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Image Spaces

What might an image space be

• Map each image to a point in a space.
• Define a distance between two points in that space.
• Maybe also a shortest path (morph).
• We have already seen a simple version  of this, in 

which each n-pixel image is mapped to a point in 
R^n, and Euclidean distance is used.
– Also, we’ve considered linear subspaces (Eigenfaces, 

Fisherfaces).  Each point is mapped to nearest location on 
the subspace.

– Shortest path  in R^n is just linear interpolation of the 
images, which doesn’t seem like the right morph.

– What is shortest path with Eigenfaces?
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Riemannian Manifold

• More general notion of an image space
– Can have different topology than Euclidean 

space.
– Can represent non-linear subsets of 

images (more on this is a few weeks).

– Can provide more general sense of 
distances.

Manifold

• “A smooth manifold of dimension m is a locally 
compact Hausdorff space M together with the 
following collection of data (henceforth called atlas
or smooth structure) consisting of:
– An open cover {Ui} of M
– Continuous injective maps Fi: Ui ->Rm (called charts or 

local coordinates) such that:
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Lectures on the Geometry of Manifolds by Nicolaescu.
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Manifold - informal

• A manifold is:
– A set (collection of images) with the usual 

topological properties (eg., not discrete)
– A mapping from the neighborhood of each point to 

Euclidean space of fixed dimension.
– So that these mappings fit together smoothly.

• Example: the surface of a sphere.
• Example: any surface that is topologically a 

sphere.
• The definition implies: At any point on the 

manifold, we can construct a tangent space.

Riemann Manifold

• A Riemann Manifold is a pair (M,g)
consisting of a smooth manifold M and 
a metric g on the tangent bundle, i.e. a 
smooth symmetric positive definite 
tensor field on M.  g is called a Riemann 
metric on M.  

• The tangent bundle is (informally) the 
collection of tangent spaces of M.
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Riemann Manifold - intuition

• We define a local distance on the manifold.  
– At any point, for any direction we move in, there is 

a local distance defined.
– This distance is locally linear.  If we define the 

distance for m orthogonal directions, the distance 
in any other direction is a linear combination of 
these.

• Example: any surface in Euclidean space that 
is topologically a sphere with the usual 
Euclidean distance. 

Geodesic

• Analogous to lines, geodesics are shortest 
paths between points.

• Shortest paths locally, but not globally.
– For any two points very close together on the 

geodesic, it is the shortest path.

• Example: on a sphere, any two points are 
connected by two geodesic paths, along two 
directions of the great circle connecting them. 
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Why manifolds?

• Seems like correct mathematical notion 
of an image space with distances.

• Generality greater than Euclidean 
space.
– Image space may be topologically like a 

sphere, not like Rn

– Offers much more flexible distances

Kendall’s shape space

• Two sets of 2D points.

• Mostly we assume there exists a correct one-
to-one correspondence

• And this correspondence is given.
– This is very natural in morphometrics, where 

points are measured and labeled.
– In vision we must solve for correspondence.  Next 

class we’ll look at papers that do this.
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Shape Space
• What is shape?  Qualities of points that 

don’t depend on translation, rotation or 
scale.

• So describe points independent of similarity 
transformation.

1. Remove translation.
• Simplest way, translate so point 1 is at origin, then remove 

point one.
• More elegant, translate center of mass to origin, remove a 

point.
2. Scale so that sum ||Xi||^2 = 1.
Resulting set of points is called pre-shape.
Pre because we haven’t removed rotation yet.
Notation: , U and X denote sets of normalized points.  

Points called Xi and Ui, with coordinates (xi,yi), (ui, 
vi).

Pre-shape

• If we started with n points, we now have 
n-1 so that:

• sum xi^2 + yi^2 = 1.
• So we can think of these coordinates as 

lying on a unit hypersphere in 2(n-1)-
dimensional space.
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Shape

• If we consider all possible rotations of a set of 
normalized points, these trace out a closed, 
1D curve in pre-shape space.

• Distances between shapes can be thought of 
as distances between these curves.
– Notice that to compute distance, without loss of 

generality we can assume that one set of points 
(U) does not rotate, since rotating both point sets 
by the same amount doesn’t change distances.

Procrustes Distances

• Full Procrustes Distance.  DF
– min(s, θ) ||U – sXR(θ).||  That is, we find a scaling 

and rotation of X that minimizes the euclidean
distance to U.  (R(θ) means rotate by θ).

• Partial Procrustes Distance.  DP
– min(θ) ||U – XR(θ)||.  That is, rotate X to minimize 

the euclidean distance to U.

• Procrustes Distance.  ρ
– Rotate X to minimize the geodesic distance on the 

sphere from X to U.
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Linear Pose Solving

• We can linearly find optimal similarity transformation 
that matches X to U.  (ie., minimize sum ||AXi-Ui||^2, 
where A is a similarity transformation. 
– This is asymmetric between X and U.

• In same way we can linearly compute Full Procrustes
Distance.
– This is symmetric.
– Leads immediately to other procrustes distances.

Linear Pose: 2D rotation, 
translation and scale
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• Notice a and b can take on any values.

• Equations linear in a, b, translation.

• Solve exactly with 2 points, or 
overconstrained system with more.

s
abas =+= θcos22
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Similarity Matching

• Given point sets X and U, compare by finding 
similarity transformation A that minimizes 
||AX-U||.
– X = points X1, …Xn.  U = points U1…Un.
– Find A to minimize sum ||AXi – Ui||^2
– This is just a straightforward, linear problem.

• Taking derivatives with respect to four unknowns of A 
gives four linear equations in four unknowns.

Issues with this approach

• It is asymmetric.
– Ok when comparing a model to an image.

– Not so sensible for comparing two shapes.
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• Note that we now also know how to calculate the Full 
Procrustes Distance.  This is just a least-squares solution 
to the overconstrained problem:
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•It is not obvious that Full Procrustes is symmetric.

Given two points on the hypersphere, we can draw the 
plane containing these points and the origin.

DF

ρ

DP

ρ

Procrustes Distances is ρ.

DP = 2 sin ( ρ/2)

DF = sin ρ.  

• These are all monotonic in ρ.  
So the same choice of rotation 
minimizes all three.

• DF is easy to compute, others 
are easy to compute from DF.  
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Why Procrustes Distance?

• Procrustes distance is most natural.  Our intuition is 
that given two objects, we can produce a sequence 
of intermediate objects on a ‘straight line’ between 
them, so the distance between the two objects is the 
sum of the distances between intermediate objects.
This requires a geodesic.

Tangent Space

• Can compute a hyperplane tangent to the 
hypersphere at a point in preshape space.

• Project all points onto that plane.
• All distances Euclidean.  Average shape easy 

to find.
• This is reasonable when all shapes similar.
• In this case, all distances are similar too.

– Note that when ρ is small, ρ, 2sin(ρ /2), sin(ρ) are 
all similar.
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Trouve and Younes

• Image space is the space of all images.
• To get a manifold, we must describe a 

tangent space, that gives a cost to small 
image changes.

• Normal Euclidean distance in this space 
allows intensity of a point to change, with a 
cost = square of the change.

• T&Y also allow image to deform, with a cost 
based on the smoothness of deformation.

Intuition

A

B

C

With Euclidean distance, 
d(A,B) = d(A,C).  But B 
seems much more similar 
to A, because they are 
related by a small 
deformation.
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Local Cost

• Let v be a deformation.  This is a diffeomorphism
(smooth, continuous one-to-one transformation).
– We might be interested in non-smooth deformations, but 

these are not as nice mathematically.

• I(v(x)) is the deformed image. 
• We can’t expect two images to be identical up to a 

deformation.
– So, add cost ||J(x)-I(v(x))||.  
– Use Euclidean norm here.
– Total cost also requires a norm on v, a vector field (see paper)

( ) ( )( )
gLv

vxvIxJ +−
2

min λ

Tangent Space

• This assigns a cost to any combination of 
deformation and intensity change.

• However, we need a cost for changes in the 
image.

• Any image change is consistent with any 
deformation + some intensity change.
– Ie, there are an infinite number of ways to create 

an image change.
– We define the cost of the image change to be the 

infinum of all of these.
• This defines an image manifold
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Geodesics

• We have defined a local cost on infinitesimal 
image changes.  
– For tiny changes, we can minimize over 

deformations fairly easily, because everything is 
linear.

• To find the distance between two images, we 
must compute a geodesic path between 
them.

• This also gives us a morph between them.

Computing geodesics

• Gradient descent
– Start with some path between images, discretizing time.
– Path is represented by discrete representation over 

deformation at each time.
• Durrleman describes use of kernels here.

– And by changes in intensity at each time.
– Compute derivatives and minimize path.
– Lots of variables, but this can work in practice.

• Geodesic shooting
– Geodesic path is entirely determined by initial change.
– Pick some change, calculate path, measure distance to 

target image, and correct.
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Example of Geodesic


