ly =

0-1-1-1-1-1 --00000 -
-1-1-1-1-1-1 --.50000 -0-.5-1-1-1-1-1-1
-1-1-1-1-1-1- --1.5000 -00-.5-1-1-1-1-1

Then the equations we get have the form:
(.5,-5)*u,v) =1, (1,0)*(u,v)=1, (0,-1)(u,v)=1.

Together, these lead to a solution thatu =1, v =-1.

Conditions for solvability

— Optimal (u, v) satisfies Lucas-Kanade equation

Yo Iply Y Izl w | _ | Xzl
Yo Iply D Iyly v | > Iyl

AT A ATy

When is This Solvable?
» ATA should be invertible
» ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
» ATA should be well-conditioned
A,/ A, should not be too large (A, = larger eigenvalue) (Seitz)




Formula for Finding Corners

We look at matrix:
Gradient with respect to x,

Sum over a small region, times gradient with respect to y
the hypothetica@ner /
2 \
C= | X Z
I

Ly 205

Matrix is symmetric WHY TH IS?

First, consider case where:

C - D2, _[A 0
DL, >0s 0 A

This means all gradients in neighborhood are:
(k,0) or (0,c) or (0,0) (oroff-diagonals cancel).
What is region like if:
1. A1=07?
2. \2=07?
3. A1=0 and A2=07?
4. A1>0 and A2>07?




General Case:

From Singular Value Decomposition it follows
that since C is symmetric:

A0
0 A,

where R is a rotation matrix.

C=R" R

So every case is like one on last slide.

So, corners are the things we
can track
Corners are when A1, A2 are big; this is

also when Lucas-Kanade works.

Corners are regions with two different
directions of gradient (at least).

Aperture problem disappears at
corners.

At corners, 15t order approximation fails.




S vivnt
— large gradients, all the same

—large A, small A,
(Seitz)

Low texture region

S vivnt
— gradients have small magnitude
—small A,, small A,
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High textured region

S vivnt
— gradients are different, large magnitudes

—large A, large A, (Seitz)
eitz

Scale-Invariant Features

* Notice that we will detect same corners
even as image translates and rotates.

» Scaling can effect corners
— Region of support is scale dependent.
— Need regions that are scale independent.
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Scale-Invariant Blobs: Lindeberg

» Gaussian scale space
— Repeated smoothing with Gaussian.
— Linear, shift invariant

— Doesn’t introduce new features (eg.,
extrema).

» Blob defined as scale-normalized
Laplacian of Gaussian (Mexican hat)

» Select local extrema in space and scale

G(x,y,0)= Zie‘(xz*yz)/z‘72 (Gaussian, with scale o)

mZ
L(x,y,0)=G(x,y,o)0l(x,y) (Imageat scaleo)
0°L =L, +L,, (Laplacianof Gaussian)
2L, (x y,0)=0? (LXX + LW) (Scalenormalized LoG)
Then find locationswherethisisalocal extremawith
respect tox, y,o.
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Maximally Stable Extremal
Regions

» Based on isoluminant contours
— le, boundaries of regions that we get by thresholding image with
a fixed threshold.
— These are extremal regions.
— Notice that direction of image gradient is orthogonal to
isoluminant contour.

* So, if direction of image gradient doesn’t change, isoluminant
contours don’t change.

— Topology of contours doesn’t change with any continuous
transformation, so their structure is preserved under projective
transformations.

* Maximally Stable regions are the ones that change least when
the threshold changes

» This is related to corner detection. Good regions have high
gradients in all directions.

Descriptors: Gabor Jets

e 1D Gabor filter is sine/cosine times Gaussian
— Precursor to wavelet; localized in frequency and space.
— Scale can vary with Gaussian, frequency with harmonic.
— Add constant so they integrate to 0.

e 2D Gabors are oriented. 1D harmonic times Gaussian.

e Gabor Jet

— Apply Gabors at different orientations and scales (varying
frequency with scale).

— Normalize the vector that contains all the outputs.

« Invariant to additive and multiplicative intensity changes
— Filters integrate to zero, so invariant to additive changes.
— Normalization removes effects of multiplicative changes.
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Gabor Filters

Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric
(or odd) filters, bottom row the
symmetric (or even) filters.

X2 + y2

2

cos(k X+ K y) exp-

SIFT

Divide region into windows

Compute histogram of gradient orientations
within each window.

— Weight by distance to keypoint using Gaussian
— Weight by gradient magnitude

Many subtle optimizations

— Eg., antialiasing when building histogram

— Parameters carefully optimized

Insensitive to small image shifts.
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

(from Lowe, IJCV)

HOG (Histograms of Oriented
Gradients)

« Similar in spirit to SIFT

» Histograms computed on a dense,
overlapping grid.

» Contrast normalization is performed
within regions.
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