
1

Lighting affects appearance
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Image Normalization

Global
Histogram Equalization.  Make two images have same 
histogram.  Or, pick a standard histogram, and make adjust 
each image to have that histogram.

Apply monotonic transform to intensities.
Additive and multiplicative normalization.

Subtract mean intensity, divide by total magnitude of result.

Local
Normalized cross-correlation: Normalize windows and then 
compare with SSD.
Normalize intensity and first derivatives -> direction of 
gradient.
Normalize filter outputs: eg., Gabor Jets.
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Histogram: H: I in R^2 -> f:Z->R.  That is, computing a histogram takes in an 
image as input, and returns a function as output that maps integer intensity 
values to a frequency.  In this case, f(i) = sum_x I(x)==i, where I(x)==i acts like 
an indicator function.

Histogram equalization: I in R^2,f: (R->R) -> J in R^2.  That is, histogram 
equalization takes an image and a desired histogram as input, and produces a 
new image.  We have J(x) = g(I(x)), where x is an index into the image.  J(x) is 
a histogram equalized version of I(x) if H(J) = f (that is, the J has the desired 
histogram, f) and g is a montonically increasing function.

Histogram equalization undoes any montonic change to the intensities.  That 
is, suppose h is a montonically increasing function.  Suppose also that I and I’
are images, such that I’(x) = h(I(x)).  Then, for any target histogram, f, H(I’,f) = 
H(I,f).  That is, I and I’ will be the same after histogram equalization.

Normalization.  Suppose I is an image.  Let mean(I) denote the mean intensity 
of I.  Then I’ = I - mean(I) is normalized to have zero mean.  Let std(I’) be the 
standard deviation of intensities in I.  Then I’’ = (I-mean(I))/std(I) is normalized 
to have zero mean and unit standard deviation.  This removes additive and 
multiplicative changes to the image.

Direction of gradient.  Let grad(I(x)) denote the image gradient of I at point x.  
Then we can represent the image with the direction of the gradient, D(x) = 
grad(I)/||grad(I)||.  This is equivalent to normalizing the image very locally, since 
additive and multiplicative changes to the local image can map the intensity 
and magnitude of the image gradient to arbitrary values.

How do we represent light? (1)

Ideal distant point source:

- No cast shadows
- Light distant

- Three parameters
- Example: lab with controlled 

light
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How do we represent light? (2)

Environment map: l(θ,φ)
- Light from all directions
- Diffuse or point sources
- Still distant
- Still no cast shadows.
- Example: outdoors (sky and sun)

Sky

`
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Lambertian + Point Source
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Lambertian, point sources, no 
shadows.  (Shashua, Moses)

Whiteboard
Solution linear
Linear ambiguity in recovering scaled 
normals
Lighting not known.
Recognition by linear combinations.
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Linear basis for lighting

λZ λYλX

A brief Detour: Fourier 
Transform, the other linear basis

Analytic geometry gives a coordinate 
system for describing geometric objects.
Fourier transform gives a coordinate 
system for functions.
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Basis

P=(x,y) means P = x(1,0)+y(0,1)

Similarly: 
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Orthonormal Basis

||(1,0)||=||(0,1)||=1

(1,0).(0,1)=0
Similarly we use normal basis elements eg:

While, eg:
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Convolution
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Imagine that we generate a point in f by 
centering h over the corresponding point in 
g, then multiplying g and h together, and 
integrating.

Convolution Theorem

GFTgf * 1−=⊗
• F,G are transform of f,g

That is, F contains coefficients, when 
we write f as linear combinations of 
harmonic basis.
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Examples
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Low-pass filter removes low frequencies from 
signal.  Hi-pass filter removes high 
frequencies.  Examples?

Shadows

Attached Shadow

Cast Shadow
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90.797.296.399.5#9

88.596.395.399.1#7

84.794.193.597.9#5

76.388.290.294.4#3

42.867.953.748.2#1

ParrotPhoneFaceBall

(Epstein, Hallinan and Yuille; 
see also Hallinan; Belhumeur and Kriegman)

5 2D±Dimension:

With Shadows: PCA

DomainDomain

Lambertian
Environment map n

l
θ 

lλmax (cosθ, 0)
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Images

...

Lighting Reflectance
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Lighting to Reflectance: 
Intuition
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Spherical Harmonics

Orthonormal basis,       , for functions on the sphere. 
n’th order harmonics have 2n+1 components.
Rotation = phase shift (same n, different m). 
In space coordinates: polynomials of degree n.
S.H. used for BRDFs (Cabral et al.; Westin et al;).        
(See also Koenderink and van Doorn.)
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S.H. analog to convolution theorem

• Funk-Hecke theorem: “Convolution” in 
function domain is multiplication in 
spherical harmonic domain.

• k is low-pass filter.
k
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Harmonic Transform of Kernel
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Energy of Lambertian Kernel in 
low order harmonics

Accumulated Energy
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Low-dimensional Linear Subspace
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How accurate is approximation?
Point light source

Amplitude of k
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How accurate is approximation? 
(2)

Worst case.

9D space captures 98% of energy

DC component as big as any other.
1st and 2nd harmonics of light could have zero energy
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Forming Harmonic Images
nm nmb (p)= r (X,Y,Z)

λ λZ λYλX

2 2 22 (Z -X -Y ) λXZ λYZ
2 2(X -Y ) λXY

Compare this to 3D Subspace

λZ λYλX
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Accuracy of Approximation of 
Images

Normals present to varying amounts.
Albedo makes some pixels more important.

Worst case approximation arbitrarily bad.

“Average” case approximation should be 
good.

Models

Query

Find Pose

Compare

Vector: I
Matrix: B

Harmonic Images
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