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Announcements
• Presentation assignments – on class 

web page.
• Midterm
Histogram:

Manifold Learning

• Maybe a better term would be: distance 
preserving low-dimensional Euclidean 
representations that are suitable for 
some manifold data.
– For Riemannian manifolds

• Try to preserve local distances or geodesic 
distances.

• With low-dimensional Euclidean embedding.
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Multi-dimensional Scaling

• Given distances between points
– In many applications (psychology) we have 

similarities, not points.

• Produce low-dimensional point set that 
preserves distances.  If x are the initial 
points, and y are the low dimensional 
points, we want:
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MDS vs. PCA
• PCA 

– linear projection of points, 
– can only decrease distances.  
– Tries to preserve points location.

• MDS can extend distances also.
• For low-dim points, they are equivalent

– PCA preserves location and distances.

PCA MDS
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Distances and Inner products
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Algorithm

• Convert Distance matrix, D, to Inner Product 
matrix, B.

• Factor B = QAQT, where Q is an orthonormal
(rotation) matrix, and A is diagonal.
– Possible since B is symmetric.
– Can do this with SVD.

• Use first d columns of QA1/2 as d-dimensional 
points.  These provide optimal approximation 
to inner products (and distances).
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ISOMAP

• Like MDS, but tries to preserve geodesic 
distances on a manifold.
– Compute near-neighbors

• Assume Euclidean distances are appropriate for these.

– Compute geodesic distances between all pairs of 
points

• Geodesic distance taken as shortest path among set of 
local distances.

• Can use shortest path algorithm.

– Apply MDS to these distances.

LLE

• Embedding that only preserves local 
distances and angles.

• Inspired by manifold data, in which local 
distaces are ~ Euclidean.

• Also, local distances may be more 
meaningful/important.

• More modest goal than ISOMAP which tries 
to preserve all distances on manifold.
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Local distances are well-preserved.  Geodesic 
distances are not.

For example, the equator is ~ the yellow stripe.

LLE Algorithm

• For each point
– Find nearest neighbors.
– Rep. pt as weighted sum of neighbors.

• Approximate weights, points in low 
dimension.

• Error in reconstructing point using 
weights in low dimension indicates how 
much distances have changed.
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Local Weights
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Low-dimensional approximation
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