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3D Geometry

Our Plan

• Projection from 2D to 3D
• Representing 3D pose
• Projective Invariants.

– Affine invariants (scaled orthographic 
projection of planar objects).

– Projective invariants (planar, perspective).
– Lack of invariants for 3D objects.
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The equation of projection

(Forsyth & Ponce)

The equation of projection

• Cartesian 
coordinates:
– We have, by similar 

triangles, that                       
(x, y, z) -> (f x/z, f 
y/z, -f)

– Ignore the third 
coordinate, and get

(x,y, z) → ( f
x

z
, f

y

z
)
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Weak perspective (scaled 
orthographic projection)

• Issue
– perspective effects, 

but not over the 
scale of individual 
objects

– collect points into a 
group at about the 
same depth, then 
divide each point by 
the depth of its group

(Forsyth & Ponce)

The Equation of Weak 
Perspective

),(),,( yxszyx →
• s is constant for all points.
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Projection

• We’ll talk about a fixed camera, and moving object.
• Key point:
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First, look at 2D rotation 
(easier)
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Matrix R acts 
on points by 
rotating them.

• Also, RRT = Identity. RT is also a rotation 
matrix, in the opposite direction to R.

Why does multiplying points by R rotate them?

• Think of the rows of R as a new coordinate system.  
Taking inner products of each points with these expresses 
that point in that coordinate system.  

• This means rows of R must be orthonormal vectors 
(orthogonal unit vectors).

• Think of what happens to the points (1,0) and (0,1).  They 
go to (cos theta, -sin theta), and (sin theta, cos theta).  They 
remain orthonormal, and rotate clockwise by theta.

• Any other point, (a,b) can be thought of as a(1,0) + 
b(0,1).  R(a(1,0)+b(0,1) = Ra(1,0) + Ra(0,1) = aR(1,0) + 
bR(0,1).    So it’s in the same position relative to the 
rotated coordinates that it was in before rotation relative 
to the x, y coordinates.  That is, it’s rotated.
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Simple 3D Rotation
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Rotation about z axis.

Rotates x,y coordinates.  Leaves z coordinates fixed.

Full 3D Rotation
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• Any rotation can be expressed as combination of three 
rotations about three axes.
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• Rows (and columns) of R are 
orthonormal vectors.

• R has determinant 1 (not -1).
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• Intuitively, it makes sense that 3D rotations can be 
expressed as 3 separate rotations about fixed axes.  
Rotations have 3 degrees of freedom; two describe an 
axis of rotation, and one the amount.

• Rotations preserve the length of a vector, and the angle 
between two vectors.  Therefore, (1,0,0), (0,1,0), (0,0,1) 
must be orthonormal after rotation.  After rotation, they 
are the three columns of R.  So these columns must be 
orthonormal vectors for R to be a rotation.  Similarly, if 
they are orthonormal vectors (with determinant 1) R will 
have the effect of rotating (1,0,0), (0,1,0), (0,0,1).  Same 
reasoning as 2D tells us all other points rotate too.  

• Note if R has determinant -1, then R is a rotation 
plus a reflection.

Full 3D Motion/Projection
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We can just write stx as 
tx and sty as ty.
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Definitions and Invariants

• A definition of a class means that given a list 
of properties:
– For all props, all objects have that prop.
– No other objects have all properties

• Invariant is an image property that:
– For some objects, property is true for all images.
– For all other objects, property is false for all 

images.
Whiteboard

• Definitions are composed of invariant 
properties.

Invariants, a brief history

• Invariance has long history in perception.
Each movement we make by which we alter the appearance of 
objects should be thought of as an experiment desgned to test 
whether we have understood correctly the invariant relations of 
the phenomena before us, that is, their existence in definite 
spatial relations.

– Helmholtz, 1878
If invariants of the energy flux at the receptors of an organism 
exist, and if these invariants correspond to the permanent 
properties of the environment … then I think thee is new 
support for … a new theory of perception in psychology.

– Gibson, 1967
• In math, Erlanger program conceives geometry as 

study of invariant properties under a group of 
transformations.
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Invariants on a line
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• WLOG, line is y=0,z=0.

Then, we can show that ||p3-p2||/||p2-p1|| is invariant to 
this transformation.

whiteboard

||(s1x3+tx,s2x3+ty)-(s1x2+tx,s2x2+ty)||

/||(s1x2+tx,s2x2+ty)-(s1x1+tx,s2x1+ty)||

= ||(s1(x3-x2),s2(x3-x2))||/||(s1(x2-x1),s2(x2-x1))||

=sqrt(s1^2+s2^2)(x3-x2)/sqrt(s1^2+s2^2)(x2-x1)

=(x3-x2)/(x2-x1)
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Planar Invariants

�
�
�

�

�

�
�
�

�

�

��
�

�
��
�

�
=

��
�
�
�

�

�

��
�
�
�

�

�

��
�

�
��
�

�
=�

�

�
�
�

�

111

...

111

000

...

...

21

21

2,21,2

2,11,1

21

21

3,22,21,2

3,12,11,1

21

21

n

n

y

x

n

n

y

x

n

n

yyy

xxx

tss

tss

yyy

xxx

tsss

tsss

vvv

uuu

A t

p1 p2

p3
p4

p4 = p1 + a(p2-p1) + b(p3-p1)

A(p4)+ t = A(p1+a(p2-p1) + b(p3-p1)) + t

= A(p1)+t + a(A(p2)+t – A(p1)-t) + b(A(p3)+t – A(p1)-t)

p4 is linear combination of p1,p2,p3.  Transformed p4 is same 
linear combination of transformed p1, p2, p3.

We call (a,b) affine coordinates of p4.
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Perspective Projection

• Problem: perspective is non-linear.
• Solution: Homogenous coordinates.

– Represent points in plane as (x,y,w)
– (x,y,w), (kx, ky, kw), (x/w, y/w, 1) represent 

same point.
– If we think of these as points in 3D, they lie 

on a line through origin.  Set of 3D points 
that project to same 2D point.

Perspective motion and 
projection
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For Planar Objects
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The first two columns on right are orthonormal.  Scale 
is irrelevant.  So there are 6 degrees of freedom.

We ignore constraints to get 8.  This is called a 
projective transformation.

Projective Transformations

• Mapping from plane to plane.
• Form a group.

– They can be composed
– They have inverses.
– Projective transformations equivalent to set 

of images of images.
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Planar Projective Invariants

• Strategy.  
– Suppose P represents five points.  V1 transforms 

P so that first 4 to canonical position, and fifth to 
(a,b,c).   

– Next, suppose we are given TP, with T unknown.  
Find V2 to transform first 4 points of TP to 
canonical position. 

– V2 = V1*T-1.  V2P has fifth point = (a,b,c).
– For this to work, V1, V2 must be uniquely 

determined.

Transform to Canonical Position
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cbaExample: transform 
point 1 to (0,0,1).  
Three linear equations 
with 8+1 unknowns.

Similarly, transform other points to: (1,0,1), (0,1,1), 
(1,1,1).  Get 12 equations, 4 unknowns.  

• Unique solution.

• Must be non-degenerate.  This will be true if no three 
points collinear.
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Affine

• Affine transformations are a subgroup of 
projective, with last row = (0,0,1).

• Note that this is equivalent to what we 
did in the affine case.  Affine 
coordinates are coordinates of 4th point 
after first three are transformed to (0,0), 
(1,0), (0,1).

Cross Ratio

• Let p1, p2, p3, p4 be collinear points.
• Let (xj,yj) denote the coordinates of pj.
• Let |xj xk| denote the determinate of a matrix 

whose first column is xj1, xj2, and whose 
second column is xk1, xk2.

• Cross(p1,p2,p3,p4) =
(|x1 x2| |x3 x4|)/(|x1 x3| |x2 x4|)

• This cross-ratio is invariant to projective 
transformations.
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Lines: Parameterization

• Equation for line: ax+by+c=0.
• Parameterize line as l = (a,b,c)T.

• p=(x,y,1)T is on line if <p,l>=0.

Line Intersection

• The intersection of l and l’ is l x l’ (where 
x denotes the cross product).

• This follows from the fact that the cross 
product is orthogonal to both lines.
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Intersection of Parallel Lines

• Suppose l and l’ are parallel.  We can write l=(a,b,c), 
l’ = (a,b,c’).  l x l’ = (c’-c)(b,-a,0).  This equivalent to 
(b,-a,0).

• This point corresponds to a line through the focal 
point that doesn’t intersect the image plane.

• We can think of the real plane as points (a,b,c) where 
c isn’t equal to 0.  When c = 0, we say these points lie 
on the ideal line at infinity.

• Note that a projective transformation can map this to 
another line, the horizon, which we see.

Invariants of Lines

• Notice that affine transformations are 
the subgroup of projective 
transformations in which the last row is 
(0, 0, 1).

• These map the line at infinity to itself.
• So parallel lines are affine invariants, 

since they continue to intersect at 
infinity.
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Invariance in 3D to 2D

• Invariance isn’t captured by mathematical 
definition of invariance because 3D to 2D 
transformations don’t form a group.
– You can’t compose or invert them.

• Let f be a function on images.  f is an 
invariant iff for every Object O, if I1 and I2 are 
images of O, f(I1)=f(I2).

• f is a non-trivial invariant if there exist two 
images I1 and I2 such that f(I1)~=f(I2). 

Non-Invariance in 3D to 2D

• Theorem: Valid objects are any 3D point 
sets of size k, for some k.  There are no 
non-trivial invariants of the images of 
these objects under perspective 
projection.
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Proof Strategy

• Let f be an invariant.
• Suppose two objects, A and B have a 

common image.  Then f(I)=f(J) if I and J are 
images of either A or B.

• Given any O0, Ok, we construct a series of 
objects, O1, …, Ok, so that Oi and O(i+1) 
have a common image for all i, and Ok and j 
have a common image.

• So for any pair of images, I, J, from any two 
objects, f(I) = f(J).

Constructing O1 … Ok-1

• Oi has its first i points identical to the first i 
points of Ok, and the remaining points 
identical to the remaining points of O0.

• If two objects are identical except for one 
point, they produce the same image when 
viewed along a line joining those two points.
– Along that line, those two points look the same.
– The remaining points always look the same. 
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Visibility

• Three geometric steps of determining 
appearance are projection, pose, and 
visibility.

• Two issues
– Is surface point facing the camera

• Inner product between outward normal and 
vector to camera center must be >0.

– Is anything blocking it from view.

Recognition by synthesis

• Blanz and Vetter give example, optimize pose 
to fit rendered model and image.

• Z-buffer algorithm for visibility.
– Buffer is image size, set all z values to infinity.
– Project each triangle into image. 
– For each pixel center it contains, update the z 

value if this triangle is closer, and render it into 
image

• If this triangle has larger z value, don’t render it.

• Often special hardware for this.
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Preprocess model to determine 
consistent feature sets.

• Example: if an object has 20 features, 
might recognize it by looking for all 20 in 
image.

• Suppose “object” is a sheet of paper 
with ten features on each side.  We 
should represent this as two sets of ten 
features, not one set of 20.

Aspect Graphs

• Assume an image of an object is described 
by a set of features.

• An aspect is a (maximal) set of views of the 
object that all contain the same features.

• In feature matching, should only match 
features that share an aspect.

• For complex objects, # of aspects becomes 
very large.
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Aspect Graphs

• Simple example, convex polyhedra.
– If a side is facing away from the camera (for orthographic 

projection, the z component of the surface normal is +) it is 
not visible.

– Otherwise, the side is completely visible. (only true due to 
convexity).

– So if a side has surface normal, n, and we express the 
viewing direction with a vector v, the side is visible iff <n,v> > 
0.  (Lhs means inner product).

– Thus, the boundaries between qualitatively different views 
are planes in the 3D space of viewing directions.  

• Each plane goes through the origin.
• Intersect a unit sphere in great circles.
• Create 2(n choose 2) vertices and O(n^2) cells on the unit 

sphere.  That is, O(n^2) aspects.

Why don’t we use Aspect Graphs

• Real (non-convex, non-polyhedral) 
objects have large aspect graphs.
– Hard to represent and to compute.

• Many aspects may be tiny, not worth 
representing.  Coarse aspect graph 
might be worthwhile, but the idea is not 
well developed.


