Template Matching — Rigid
Motion

» Find transformation to align two images.

» Focus on geometric features

— (not so much interesting with intensity
images)
— Emphasis on tricks to make this efficient.

Problem Definition

« AnImage is a set of 2D geometric features,
along with positions.

» An Object is a set of 2D/3D geometric
features, along with positions.

A pose positions the object relative to the
image.

— 2D Translation; 2D translation + rotation; 2D
translation, rotation and scale; planar or 3D object
positioned in 3D with perspective or scaled orth.

» The best pose places the object features
nearest the image features

Two parts to the problem

» Definition of cost function.

« Search method for finding best pose.
1. Can phrase this as search among poses.
2. Or as search among correspondences
3. There are connections between two.

Example

Cost Function

We look at this first, since it defines the
problem.

Again, no perfect measure;

— Trade-offs between veracity of measure
and computational considerations.

One-to-one vs. many-to-one
Bounded error vs. metric

Example: Chamfer Matching
Many-to-one, distance

For every edge point in

the transformed object,

compute the distance to
N the nearest image edge
point. Sum distances.

>d

>min(llp,a [l.llp.q,ll...11p.q,

)

Main Feature:

« Every model point matches an image
point.

* An image point can match 0, 1, or more
model points.

Variations

* Sum a different distance
— f(d) = d?
— or Manhattan distance.
— f(d) = 1 if d < threshold, O otherwise.

— This is called bounded error.

¢ Use maximum distance instead of sum.
— This is called: directed Hausdorff distance.

e Use other features
— Corners.

— Lines. Then position and angles of lines must be
similar.
« Model line may be subset of image line.

Other comparisons

» Enforce each image feature can match
only one model feature.

» Enforce continuity, ordering along
curves.

» These are more complex to optimize.

Pose Search: Standard
Optimization Heuristics

» Brute force search with dense sampling.

« Random starting point + gradient
descent.
— Multiple random starting points
— Stochastic gradient descent

« Any other optimization method you can
think of.

Clever Idea 1. Chamfer Matching
with the Distance Transform

2|1
1

3|2
2|1

1
1

1
1

1
2
3

1
12
2|3
3|2
3|2

=R N WIN

HrWN

312

Example: Each pixel has (Manhattan)
distance to nearest edge pixel.

D.T. Adds Efficiency

 Compute once.
» Fast algorithms to compute it.
« Makes Chamfer Matching simple.

Then, try all translations of model edges. Add
distances under each edge pixel.

That is, correlate edges with Distance Transform

R INWN
O OOk, NW

BWNFR O
wWww Nk o
NINNWN -

WINEFP O KN

Pl i~ ol |N

Computing Distance Transform

 It's only done once, per problem, not once
per pose.

» Basically a shortest path problem.

 Simple solution passing through image once
for each distance.
— First pass mark edges 0.
— Second, mark 1 anything next to O, unless it's

already marked. Etc....

» Actually, a more clever method requires 2

passes.

Chamfer Matching Complexity

» Brute force approach: for each pose,
compare each model point to every image
point. O(pnm). p = number poses, n =
number of image points, m = number of
model points.

» With distance transform: compute D.T., then
for every pose, sum value under each model
edge. O(s + pm). s = number of pixels,
which is about same as p.

Clever Idea 2: Ransac

» Match enough features in model to
features in image to determine pose.

« Examples:
— match a point and determine translation.

— match a corner and determine translation
and rotation.

— Points and translation, rotation, scaling?
— Lines and rotation and translation?

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:
1 — the smallest nurnber of points required
E — the number of iterations required
t — the threshold used to identify a point that fits well
d — the number of nearby points required
to assert a model fits well
Until k iterations have occurred
Draw a sample of n points from the data
uniformly and at random
Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the line
against #; if the distance from the point to the line
is less than ¢, the point is close
end
If there are d or more points close to the line
then there is a good fit. Refit the line nsing all
these points.
end
Use the best fit from this eollection, using the
fitting error as a criterion

(Forsyth & Ponce)

Complexity

* Suppose model has m points and image has n
points. There are nm matches.

When we match a model point, there is a 1/n
probability this match is right.

If we match k model points, probability all are right is
approximately (1/n)k.

If we repeat this L times, probability that at least one
pose is right is: K

1--| = |)
n

[nput image| Overlaid

Figure from “Object recognition using alignment,"M Huttenlocher and S.
Ullman, Proc. Int. Conf. Computer Vision, 1986, goght IEEE, 1986

10

The Hough Transform for
Lines

* Aline is the set of points (X, y) such that:
y=mx+Dhb
* For any (x, y) there is a line in (m,b) space

describing the lines through this point. Just let
(x,y) be constants and m, b be unknowns.

» Each point gets to vote for each line in the
family; if there is a line that has lots of votes,
that should be the line passing through the
points

Mechanics of the Hough
transform

* How many lines?

— count the peaks in the
Hough array

* Who belongs to which
line?
— tag the votes

» Can modify voting, peak
finding to reflect noise.

» Construct an array
representingm, b

» For each point, render
the line y=mx+b into
this array, adding one at
each cell

e Questions

— how big should the cells
be? (too big, and we

cannot distinguish » Big problem if noise in
between quite different Hough space different
lines; too small, and from noise in image
noise causes lines to be

missed) Space.

11

Generalized Hough Transform

Some pros and cons

* Run-time for line finding
— Complexity of RANSAC n*n*n
— Complexity of Hough n*d

12

Error behavior

Hough handles error with buckets. This gives a
larger set of lines consistent with point, but ad-
hoc.

Ransac handles error with threshold. Well-
motivated for error in other points, but not for
error in first 2 points.

— But works if we find some 2 points w/ low error.
Error handling sloppy -> clutter bigger problem.

Many variations to handle these issues.

Pose: Generalized Hough
Transform

Like Hough Transform, but for general
shapes.

Example: match one point to one point,
and for every rotation of the object its
translation is determined.

Example: match enough features to
determine pose, then vote for best
pose.

13

Correspondence: Interpretation
Tree Search

» Represent all possible sets of matches as
exponential sized tree.

» Each node involves another match
» Wildcard allowed for no matches.

 Prune tree when set of matches incompatible
(this seems to imply bounded error).

« Trick: some fast way of evaluating
compatability.

» Trick: different tree search algorithms. Best
first. A*....

2D Euclidean Transformation

» Check pairwise compatibility
— Fast
— Conservative test

14

Cass: Correspondence pose
duality

» Suppose we match two features with
bounded error.
— There is a set of transformations that fit.
— For nm matches, nm sets.

— As these intersect, they carve
transformation space into regions.

» Within a region, feasible matches are the same.

* If sets are convex, #regions is limited.
* If everything is linear, this becomes easier.

Example: points, 2D translation
L-infinity norm

— |

15

* Every cell is bounded by axial lines.
» Must contain point where two lines intersect.
* No more than (nm)? cells.

* If we sample points where all pairs of lines
intersect, we sample all cells.

General case

» Can extend to any linear transformation and
convex, polygonal error bound.

» Every model point and every error line lead to
hyperplane in transformation space.

* These divide transformation space into
convex cells. Each has vertices at
intersection of d hyperplanes.

e Complexity (mn)d

16

Can also mix and match

Alignment, then tree search.

— continue to add feasible additional
matches.

Greedy heuristics
RANSAC + distance transform

Summary

 All these methods exponential in
dimension of transformation.

» Clever & effective for translation, 2D
euclidean.

» Too slow for 3D to 2D recognition
— Grouping heuristics

* Roberts — group quadrilaterals, then alignment.

» Lowe — Perceptually salient grouping based on
parallelism, proximity,

17

